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Preface

Thank you for your interest in our book, but more importantly, thank you for taking the time to
read the Preface. I always read the Prefaces of the textbooks which I use in my classes because
I believe it is in the Preface where I begin to understand the authors - who they are, what their
motivation for writing the book was, and what they hope the reader will get out of reading the
text. Pedagogical issues such as content organization and how professors and students should best
use a book can usually be gleaned out of its Table of Contents, but the reasons behind the choices
authors make should be shared in the Preface. Also, I feel that the Preface of a textbook should
demonstrate the authors’ love of their discipline and passion for teaching, so that I come away
believing that they really want to help students and not just make money. Thus, I thank my fellow
Preface-readers again for giving me the opportunity to share with you the need and vision which
guided the creation of this book and passion which both Carl and I hold for Mathematics and the
teaching of it.

Carl and I are natives of Northeast Ohio. We met in graduate school at Kent State University
in 1997. I finished my Ph.D in Pure Mathematics in August 1998 and started teaching at Lorain
County Community College in Elyria, Ohio just two days after graduation. Carl earned his Ph.D in
Pure Mathematics in August 2000 and started teaching at Lakeland Community College in Kirtland,
Ohio that same month. Our schools are fairly similar in size and mission and each serves a similar
population of students. The students range in age from about 16 (Ohio has a Post-Secondary
Enrollment Option program which allows high school students to take college courses for free while
still in high school.) to over 65. Many of the “non-traditional” students are returning to school in
order to change careers. A majority of the students at both schools receive some sort of financial
aid, be it scholarships from the schools’ foundations, state-funded grants or federal financial aid
like student loans, and many of them have lives busied by family and job demands. Some will
be taking their Associate degrees and entering (or re-entering) the workforce while others will be
continuing on to a four-year college or university. Despite their many differences, our students
share one common attribute: they do not want to spend $200 on a College Algebra book.

The challenge of reducing the cost of textbooks is one that many states, including Ohio, are taking
quite seriously. Indeed, state-level leaders have started to work with faculty from several of the
colleges and universities in Ohio and with the major publishers as well. That process will take
considerable time so Carl and I came up with a plan of our own. We decided that the best
way to help our students right now was to write our own College Algebra book and give it away
electronically for free. We were granted sabbaticals from our respective institutions for the Spring
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semester of 2009 and actually began writing the textbook on December 16, 2008. Using an open-
source text editor called TexNicCenter and an open-source distribution of LaTeX called MikTex
2.7, Carl and I wrote and edited all of the text, exercises and answers and created all of the graphs
(using Metapost within LaTeX) for Version 0.9 in about eight months. (We choose to create a
text in only black and white to keep printing costs to a minimum for those students who prefer
a printed edition. This somewhat Spartan page layout stands in sharp relief to the explosion of
colors found in most other College Algebra texts, but neither Carl nor I believe the four-color
print adds anything of value.) I used the book in three sections of College Algebra at Lorain
County Community College in the Fall of 2009 and Carl’s colleague, Dr. Bill Previts, taught a
section of College Algebra at Lakeland with the book that semester as well. Students had the
option of downloading the book as a .pdf file from our website www.stitz-zeager.com or buying a
low-cost printed version from our colleges’ respective bookstores. (By giving this book away for
free electronically, we end the cycle of new editions appearing every 18 months to curtail the used
book market.) During Thanksgiving break in November 2009, many additional exercises written
by Dr. Previts were added and the typographical errors found by our students and others were
corrected. On December 10, 2009, Version

√
2 was released. The book remains free for download at

our website and by using Lulu.com as an on-demand printing service, our bookstores are now able
to provide a printed edition for just under $19. Neither Carl nor I have, or will ever, receive any
royalties from the printed editions. As a contribution back to the open-source community, all of
the LaTeX files used to compile the book are available for free under a Creative Commons License
on our website as well. That way, anyone who would like to rearrange or edit the content for their
classes can do so as long as it remains free.

The only disadvantage to not working for a publisher is that we don’t have a paid editorial staff.
What we have instead, beyond ourselves, is friends, colleagues and unknown people in the open-
source community who alert us to errors they find as they read the textbook. What we gain in not
having to report to a publisher so dramatically outweighs the lack of the paid staff that we have
turned down every offer to publish our book. (As of the writing of this Preface, we’ve had three
offers.) By maintaining this book by ourselves, Carl and I retain all creative control and keep the
book our own. We control the organization, depth and rigor of the content which means we can resist
the pressure to diminish the rigor and homogenize the content so as to appeal to a mass market.
A casual glance through the Table of Contents of most of the major publishers’ College Algebra
books reveals nearly isomorphic content in both order and depth. Our Table of Contents shows a
different approach, one that might be labeled “Functions First.” To truly use The Rule of Four,
that is, in order to discuss each new concept algebraically, graphically, numerically and verbally, it
seems completely obvious to us that one would need to introduce functions first. (Take a moment
and compare our ordering to the classic “equations first, then the Cartesian Plane and THEN
functions” approach seen in most of the major players.) We then introduce a class of functions
and discuss the equations, inequalities (with a heavy emphasis on sign diagrams) and applications
which involve functions in that class. The material is presented at a level that definitely prepares a
student for Calculus while giving them relevant Mathematics which can be used in other classes as
well. Graphing calculators are used sparingly and only as a tool to enhance the Mathematics, not
to replace it. The answers to nearly all of the computational homework exercises are given in the

http://www.stitz-zeager.com
http://www.lulu.com/content/paperback-book/college-algebra/7513097
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text and we have gone to great lengths to write some very thought provoking discussion questions
whose answers are not given. One will notice that our exercise sets are much shorter than the
traditional sets of nearly 100 “drill and kill” questions which build skill devoid of understanding.
Our experience has been that students can do about 15-20 homework exercises a night so we very
carefully chose smaller sets of questions which cover all of the necessary skills and get the students
thinking more deeply about the Mathematics involved.

Critics of the Open Educational Resource movement might quip that “open-source is where bad
content goes to die,” to which I say this: take a serious look at what we offer our students. Look
through a few sections to see if what we’ve written is bad content in your opinion. I see this open-
source book not as something which is “free and worth every penny”, but rather, as a high quality
alternative to the business as usual of the textbook industry and I hope that you agree. If you have
any comments, questions or concerns please feel free to contact me at jeff@stitz-zeager.com or Carl
at carl@stitz-zeager.com.

Jeff Zeager
Lorain County Community College
January 25, 2010
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Chapter 1

Relations and Functions

1.1 Sets of Real Numbers and the Cartesian Coordinate Plane

1.1.1 Sets of Numbers

While the authors would like nothing more than to delve quickly and deeply into the sheer excite-
ment that is Precalculus, experience1 has taught us that a brief refresher on some basic notions is
welcome, if not completely necessary, at this stage. To that end, we present a brief summary of
‘set theory’ and some of the associated vocabulary and notations we use in the text. Like all good
Math books, we begin with a definition.

Definition 1.1. A set is a well-defined collection of objects which are called the ‘elements’ of
the set. Here, ‘well-defined’ means that it is possible to determine if something belongs to the
collection or not, without prejudice.

For example, the collection of letters that make up the word “smolko” is well-defined and is a set,
but the collection of the worst math teachers in the world is not well-defined, and so is not a set.2

In general, there are three ways to describe sets. They are

Ways to Describe Sets

1. The Verbal Method: Use a sentence to define a set.

2. The Roster Method: Begin with a left brace ‘{’, list each element of the set only once
and then end with a right brace ‘}’.

3. The Set-Builder Method: A combination of the verbal and roster methods using a
“dummy variable” such as x.

For example, let S be the set described verbally as the set of letters that make up the word “smolko”.
A roster description of S would be {s,m, o, l, k}. Note that we listed ‘o’ only once, even though it

1. . . to be read as ‘good, solid feedback from colleagues’ . . .
2For a more thought-provoking example, consider the collection of all things that do not contain themselves - this

leads to the famous Russell’s Paradox.

http://en.wikipedia.org/wiki/Russell's_paradox
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appears twice in “smolko.” Also, the order of the elements doesn’t matter, so {k, l,m, o, s} is also
a roster description of S. A set-builder description of S is:

{x |x is a letter in the word “smolko”.}

The way to read this is: ‘The set of elements x such that x is a letter in the word “smolko.”’ In
each of the above cases, we may use the familiar equals sign ‘=’ and write S = {s,m, o, l, k} or
S = {x |x is a letter in the word “smolko”.}. Clearly m is in S and q is not in S. We express
these sentiments mathematically by writing m ∈ S and q /∈ S. Throughout your mathematical
upbringing, you have encountered several famous sets of numbers. They are listed below.

Sets of Numbers

1. The Empty Set: ∅ = {} = {x |x 6= x}. This is the set with no elements. Like the number
‘0,’ it plays a vital role in mathematics.a

2. The Natural Numbers: N = {1, 2, 3, . . .} The periods of ellipsis here indicate that the
natural numbers contain 1, 2, 3, ‘and so forth’.

3. The Whole Numbers: W = {0, 1, 2, . . .}

4. The Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

5. The Rational Numbers: Q =
{
a
b | a ∈ Z and b ∈ Z

}
. Rational numbers are the ratios of

integers (provided the denominator is not zero!) It turns out that another way to describe
the rational numbersb is:

Q = {x |x possesses a repeating or terminating decimal representation.}

6. The Real Numbers: R = {x |x possesses a decimal representation.}

7. The Irrational Numbers: P = {x |x is a non-rational real number.} Said another way,
an irrational number is a decimal which neither repeats nor terminates.c

8. The Complex Numbers: C = {a+ bi | a,b ∈ R and i =
√
−1} Despite their importance,

the complex numbers play only a minor role in the text.d

a. . . which, sadly, we will not explore in this text.
bSee Section 9.2.
cThe classic example is the number π (See Section 10.1), but numbers like

√
2 and 0.101001000100001 . . . are

other fine representatives.
dThey first appear in Section 3.4 and return in Section 11.7.

It is important to note that every natural number is a whole number, which, in turn, is an integer.
Each integer is a rational number (take b = 1 in the above definition for Q) and the rational
numbers are all real numbers, since they possess decimal representations.3 If we take b = 0 in the

3Long division, anyone?
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above definition of C, we see that every real number is a complex number. In this sense, the sets
N, W, Z, Q, R, and C are ‘nested’ like Matryoshka dolls.

For the most part, this textbook focuses on sets whose elements come from the real numbers R.
Recall that we may visualize R as a line. Segments of this line are called intervals of numbers.
Below is a summary of the so-called interval notation associated with given sets of numbers. For
intervals with finite endpoints, we list the left endpoint, then the right endpoint. We use square
brackets, ‘[’ or ‘]’, if the endpoint is included in the interval and use a filled-in or ‘closed’ dot to
indicate membership in the interval. Otherwise, we use parentheses, ‘(’ or ‘)’ and an ‘open’ circle to
indicate that the endpoint is not part of the set. If the interval does not have finite endpoints, we
use the symbols −∞ to indicate that the interval extends indefinitely to the left and ∞ to indicate
that the interval extends indefinitely to the right. Since infinity is a concept, and not a number,
we always use parentheses when using these symbols in interval notation, and use an appropriate
arrow to indicate that the interval extends indefinitely in one (or both) directions.

Interval Notation

Let a and b be real numbers with a < b.

Set of Real Numbers Interval Notation Region on the Real Number Line

{x | a < x < b} (a, b)
a b

{x | a ≤ x < b} [a, b)
a b

{x | a < x ≤ b} (a, b]
a b

{x | a ≤ x ≤ b} [a, b]
a b

{x |x < b} (−∞, b)
b

{x |x ≤ b} (−∞, b]
b

{x |x > a} (a,∞)
a

{x |x ≥ a} [a,∞)
a

R (−∞,∞)

http://en.wikipedia.org/wiki/Matryoshka_doll
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For an example, consider the sets of real numbers described below.

Set of Real Numbers Interval Notation Region on the Real Number Line

{x | 1 ≤ x < 3} [1, 3)
1 3

{x | − 1 ≤ x ≤ 4} [−1, 4] −1 4

{x |x ≤ 5} (−∞, 5]
5

{x |x > −2} (−2,∞) −2

We will often have occasion to combine sets. There are two basic ways to combine sets: intersec-
tion and union. We define both of these concepts below.

Definition 1.2. Suppose A and B are two sets.

� The intersection of A and B: A ∩B = {x |x ∈ A and x ∈ B}

� The union of A and B: A ∪B = {x |x ∈ A or x ∈ B (or both)}

Said differently, the intersection of two sets is the overlap of the two sets – the elements which the
sets have in common. The union of two sets consists of the totality of the elements in each of the
sets, collected together.4 For example, if A = {1, 2, 3} and B = {2, 4, 6}, then A ∩ B = {2} and
A∪B = {1, 2, 3, 4, 6}. If A = [−5, 3) and B = (1,∞), then we can find A∩B and A∪B graphically.
To find A∩B, we shade the overlap of the two and obtain A∩B = (1, 3). To find A∪B, we shade
each of A and B and describe the resulting shaded region to find A ∪B = [−5,∞).

−5 1 3

A = [−5, 3), B = (1,∞)

−5 1 3

A ∩B = (1, 3)

−5 1 3

A ∪B = [−5,∞)

While both intersection and union are important, we have more occasion to use union in this text
than intersection, simply because most of the sets of real numbers we will be working with are
either intervals or are unions of intervals, as the following example illustrates.

4The reader is encouraged to research Venn Diagrams for a nice geometric interpretation of these concepts.

http://en.wikipedia.org/wiki/Venn_diagram
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Example 1.1.1. Express the following sets of numbers using interval notation.

1. {x |x ≤ −2 or x ≥ 2} 2. {x |x 6= 3}

3. {x |x 6= ±3} 4. {x | − 1 < x ≤ 3 or x = 5}

Solution.

1. The best way to proceed here is to graph the set of numbers on the number line and glean
the answer from it. The inequality x ≤ −2 corresponds to the interval (−∞,−2] and the
inequality x ≥ 2 corresponds to the interval [2,∞). Since we are looking to describe the real
numbers x in one of these or the other, we have {x |x ≤ −2 or x ≥ 2} = (−∞,−2] ∪ [2,∞).

−2 2

(−∞,−2] ∪ [2,∞)

2. For the set {x |x 6= 3}, we shade the entire real number line except x = 3, where we leave
an open circle. This divides the real number line into two intervals, (−∞, 3) and (3,∞).
Since the values of x could be in either one of these intervals or the other, we have that
{x |x 6= 3} = (−∞, 3) ∪ (3,∞)

3
(−∞, 3) ∪ (3,∞)

3. For the set {x |x 6= ±3}, we proceed as before and exclude both x = 3 and x = −3 from our
set. This breaks the number line into three intervals, (−∞,−3), (−3, 3) and (3,∞). Since
the set describes real numbers which come from the first, second or third interval, we have
{x |x 6= ±3} = (−∞,−3) ∪ (−3, 3) ∪ (3,∞).

−3 3

(−∞,−3) ∪ (−3, 3) ∪ (3,∞)

4. Graphing the set {x | − 1 < x ≤ 3 or x = 5}, we get one interval, (−1, 3] along with a single
number, or point, {5}. While we could express the latter as [5, 5] (Can you see why?), we
choose to write our answer as {x | − 1 < x ≤ 3 or x = 5} = (−1, 3] ∪ {5}.

−1 3 5

(−1, 3] ∪ {5}
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1.1.2 The Cartesian Coordinate Plane

In order to visualize the pure excitement that is Precalculus, we need to unite Algebra and Ge-
ometry. Simply put, we must find a way to draw algebraic things. Let’s start with possibly the
greatest mathematical achievement of all time: the Cartesian Coordinate Plane.5 Imagine two
real number lines crossing at a right angle at 0 as drawn below.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The horizontal number line is usually called the x-axis while the vertical number line is usually
called the y-axis.6 As with the usual number line, we imagine these axes extending off indefinitely
in both directions.7 Having two number lines allows us to locate the positions of points off of the
number lines as well as points on the lines themselves.

For example, consider the point P on the next page. To use the numbers on the axes to label this
point, we imagine dropping a vertical line from the x-axis to P and extending a horizontal line from
the y-axis to P . This process is sometimes called ‘projecting’ the point P to the x- (respectively
y-) axis. We then describe the point P using the ordered pair (2,−4). The first number in the
ordered pair is called the abscissa or x-coordinate and the second is called the ordinate or
y-coordinate.8 Taken together, the ordered pair (2,−4) comprise the Cartesian coordinates9

of the point P . In practice, the distinction between a point and its coordinates is blurred; for
example, we often speak of ‘the point (2,−4).’ We can think of (2,−4) as instructions on how to

5So named in honor of René Descartes.
6The labels can vary depending on the context of application.
7Usually extending off towards infinity is indicated by arrows, but here, the arrows are used to indicate the

direction of increasing values of x and y.
8Again, the names of the coordinates can vary depending on the context of the application. If, for example, the

horizontal axis represented time we might choose to call it the t-axis. The first number in the ordered pair would
then be the t-coordinate.

9Also called the ‘rectangular coordinates’ of P – see Section 11.4 for more details.

http://en.wikipedia.org/wiki/Descartes
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reach P from the origin (0, 0) by moving 2 units to the right and 4 units downwards. Notice that
the order in the ordered pair is important − if we wish to plot the point (−4, 2), we would move
to the left 4 units from the origin and then move upwards 2 units, as below on the right.

x

y

P

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

P (2,−4)

(−4, 2)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

When we speak of the Cartesian Coordinate Plane, we mean the set of all possible ordered pairs
(x, y) as x and y take values from the real numbers. Below is a summary of important facts about
Cartesian coordinates.

Important Facts about the Cartesian Coordinate Plane

� (a, b) and (c, d) represent the same point in the plane if and only if a = c and b = d.

� (x, y) lies on the x-axis if and only if y = 0.

� (x, y) lies on the y-axis if and only if x = 0.

� The origin is the point (0, 0). It is the only point common to both axes.

Example 1.1.2. Plot the following points: A(5, 8), B
(
−5

2 , 3
)
, C(−5.8,−3), D(4.5,−1), E(5, 0),

F (0, 5), G(−7, 0), H(0,−9), O(0, 0).10

Solution. To plot these points, we start at the origin and move to the right if the x-coordinate is
positive; to the left if it is negative. Next, we move up if the y-coordinate is positive or down if it
is negative. If the x-coordinate is 0, we start at the origin and move along the y-axis only. If the
y-coordinate is 0 we move along the x-axis only.

10The letter O is almost always reserved for the origin.
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x

y

A(5, 8)

B
(
−5

2 , 3
)

C(−5.8,−3)

D(4.5,−1)

E(5, 0)

F (0, 5)

G(−7, 0)

H(0,−9)

O(0, 0)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

The axes divide the plane into four regions called quadrants. They are labeled with Roman
numerals and proceed counterclockwise around the plane:

x

y

Quadrant I

x > 0, y > 0

Quadrant II

x < 0, y > 0

Quadrant III

x < 0, y < 0

Quadrant IV

x > 0, y < 0

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4
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For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2) in Quadrant III and (1,−2)
in Quadrant IV. If a point other than the origin happens to lie on the axes, we typically refer to
that point as lying on the positive or negative x-axis (if y = 0) or on the positive or negative y-axis
(if x = 0). For example, (0, 4) lies on the positive y-axis whereas (−117, 0) lies on the negative
x-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of Mathematics is symmetry.11 There are many types of
symmetry in Mathematics, but three of them can be discussed easily using Cartesian Coordinates.

Definition 1.3. Two points (a, b) and (c, d) in the plane are said to be

� symmetric about the x-axis if a = c and b = −d

� symmetric about the y-axis if a = −c and b = d

� symmetric about the origin if a = −c and b = −d

Schematically,

0 x

y

P (x, y)Q(−x, y)

S(x,−y)R(−x,−y)

In the above figure, P and S are symmetric about the x-axis, as are Q and R; P and Q are
symmetric about the y-axis, as are R and S; and P and R are symmetric about the origin, as are
Q and S.

Example 1.1.3. Let P be the point (−2, 3). Find the points which are symmetric to P about the:

1. x-axis 2. y-axis 3. origin

Check your answer by plotting the points.

Solution. The figure after Definition 1.3 gives us a good way to think about finding symmetric
points in terms of taking the opposites of the x- and/or y-coordinates of P (−2, 3).

11According to Carl. Jeff thinks symmetry is overrated.
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1. To find the point symmetric about the x-axis, we replace the y-coordinate with its opposite
to get (−2,−3).

2. To find the point symmetric about the y-axis, we replace the x-coordinate with its opposite
to get (2, 3).

3. To find the point symmetric about the origin, we replace the x- and y-coordinates with their
opposites to get (2,−3).

x

y

P (−2, 3)

(−2,−3)

(2, 3)

(2,−3)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

One way to visualize the processes in the previous example is with the concept of a reflection. If
we start with our point (−2, 3) and pretend that the x-axis is a mirror, then the reflection of (−2, 3)
across the x-axis would lie at (−2,−3). If we pretend that the y-axis is a mirror, the reflection
of (−2, 3) across that axis would be (2, 3). If we reflect across the x-axis and then the y-axis, we
would go from (−2, 3) to (−2,−3) then to (2,−3), and so we would end up at the point symmetric
to (−2, 3) about the origin. We summarize and generalize this process below.

Reflections
To reflect a point (x, y) about the:

� x-axis, replace y with −y.

� y-axis, replace x with −x.

� origin, replace x with −x and y with −y.

1.1.3 Distance in the Plane

Another important concept in Geometry is the notion of length. If we are going to unite Algebra
and Geometry using the Cartesian Plane, then we need to develop an algebraic understanding of
what distance in the plane means. Suppose we have two points, P (x0, y0) and Q (x1, y1) , in the
plane. By the distance d between P and Q, we mean the length of the line segment joining P with
Q. (Remember, given any two distinct points in the plane, there is a unique line containing both
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points.) Our goal now is to create an algebraic formula to compute the distance between these two
points. Consider the generic situation below on the left.

P (x0, y0)

Q (x1, y1)

d

P (x0, y0)

Q (x1, y1)

d

(x1, y0)

With a little more imagination, we can envision a right triangle whose hypotenuse has length d as
drawn above on the right. From the latter figure, we see that the lengths of the legs of the triangle
are |x1 − x0| and |y1 − y0| so the Pythagorean Theorem gives us

|x1 − x0|2 + |y1 − y0|2 = d2

(x1 − x0)
2 + (y1 − y0)

2 = d2

(Do you remember why we can replace the absolute value notation with parentheses?) By extracting
the square root of both sides of the second equation and using the fact that distance is never
negative, we get

Equation 1.1. The Distance Formula: The distance d between the points P (x0, y0) and
Q (x1, y1) is:

d =

√
(x1 − x0)

2 + (y1 − y0)
2

It is not always the case that the points P and Q lend themselves to constructing such a triangle.
If the points P and Q are arranged vertically or horizontally, or describe the exact same point, we
cannot use the above geometric argument to derive the distance formula. It is left to the reader in
Exercise 35 to verify Equation 1.1 for these cases.

Example 1.1.4. Find and simplify the distance between P (−2, 3) and Q(1,−3).

Solution.

d =
√

(x1 − x0)
2 + (y1 − y0)

2

=
√

(1− (−2))2 + (−3− 3)2

=
√

9 + 36

= 3
√

5

So the distance is 3
√

5.

http://en.wikipedia.org/wiki/Pythagorean_Theorem
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Example 1.1.5. Find all of the points with x-coordinate 1 which are 4 units from the point (3, 2).

Solution. We shall soon see that the points we wish to find are on the line x = 1, but for now
we’ll just view them as points of the form (1, y). Visually,

(1, y)

(3, 2)

x

y

distance is 4 units

2 3

−3

−2

−1

1

2

3

We require that the distance from (3, 2) to (1, y) be 4. The Distance Formula, Equation 1.1, yields

d =
√

(x1 − x0)
2 + (y1 − y0)

2

4 =
√

(1− 3)2 + (y − 2)2

4 =
√

4 + (y − 2)2

42 =
(√

4 + (y − 2)2
)2

squaring both sides

16 = 4 + (y − 2)2

12 = (y − 2)2

(y − 2)2 = 12

y − 2 = ±
√

12 extracting the square root

y − 2 = ±2
√

3

y = 2± 2
√

3

We obtain two answers: (1, 2 + 2
√

3) and (1, 2− 2
√

3). The reader is encouraged to think about
why there are two answers.

Related to finding the distance between two points is the problem of finding the midpoint of the
line segment connecting two points. Given two points, P (x0, y0) and Q (x1, y1), the midpoint M
of P and Q is defined to be the point on the line segment connecting P and Q whose distance from
P is equal to its distance from Q.
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P (x0, y0)

Q (x1, y1)

M

If we think of reaching M by going ‘halfway over’ and ‘halfway up’ we get the following formula.

Equation 1.2. The Midpoint Formula: The midpoint M of the line segment connecting
P (x0, y0) and Q (x1, y1) is:

M =

(
x0 + x1

2
,
y0 + y1

2

)
If we let d denote the distance between P and Q, we leave it as Exercise 36 to show that the distance
between P and M is d/2 which is the same as the distance between M and Q. This suffices to
show that Equation 1.2 gives the coordinates of the midpoint.

Example 1.1.6. Find the midpoint of the line segment connecting P (−2, 3) and Q(1,−3).

Solution.

M =

(
x0 + x1

2
,
y0 + y1

2

)
=

(
(−2) + 1

2
,
3 + (−3)

2

)
=

(
−1

2
,
0

2

)
=

(
−1

2
, 0

)
The midpoint is

(
−1

2 , 0
)
.

We close with a more abstract application of the Midpoint Formula. We will revisit the following
example in Exercise 72 in Section 2.1.

Example 1.1.7. If a 6= b, prove that the line y = x equally divides the line segment with endpoints
(a, b) and (b, a).

Solution. To prove the claim, we use Equation 1.2 to find the midpoint

M =

(
a+ b

2
,
b+ a

2

)
=

(
a+ b

2
,
a+ b

2

)
Since the x and y coordinates of this point are the same, we find that the midpoint lies on the line
y = x, as required.
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1.1.4 Exercises

1. Fill in the chart below:

Set of Real Numbers Interval Notation Region on the Real Number Line

{x | − 1 ≤ x < 5}

[0, 3)

2 7

{x | − 5 < x ≤ 0}

(−3, 3)

5 7

{x |x ≤ 3}

(−∞, 9)

4

{x |x ≥ −3}

In Exercises 2 - 7, find the indicated intersection or union and simplify if possible. Express your
answers in interval notation.

2. (−1, 5] ∩ [0, 8) 3. (−1, 1) ∪ [0, 6] 4. (−∞, 4] ∩ (0,∞)

5. (−∞, 0) ∩ [1, 5] 6. (−∞, 0) ∪ [1, 5] 7. (−∞, 5] ∩ [5, 8)

In Exercises 8 - 19, write the set using interval notation.

8. {x |x 6= 5} 9. {x |x 6= −1} 10. {x |x 6= −3, 4}
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11. {x |x 6= 0, 2} 12. {x |x 6= 2, −2} 13. {x |x 6= 0, ±4}

14. {x |x ≤ −1 orx ≥ 1} 15. {x |x < 3 orx ≥ 2} 16. {x |x ≤ −3 orx > 0}

17. {x |x ≤ 5 orx = 6} 18. {x |x > 2 orx = ±1} 19. {x | − 3 < x < 3 orx = 4}

20. Plot and label the points A(−3,−7), B(1.3,−2), C(π,
√

10), D(0, 8), E(−5.5, 0), F (−8, 4),
G(9.2,−7.8) and H(7, 5) in the Cartesian Coordinate Plane given below.

x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

21. For each point given in Exercise 20 above

� Identify the quadrant or axis in/on which the point lies.

� Find the point symmetric to the given point about the x-axis.

� Find the point symmetric to the given point about the y-axis.

� Find the point symmetric to the given point about the origin.
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In Exercises 22 - 29, find the distance d between the points and the midpoint M of the line segment
which connects them.

22. (1, 2), (−3, 5) 23. (3,−10), (−1, 2)

24.

(
1

2
, 4

)
,

(
3

2
,−1

)
25.

(
−2

3
,
3

2

)
,

(
7

3
, 2

)
26.

(
24

5
,
6

5

)
,

(
−11

5
,−19

5

)
. 27.

(√
2,
√

3
)
,
(
−
√

8,−
√

12
)

28.
(
2
√

45,
√

12
)
,
(√

20,
√

27
)
. 29. (0, 0), (x, y)

30. Find all of the points of the form (x,−1) which are 4 units from the point (3, 2).

31. Find all of the points on the y-axis which are 5 units from the point (−5, 3).

32. Find all of the points on the x-axis which are 2 units from the point (−1, 1).

33. Find all of the points of the form (x,−x) which are 1 unit from the origin.

34. Let’s assume for a moment that we are standing at the origin and the positive y-axis points
due North while the positive x-axis points due East. Our Sasquatch-o-meter tells us that
Sasquatch is 3 miles West and 4 miles South of our current position. What are the coordinates
of his position? How far away is he from us? If he runs 7 miles due East what would his new
position be?

35. Verify the Distance Formula 1.1 for the cases when:

(a) The points are arranged vertically. (Hint: Use P (a, y0) and Q(a, y1).)

(b) The points are arranged horizontally. (Hint: Use P (x0, b) and Q(x1, b).)

(c) The points are actually the same point. (You shouldn’t need a hint for this one.)

36. Verify the Midpoint Formula by showing the distance between P (x1, y1) and M and the
distance between M and Q(x2, y2) are both half of the distance between P and Q.

37. Show that the points A, B and C below are the vertices of a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8) (b) A(−3, 1), B(4, 0) and C(0,−3)

38. Find a point D(x, y) such that the points A(−3, 1), B(4, 0), C(0,−3) and D are the corners
of a square. Justify your answer.

39. Discuss with your classmates how many numbers are in the interval (0, 1).

40. The world is not flat.12 Thus the Cartesian Plane cannot possibly be the end of the story.
Discuss with your classmates how you would extend Cartesian Coordinates to represent the
three dimensional world. What would the Distance and Midpoint formulas look like, assuming
those concepts make sense at all?

12There are those who disagree with this statement. Look them up on the Internet some time when you’re bored.
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1.1.5 Answers

1.

Set of Real Numbers Interval Notation Region on the Real Number Line

{x | − 1 ≤ x < 5} [−1, 5) −1 5

{x | 0 ≤ x < 3} [0, 3)
0 3

{x | 2 < x ≤ 7} (2, 7]
2 7

{x | − 5 < x ≤ 0} (−5, 0] −5 0

{x | − 3 < x < 3} (−3, 3) −3 3

{x | 5 ≤ x ≤ 7} [5, 7]
5 7

{x |x ≤ 3} (−∞, 3]
3

{x |x < 9} (−∞, 9)
9

{x |x > 4} (4,∞)
4

{x |x ≥ −3} [−3,∞) −3

2. (−1, 5] ∩ [0, 8) = [0, 5] 3. (−1, 1) ∪ [0, 6] = (−1, 6]

4. (−∞, 4] ∩ (0,∞) = (0, 4] 5. (−∞, 0) ∩ [1, 5] = ∅

6. (−∞, 0) ∪ [1, 5] = (−∞, 0) ∪ [1, 5] 7. (−∞, 5] ∩ [5, 8) = {5}

8. (−∞, 5) ∪ (5,∞) 9. (−∞,−1) ∪ (−1,∞)

10. (−∞,−3) ∪ (−3, 4) ∪ (4,∞) 11. (−∞, 0) ∪ (0, 2) ∪ (2,∞)

12. (−∞,−2) ∪ (−2, 2) ∪ (2,∞) 13. (−∞,−4) ∪ (−4, 0) ∪ (0, 4) ∪ (4,∞)
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14. (−∞,−1] ∪ [1,∞) 15. (−∞,∞)

16. (−∞,−3] ∪ (0,∞) 17. (−∞, 5] ∪ {6}

18. {−1} ∪ {1} ∪ (2,∞) 19. (−3, 3) ∪ {4}

20. The required points A(−3,−7), B(1.3,−2), C(π,
√

10), D(0, 8), E(−5.5, 0), F (−8, 4),
G(9.2,−7.8), and H(7, 5) are plotted in the Cartesian Coordinate Plane below.

x

y

A(−3,−7)

B(1.3,−2)

C(π,
√

10)

D(0, 8)

E(−5.5, 0)

F (−8, 4)

G(9.2,−7.8)

H(7, 5)

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9
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21. (a) The point A(−3,−7) is

� in Quadrant III

� symmetric about x-axis with (−3, 7)

� symmetric about y-axis with (3,−7)

� symmetric about origin with (3, 7)

(b) The point B(1.3,−2) is

� in Quadrant IV

� symmetric about x-axis with (1.3, 2)

� symmetric about y-axis with (−1.3,−2)

� symmetric about origin with (−1.3, 2)

(c) The point C(π,
√

10) is

� in Quadrant I

� symmetric about x-axis with (π,−
√

10)

� symmetric about y-axis with (−π,
√

10)

� symmetric about origin with (−π,−
√

10)

(d) The point D(0, 8) is

� on the positive y-axis

� symmetric about x-axis with (0,−8)

� symmetric about y-axis with (0, 8)

� symmetric about origin with (0,−8)

(e) The point E(−5.5, 0) is

� on the negative x-axis

� symmetric about x-axis with (−5.5, 0)

� symmetric about y-axis with (5.5, 0)

� symmetric about origin with (5.5, 0)

(f) The point F (−8, 4) is

� in Quadrant II

� symmetric about x-axis with (−8,−4)

� symmetric about y-axis with (8, 4)

� symmetric about origin with (8,−4)

(g) The point G(9.2,−7.8) is

� in Quadrant IV

� symmetric about x-axis with (9.2, 7.8)

� symmetric about y-axis with (−9.2,−7.8)

� symmetric about origin with (−9.2, 7.8)

(h) The point H(7, 5) is

� in Quadrant I

� symmetric about x-axis with (7,−5)

� symmetric about y-axis with (−7, 5)

� symmetric about origin with (−7,−5)

22. d = 5, M =
(
−1, 7

2

)
23. d = 4

√
10, M = (1,−4)

24. d =
√

26, M =
(
1, 3

2

)
25. d =

√
37
2 , M =

(
5
6 ,

7
4

)
26. d =

√
74, M =

(
13
10 ,−

13
10

)
27. d = 3

√
5, M =

(
−
√

2
2 ,−

√
3

2

)
28. d =

√
83, M =

(
4
√

5, 5
√

3
2

)
29. d =

√
x2 + y2, M =

(
x
2 ,

y
2

)
30. (3 +

√
7,−1), (3−

√
7,−1) 31. (0, 3)

32. (−1 +
√

3, 0), (−1−
√

3, 0) 33.
(√

2
2 ,−

√
2

2

)
,
(
−
√

2
2 ,
√

2
2

)
34. (−3,−4), 5 miles, (4,−4)

37. (a) The distance from A to B is |AB| =
√

13, the distance from A to C is |AC| =
√

52,

and the distance from B to C is |BC| =
√

65. Since
(√

13
)2

+
(√

52
)2

=
(√

65
)2

, we
are guaranteed by the converse of the Pythagorean Theorem that the triangle is a right
triangle.

(b) Show that |AC|2 + |BC|2 = |AB|2

http://en.wikipedia.org/wiki/Pythagorean_theorem#Converse
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1.2 Relations

From one point of view,1 all of Precalculus can be thought of as studying sets of points in the plane.
With the Cartesian Plane now fresh in our memory we can discuss those sets in more detail and
as usual, we begin with a definition.

Definition 1.4. A relation is a set of points in the plane.

Since relations are sets, we can describe them using the techniques presented in Section 1.1.1. That
is, we can describe a relation verbally, using the roster method, or using set-builder notation. Since
the elements in a relation are points in the plane, we often try to describe the relation graphically or
algebraically as well. Depending on the situation, one method may be easier or more convenient to
use than another. As an example, consider the relation R = {(−2, 1), (4, 3), (0,−3)}. As written, R
is described using the roster method. Since R consists of points in the plane, we follow our instinct
and plot the points. Doing so produces the graph of R.

(−2, 1)

(4, 3)

(0,−3)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graph of R.

In the following example, we graph a variety of relations.

Example 1.2.1. Graph the following relations.

1. A = {(0, 0), (−3, 1), (4, 2), (−3, 2)} 2. HLS1 = {(x, 3) | − 2 ≤ x ≤ 4}

3. HLS2 = {(x, 3) | − 2 ≤ x < 4} 4. V = {(3, y) | y is a real number}

5. H = {(x, y) | y = −2} 6. R = {(x, y) | 1 < y ≤ 3}

1Carl’s, of course.
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Solution.

1. To graph A, we simply plot all of the points which belong to A, as shown below on the left.

2. Don’t let the notation in this part fool you. The name of this relation is HLS1, just like the
name of the relation in number 1 was A. The letters and numbers are just part of its name,
just like the numbers and letters of the phrase ‘King George III’ were part of George’s name.
In words, {(x, 3) | − 2 ≤ x ≤ 4} reads ‘the set of points (x, 3) such that −2 ≤ x ≤ 4.’ All of
these points have the same y-coordinate, 3, but the x-coordinate is allowed to vary between
−2 and 4, inclusive. Some of the points which belong to HLS1 include some friendly points
like: (−2, 3), (−1, 3), (0, 3), (1, 3), (2, 3), (3, 3), and (4, 3). However, HLS1 also contains the
points (0.829, 3),

(
−5

6 , 3
)
, (
√
π, 3), and so on. It is impossible2 to list all of these points,

which is why the variable x is used. Plotting several friendly representative points should
convince you that HLS1 describes the horizontal line segment from the point (−2, 3) up to
and including the point (4, 3).

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of A

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of HLS1

3. HLS2 is hauntingly similar to HLS1. In fact, the only difference between the two is that
instead of ‘−2 ≤ x ≤ 4’ we have ‘−2 ≤ x < 4’. This means that we still get a horizontal line
segment which includes (−2, 3) and extends to (4, 3), but we do not include (4, 3) because of
the strict inequality x < 4. How do we denote this on our graph? It is a common mistake to
make the graph start at (−2, 3) end at (3, 3) as pictured below on the left. The problem with
this graph is that we are forgetting about the points like (3.1, 3), (3.5, 3), (3.9, 3), (3.99, 3),
and so forth. There is no real number that comes ‘immediately before’ 4, so to describe the
set of points we want, we draw the horizontal line segment starting at (−2, 3) and draw an
open circle at (4, 3) as depicted below on the right.

2Really impossible. The interested reader is encouraged to research countable versus uncountable sets.

http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Uncountable_set
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x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

This is NOT the correct graph of HLS2

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of HLS2

4. Next, we come to the relation V , described as the set of points (3, y) such that y is a real
number. All of these points have an x-coordinate of 3, but the y-coordinate is free to be
whatever it wants to be, without restriction.3 Plotting a few ‘friendly’ points of V should
convince you that all the points of V lie on the vertical line4 x = 3. Since there is no restriction
on the y-coordinate, we put arrows on the end of the portion of the line we draw to indicate
it extends indefinitely in both directions. The graph of V is below on the left.

5. Though written slightly differently, the relation H = {(x, y) | y = −2} is similar to the relation
V above in that only one of the coordinates, in this case the y-coordinate, is specified, leaving
x to be ‘free’. Plotting some representative points gives us the horizontal line y = −2.

x

y

1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graph of V

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

The graph of H

6. For our last example, we turn to R = {(x, y) | 1 < y ≤ 3}. As in the previous example, x is
free to be whatever it likes. The value of y, on the other hand, while not completely free, is
permitted to roam between 1 and 3 excluding 1, but including 3. After plotting some5 friendly
elements of R, it should become clear that R consists of the region between the horizontal

3We’ll revisit the concept of a ‘free variable’ in Section 8.1.
4Don’t worry, we’ll be refreshing your memory about vertical and horizontal lines in just a moment!
5The word ‘some’ is a relative term. It may take 5, 10, or 50 points until you see the pattern.
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lines y = 1 and y = 3. Since R requires that the y-coordinates be greater than 1, but not
equal to 1, we dash the line y = 1 to indicate that those points do not belong to R.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of R

The relations V and H in the previous example lead us to our final way to describe relations:
algebraically. We can more succinctly describe the points in V as those points which satisfy the
equation ‘x = 3’. Most likely, you have seen equations like this before. Depending on the context,
‘x = 3’ could mean we have solved an equation for x and arrived at the solution x = 3. In this
case, however, ‘x = 3’ describes a set of points in the plane whose x-coordinate is 3. Similarly, the
relation H above can be described by the equation ‘y = −2’. At some point in your mathematical
upbringing, you probably learned the following.

Equations of Vertical and Horizontal Lines

� The graph of the equation x = a is a vertical line through (a, 0).

� The graph of the equation y = b is a horizontal line through (0, b).

Given that the very simple equations x = a and y = b produced lines, it’s natural to wonder what
shapes other equations might yield. Thus our next objective is to study the graphs of equations in
a more general setting as we continue to unite Algebra and Geometry.

1.2.1 Graphs of Equations

In this section, we delve more deeply into the connection between Algebra and Geometry by focusing
on graphing relations described by equations. The main idea of this section is the following.

The Fundamental Graphing Principle
The graph of an equation is the set of points which satisfy the equation. That is, a point (x, y)
is on the graph of an equation if and only if x and y satisfy the equation.

Here, ‘x and y satisfy the equation’ means ‘x and y make the equation true’. It is at this point
that we gain some insight into the word ‘relation’. If the equation to be graphed contains both x
and y, then the equation itself is what is relating the two variables. More specifically, in the next
two examples, we consider the graph of the equation x2 + y3 = 1. Even though it is not specifically
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spelled out, what we are doing is graphing the relation R = {(x, y) |x2 + y3 = 1}. The points (x, y)
we graph belong to the relation R and are necessarily related by the equation x2 + y3 = 1, since it
is those pairs of x and y which make the equation true.

Example 1.2.2. Determine whether or not (2,−1) is on the graph of x2 + y3 = 1.

Solution. We substitute x = 2 and y = −1 into the equation to see if the equation is satisfied.

(2)2 + (−1)3 ?
= 1

3 6= 1

Hence, (2,−1) is not on the graph of x2 + y3 = 1.

We could spend hours randomly guessing and checking to see if points are on the graph of the
equation. A more systematic approach is outlined in the following example.

Example 1.2.3. Graph x2 + y3 = 1.

Solution. To efficiently generate points on the graph of this equation, we first solve for y

x2 + y3 = 1

y3 = 1− x2

3
√
y3 = 3

√
1− x2

y = 3
√

1− x2

We now substitute a value in for x, determine the corresponding value y, and plot the resulting
point (x, y). For example, substituting x = −3 into the equation yields

y =
3
√

1− x2 = 3
√

1− (−3)2 = 3
√
−8 = −2,

so the point (−3,−2) is on the graph. Continuing in this manner, we generate a table of points
which are on the graph of the equation. These points are then plotted in the plane as shown below.

x y (x, y)

−3 −2 (−3,−2)

−2 − 3
√

3 (−2,− 3
√

3)

−1 0 (−1, 0)

0 1 (0, 1)

1 0 (1, 0)

2 − 3
√

3 (2,− 3
√

3)

3 −2 (3,−2)

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Remember, these points constitute only a small sampling of the points on the graph of this equation.
To get a better idea of the shape of the graph, we could plot more points until we feel comfortable
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‘connecting the dots’. Doing so would result in a curve similar to the one pictured below on the
far left.

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Don’t worry if you don’t get all of the little bends and curves just right − Calculus is where the
art of precise graphing takes center stage. For now, we will settle with our naive ‘plug and plot’
approach to graphing. If you feel like all of this tedious computation and plotting is beneath you,
then you can reach for a graphing calculator, input the formula as shown above, and graph.

Of all of the points on the graph of an equation, the places where the graph crosses or touches the
axes hold special significance. These are called the intercepts of the graph. Intercepts come in
two distinct varieties: x-intercepts and y-intercepts. They are defined below.

Definition 1.5. Suppose the graph of an equation is given.

� A point on a graph which is also on the x-axis is called an x-intercept of the graph.

� A point on a graph which is also on the y-axis is called an y-intercept of the graph.

In our previous example the graph had two x-intercepts, (−1, 0) and (1, 0), and one y-intercept,
(0, 1). The graph of an equation can have any number of intercepts, including none at all! Since
x-intercepts lie on the x-axis, we can find them by setting y = 0 in the equation. Similarly, since
y-intercepts lie on the y-axis, we can find them by setting x = 0 in the equation. Keep in mind,
intercepts are points and therefore must be written as ordered pairs. To summarize,

Finding the Intercepts of the Graph of an Equation

Given an equation involving x and y, we find the intercepts of the graph as follows:

� x-intercepts have the form (x, 0); set y = 0 in the equation and solve for x.

� y-intercepts have the form (0, y); set x = 0 in the equation and solve for y.

Another fact which you may have noticed about the graph in the previous example is that it seems
to be symmetric about the y-axis. To actually prove this analytically, we assume (x, y) is a generic
point on the graph of the equation. That is, we assume x2 + y3 = 1 is true. As we learned in
Section 1.1, the point symmetric to (x, y) about the y-axis is (−x, y). To show that the graph is
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symmetric about the y-axis, we need to show that (−x, y) satisfies the equation x2 + y3 = 1, too.
Substituting (−x, y) into the equation gives

(−x)2 + (y)3 ?
= 1

x2 + y3 X
= 1

Since we are assuming the original equation x2 +y3 = 1 is true, we have shown that (−x, y) satisfies
the equation (since it leads to a true result) and hence is on the graph. In this way, we can check
whether the graph of a given equation possesses any of the symmetries discussed in Section 1.1.
We summarize the procedure in the following result.

Testing the Graph of an Equation for Symmetry

To test the graph of an equation for symmetry

� about the y-axis − substitute (−x, y) into the equation and simplify. If the result is
equivalent to the original equation, the graph is symmetric about the y-axis.

� about the x-axis – substitute (x,−y) into the equation and simplify. If the result is
equivalent to the original equation, the graph is symmetric about the x-axis.

� about the origin - substitute (−x,−y) into the equation and simplify. If the result is
equivalent to the original equation, the graph is symmetric about the origin.

Intercepts and symmetry are two tools which can help us sketch the graph of an equation analyti-
cally, as demonstrated in the next example.

Example 1.2.4. Find the x- and y-intercepts (if any) of the graph of (x− 2)2 + y2 = 1. Test for
symmetry. Plot additional points as needed to complete the graph.

Solution. To look for x-intercepts, we set y = 0 and solve

(x− 2)2 + y2 = 1

(x− 2)2 + 02 = 1

(x− 2)2 = 1√
(x− 2)2 =

√
1 extract square roots

x− 2 = ±1

x = 2± 1

x = 3, 1

We get two answers for x which correspond to two x-intercepts: (1, 0) and (3, 0). Turning our
attention to y-intercepts, we set x = 0 and solve
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(x− 2)2 + y2 = 1

(0− 2)2 + y2 = 1

4 + y2 = 1

y2 = −3

Since there is no real number which squares to a negative number (Do you remember why?), we
are forced to conclude that the graph has no y-intercepts.

Plotting the data we have so far, we get

(1, 0) (3, 0)

x

y

1 2 3 4

−1

1

Moving along to symmetry, we can immediately dismiss the possibility that the graph is symmetric
about the y-axis or the origin. If the graph possessed either of these symmetries, then the fact
that (1, 0) is on the graph would mean (−1, 0) would have to be on the graph. (Why?) Since
(−1, 0) would be another x-intercept (and we’ve found all of these), the graph can’t have y-axis or
origin symmetry. The only symmetry left to test is symmetry about the x-axis. To that end, we
substitute (x,−y) into the equation and simplify

(x− 2)2 + y2 = 1

(x− 2)2 + (−y)2 ?
= 1

(x− 2)2 + y2 X
= 1

Since we have obtained our original equation, we know the graph is symmetric about the x-axis.
This means we can cut our ‘plug and plot’ time in half: whatever happens below the x-axis is
reflected above the x-axis, and vice-versa. Proceeding as we did in the previous example, we obtain

x

y

1 2 3 4

−1

1
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A couple of remarks are in order. First, it is entirely possible to choose a value for x which does
not correspond to a point on the graph. For example, in the previous example, if we solve for y as
is our custom, we get

y = ±
√

1− (x− 2)2.

Upon substituting x = 0 into the equation, we would obtain

y = ±
√

1− (0− 2)2 = ±
√

1− 4 = ±
√
−3,

which is not a real number. This means there are no points on the graph with an x-coordinate
of 0. When this happens, we move on and try another point. This is another drawback of the
‘plug-and-plot’ approach to graphing equations. Luckily, we will devote much of the remainder of
this book to developing techniques which allow us to graph entire families of equations quickly.6

Second, it is instructive to show what would have happened had we tested the equation in the last
example for symmetry about the y-axis. Substituting (−x, y) into the equation yields

(x− 2)2 + y2 = 1

(−x− 2)2 + y2 ?
= 1

((−1)(x+ 2))2 + y2 ?
= 1

(x+ 2)2 + y2 ?
= 1.

This last equation does not appear to be equivalent to our original equation. However, to actually
prove that the graph is not symmetric about the y-axis, we need to find a point (x, y) on the graph
whose reflection (−x, y) is not. Our x-intercept (1, 0) fits this bill nicely, since if we substitute
(−1, 0) into the equation we get

(x− 2)2 + y2 ?
= 1

(−1− 2)2 + 02 6= 1

9 6= 1.

This proves that (−1, 0) is not on the graph.

6Without the use of a calculator, if you can believe it!
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1.2.2 Exercises

In Exercises 1 - 20, graph the given relation.

1. {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

2. {(−2, 0), (−1, 1), (−1,−1), (0, 2), (0,−2), (1, 3), (1,−3)}

3. {(m, 2m) |m = 0,±1,±2} 4.
{(

6
k , k
)
| k = ±1,±2,±3,±4,±5,±6

}
5.
{(
n, 4− n2

)
|n = 0,±1,±2

}
6.
{(√

j, j
)
| j = 0, 1, 4, 9

}
7. {(x,−2) |x > −4} 8. {(x, 3) |x ≤ 4}

9. {(−1, y) | y > 1} 10. {(2, y) | y ≤ 5}

11. {(−2, y) | − 3 < y ≤ 4} 12. {(3, y) | − 4 ≤ y < 3}

13. {(x, 2) | − 2 ≤ x < 3} 14. {(x,−3) | − 4 < x ≤ 4}

15. {(x, y) |x > −2} 16. {(x, y) |x ≤ 3}

17. {(x, y) | y < 4} 18. {(x, y) |x ≤ 3, y < 2}

19. {(x, y) |x > 0, y < 4} 20. {(x, y) | −
√

2 ≤ x ≤ 2
3 , π < y ≤ 9

2}

In Exercises 21 - 30, describe the given relation using either the roster or set-builder method.

21.

x

y

−4 −3 −2 −1 1
−1

1

2

3

4

Relation A

22.

x

y

−1−2−3−4 1 2 3 4

1

2

3

Relation B
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23.

x

y

1 2 3

−3

−2

−1

1

2

3

4

5

Relation C

24.

x

y

−3 −2 −1

−4

−3

−2

−1

1

2

3

Relation D

25.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

Relation E

26.

x

y

−3 −2 −1 1 2 3

1

2

3

4

Relation F

27.

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Relation G

28.

x

y

−4 −3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Relation H
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29.

x

y

−1 1 2 3 4 5
−1

1

2

3

4

5

Relation I

30.

x

y

−4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

Relation J

In Exercises 31 - 36, graph the given line.

31. x = −2 32. x = 3

33. y = 3 34. y = −2

35. x = 0 36. y = 0

Some relations are fairly easy to describe in words or with the roster method but are rather difficult,
if not impossible, to graph. Discuss with your classmates how you might graph the relations given
in Exercises 37 - 40. Please note that in the notation below we are using the ellipsis, . . . , to denote
that the list does not end, but rather, continues to follow the established pattern indefinitely. For
the relations in Exercises 37 and 38, give two examples of points which belong to the relation and
two points which do not belong to the relation.

37. {(x, y) |x is an odd integer, and y is an even integer.}

38. {(x, 1) |x is an irrational number }

39. {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . .}

40. {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . .}

For each equation given in Exercises 41 - 52:

� Find the x- and y-intercept(s) of the graph, if any exist.

� Follow the procedure in Example 1.2.3 to create a table of sample points on the graph of the
equation.

� Plot the sample points and create a rough sketch of the graph of the equation.

� Test for symmetry. If the equation appears to fail any of the symmetry tests, find a point on
the graph of the equation whose reflection fails to be on the graph as was done at the end of
Example 1.2.4
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41. y = x2 + 1 42. y = x2 − 2x− 8

43. y = x3 − x 44. y = x3

4 − 3x

45. y =
√
x− 2 46. y = 2

√
x+ 4− 2

47. 3x− y = 7 48. 3x− 2y = 10

49. (x+ 2)2 + y2 = 16 50. x2 − y2 = 1

51. 4y2 − 9x2 = 36 52. x3y = −4

The procedures which we have outlined in the Examples of this section and used in Exercises 41 - 52
all rely on the fact that the equations were “well-behaved”. Not everything in Mathematics is quite
so tame, as the following equations will show you. Discuss with your classmates how you might
approach graphing the equations given in Exercises 53 - 56. What difficulties arise when trying
to apply the various tests and procedures given in this section? For more information, including
pictures of the curves, each curve name is a link to its page at www.wikipedia.org. For a much
longer list of fascinating curves, click here.

53. x3 + y3 − 3xy = 0 Folium of Descartes 54. x4 = x2 + y2 Kampyle of Eudoxus

55. y2 = x3 + 3x2 Tschirnhausen cubic 56. (x2 + y2)2 = x3 + y3 Crooked egg

57. With the help of your classmates, find examples of equations whose graphs possess

� symmetry about the x-axis only

� symmetry about the y-axis only

� symmetry about the origin only

� symmetry about the x-axis, y-axis, and origin

Can you find an example of an equation whose graph possesses exactly two of the symmetries
listed above? Why or why not?

http://en.wikipedia.org/wiki/List_of_curves
http://en.wikipedia.org/wiki/Folium_of_descartes
http://en.wikipedia.org/wiki/Kampyle_of_Eudoxus
http://en.wikipedia.org/wiki/Tschirnhausen_cubic
http://en.wikipedia.org/wiki/Crooked_egg_curve
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1.2.3 Answers

1.

x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

9

2.

x

y

−2 −1 1 2

−3

−2

−1

1

2

3

3.

x

y

−2 −1 1 2
−1

−2

−3

−4

1

2

3

4

4.

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

5.

x

y

−2 −1 1 2

1

2

3

4

6.

x

y

1 2 3

1
2
3

4
5

6

7
8
9
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7.

x

y

−4 −3 −2 −1 1 2 3 4

−3

−1

8.

x

y

−1−2−3−4 1 2 3 4

1

2

3

9.

x

y

−1 1 2

1

2

3

4

5

6

7

8

10.

x

y

1 2 3

−3

−2

−1

1

2

3

4

5

11.

x

y

−3 −2 −1

−3

−2

−1

1

2

3

4

12.

x

y

1 2 3

−4

−3

−2

−1

1

2

3
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13.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

14.

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

15.

x

y

321−2 −1

−3

−2

−1

1

2

3

16.

x

y

1 2 3

−3

−2

−1

1

2

3

17.

x

y

−3 −2 −1 1 2 3

1

2

3

4

18.

x

y

1 2 3

−3

−2

−1

1

2

3

19.

x

y

−1 1 2 3

1

2

3

4

20.

x

y

−2 −1 1

1

2

3

4

5
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21. A = {(−4,−1), (−2, 1), (0, 3), (1, 4)} 22. B = {(x, 3) |x ≥ −3}

23. C = {(2, y) | y > −3} 24. D = {(−2, y) | − 4 ≤ y < 3}

25. E = {(x, 2) | − 4 ≤ x < 3} 26. F = {(x, y) | y ≥ 0}

27. G = {(x, y) |x > −2} 28. H = {(x, y) | − 3 < x ≤ 2}

29. I = {(x, y) |x ≥ 0,y ≥ 0} 30. J = {(x, y) | − 4 < x < 5, −3 < y < 2}

31.

x

y

−3 −2 −1

1

2

3

−1

−2

−3

The line x = −2

32.

x

y

1 2 3

1

2

3

−1

−2

−3

The line x = 3

33.

x

y

−3 −2 −1 1 2 3

1

2

3

The line y = 3

34.

x

y

−3 −2 −1 1 2 3
−1

−2

−3

The line y = −2

35.

x

y

−3 −2 −1 1 2 3
−1

−2

−3

1

2

3

The line x = 0 is the y-axis

36.

x

y

−3 −2 −1 1 2 3
−1

−2

−3

1

2

3

The line y = 0 is the x-axis
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41. y = x2 + 1

The graph has no x-intercepts

y-intercept: (0, 1)

x y (x, y)

−2 5 (−2, 5)

−1 2 (−1, 2)

0 1 (0, 1)

1 2 (1, 2)

2 5 (2, 5)

x

y

−2−1 1 2

1

2

3

4

5

The graph is not symmetric about the
x-axis (e.g. (2, 5) is on the graph but
(2,−5) is not)

The graph is symmetric about the y-axis

The graph is not symmetric about the
origin (e.g. (2, 5) is on the graph but
(−2,−5) is not)

42. y = x2 − 2x− 8

x-intercepts: (4, 0), (−2, 0)

y-intercept: (0,−8)

x y (x, y)

−3 7 (−3, 7)

−2 0 (−2, 0)

−1 −5 (−1,−5)

0 −8 (0,−8)

1 −9 (1,−9)

2 −8 (2,−8)

3 −5 (3,−5)

4 0 (4, 0)

5 7 (5, 7)

x

y

−3−2−1 1 2 3 4 5

−9
−8
−7
−6
−5
−4
−3
−2

1
2
3
4
5
6
7

The graph is not symmetric about the
x-axis (e.g. (−3, 7) is on the graph but
(−3,−7) is not)

The graph is not symmetric about the
y-axis (e.g. (−3, 7) is on the graph but
(3, 7) is not)

The graph is not symmetric about the
origin (e.g. (−3, 7) is on the graph but
(3,−7) is not)
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43. y = x3 − x

x-intercepts: (−1, 0), (0, 0), (1, 0)

y-intercept: (0, 0)

x y (x, y)

−2 −6 (−2,−6)

−1 0 (−1, 0)

0 0 (0, 0)

1 0 (1, 0)

2 6 (2, 6)

x

y

−2−1 1 2

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

The graph is not symmetric about the
x-axis. (e.g. (2, 6) is on the graph but
(2,−6) is not)

The graph is not symmetric about the
y-axis. (e.g. (2, 6) is on the graph but
(−2, 6) is not)

The graph is symmetric about the origin.

44. y = x3

4 − 3x

x-intercepts:
(
±2
√

3, 0
)
, (0, 0)

y-intercept: (0, 0)

x y (x, y)

−4 −4 (−4,−4)

−3 9
4

(
−3, 9

4

)
−2 4 (−2, 4)

−1 11
4

(
−1, 11

4

)
0 0 (0, 0)

1 −11
4

(
1,−11

4

)
2 −4 (2,−4)

3 −9
4

(
3,−9

4

)
4 4 (4, 4)

x

y

−4−3−2−1 1 2 3 4−1

−2

−3

−4

1

2

3

4

The graph is not symmetric about the
x-axis (e.g. (−4,−4) is on the graph but
(−4, 4) is not)

The graph is not symmetric about the
y-axis (e.g. (−4,−4) is on the graph but
(4,−4) is not)

The graph is symmetric about the origin
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45. y =
√
x− 2

x-intercept: (2, 0)

The graph has no y-intercepts

x y (x, y)

2 0 (2, 0)

3 1 (3, 1)

6 2 (6, 2)

11 3 (11, 3)

x

y

1 2 3 4 5 6 7 8 9 10 11

1

2

3

The graph is not symmetric about the
x-axis (e.g. (3, 1) is on the graph but
(3,−1) is not)

The graph is not symmetric about the
y-axis (e.g. (3, 1) is on the graph but
(−3, 1) is not)

The graph is not symmetric about the
origin (e.g. (3, 1) is on the graph but
(−3,−1) is not)

46. y = 2
√
x+ 4− 2

x-intercept: (−3, 0)

y-intercept: (0, 2)

x y (x, y)

−4 −2 (−4,−2)

−3 0 (−3, 0)

−2 2
√

2− 2
(
−2,
√

2− 2
)

−1 2
√

3− 2
(
−2,
√

3− 2
)

0 2 (0, 2)

1 2
√

5− 2
(
−2,
√

5− 2
)

x

y

−4−3−2−1 1 2

−3

−2

−1

1

2

3

The graph is not symmetric about the
x-axis (e.g. (−4,−2) is on the graph but
(−4, 2) is not)

The graph is not symmetric about the
y-axis (e.g. (−4,−2) is on the graph but
(4,−2) is not)

The graph is not symmetric about the
origin (e.g. (−4,−2) is on the graph but
(4, 2) is not)
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47. 3x− y = 7
Re-write as: y = 3x− 7.

x-intercept: (7
3 , 0)

y-intercept: (0,−7)

x y (x, y)

−2 −13 (−2,−13)

−1 −10 (−1,−10)

0 −7 (0,−7)

1 −4 (1,−4)

2 −1 (2,−1)

3 2 (3, 2)

x

y

−2−1 1 2 3

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

The graph is not symmetric about the
x-axis (e.g. (3, 2) is on the graph but
(3,−2) is not)

The graph is not symmetric about the
y-axis (e.g. (3, 2) is on the graph but
(−3, 2) is not)

The graph is not symmetric about the
origin (e.g. (3, 2) is on the graph but
(−3,−2) is not)

48. 3x− 2y = 10
Re-write as: y = 3x−10

2 .

x-intercepts:
(

10
3 , 0

)
y-intercept: (0,−5)

x y (x, y)

−2 −8 (−2,−8)

−1 −13
2

(
−1,−13

2

)
0 −5 (0,−5)

1 −7
2

(
1,−7

2

)
2 −2 (2,−2)

x

y

−3−2−1 1 2 3 4

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

The graph is not symmetric about the
x-axis (e.g. (2,−2) is on the graph but
(2, 2) is not)

The graph is not symmetric about the
y-axis (e.g. (2,−2) is on the graph but
(−2,−2) is not)

The graph is not symmetric about the
origin (e.g. (2,−2) is on the graph but
(−2, 2) is not)
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49. (x+ 2)2 + y2 = 16
Re-write as y = ±

√
16− (x+ 2)2.

x-intercepts: (−6, 0), (2, 0)

y-intercepts:
(
0,±2

√
3
)

x y (x, y)

−6 0 (−6, 0)

−4 ±2
√

3
(
−4,±2

√
3
)

−2 ±4 (−2,±4)

0 ±2
√

3
(
0,±2

√
3
)

2 0 (2, 0)

x

y

−7−6−5−4−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

The graph is symmetric about the x-axis

The graph is not symmetric about the
y-axis (e.g. (−6, 0) is on the graph but
(6, 0) is not)

The graph is not symmetric about the
origin (e.g. (−6, 0) is on the graph but
(6, 0) is not)

50. x2 − y2 = 1
Re-write as: y = ±

√
x2 − 1.

x-intercepts: (−1, 0), (1, 0)

The graph has no y-intercepts

x y (x, y)

−3 ±
√

8 (−3,±
√

8)

−2 ±
√

3 (−2,±
√

3)

−1 0 (−1, 0)

1 0 (1, 0)

2 ±
√

3 (2,±
√

3)

3 ±
√

8 (3,±
√

8)

x

y

−3−2−1 1 2 3

−3

−2

−1

1

2

3

The graph is symmetric about the x-axis

The graph is symmetric about the y-axis

The graph is symmetric about the origin
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51. 4y2 − 9x2 = 36

Re-write as: y = ±
√

9x2+36
2 .

The graph has no x-intercepts

y-intercepts: (0,±3)

x y (x, y)

−4 ±3
√

5
(
−4,±3

√
5
)

−2 ±3
√

2
(
−2,±3

√
2
)

0 ±3 (0,±3)

2 ±3
√

2
(
2,±3

√
2
)

4 ±3
√

5
(
4,±3

√
5
)

x

y

−4−3−2−1 1 2 3 4

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

The graph is symmetric about the x-axis

The graph is symmetric about the y-axis

The graph is symmetric about the origin

52. x3y = −4

Re-write as: y = − 4

x3
.

The graph has no x-intercepts

The graph has no y-intercepts

x y (x, y)

−2 1
2 (−2, 1

2)

−1 4 (−1, 4)

−1
2 32 (−1

2 , 32)
1
2 −32 (1

2 ,−32)

1 −4 (1,−4)

2 −1
2 (2,−1

2)

x

y

−2 −1 1 2

−32

−4

4

32

The graph is not symmetric about the
x-axis (e.g. (1,−4) is on the graph but
(1, 4) is not)

The graph is not symmetric about the
y-axis (e.g. (1,−4) is on the graph but
(−1,−4) is not)

The graph is symmetric about the origin
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1.3 Introduction to Functions

One of the core concepts in College Algebra is the function. There are many ways to describe a
function and we begin by defining a function as a special kind of relation.

Definition 1.6. A relation in which each x-coordinate is matched with only one y-coordinate
is said to describe y as a function of x.

Example 1.3.1. Which of the following relations describe y as a function of x?

1. R1 = {(−2, 1), (1, 3), (1, 4), (3,−1)} 2. R2 = {(−2, 1), (1, 3), (2, 3), (3,−1)}

Solution. A quick scan of the points in R1 reveals that the x-coordinate 1 is matched with two
different y-coordinates: namely 3 and 4. Hence in R1, y is not a function of x. On the other
hand, every x-coordinate in R2 occurs only once which means each x-coordinate has only one
corresponding y-coordinate. So, R2 does represent y as a function of x.

Note that in the previous example, the relation R2 contained two different points with the same
y-coordinates, namely (1, 3) and (2, 3). Remember, in order to say y is a function of x, we just
need to ensure the same x-coordinate isn’t used in more than one point.1

To see what the function concept means geometrically, we graph R1 and R2 in the plane.

x

y

−2 −1 1 2 3
−1

1

2

3

4

The graph of R1

x

y

−2 −1 1 2 3
−1

1

2

3

4

The graph of R2

The fact that the x-coordinate 1 is matched with two different y-coordinates in R1 presents itself
graphically as the points (1, 3) and (1, 4) lying on the same vertical line, x = 1. If we turn our
attention to the graph of R2, we see that no two points of the relation lie on the same vertical line.
We can generalize this idea as follows

Theorem 1.1. The Vertical Line Test: A set of points in the plane represents y as a function
of x if and only if no two points lie on the same vertical line.

1We will have occasion later in the text to concern ourselves with the concept of x being a function of y. In this
case, R1 represents x as a function of y; R2 does not.
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It is worth taking some time to meditate on the Vertical Line Test; it will check to see how well
you understand the concept of ‘function’ as well as the concept of ‘graph’.

Example 1.3.2. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x.

x

y

1 2 3

−1

1

2

3

4

The graph of R

x

y

−1 1

−1

1

2

3

4

The graph of S

Solution. Looking at the graph of R, we can easily imagine a vertical line crossing the graph more
than once. Hence, R does not represent y as a function of x. However, in the graph of S, every
vertical line crosses the graph at most once, so S does represent y as a function of x.

In the previous test, we say that the graph of the relation R fails the Vertical Line Test, whereas
the graph of S passes the Vertical Line Test. Note that in the graph of R there are infinitely many
vertical lines which cross the graph more than once. However, to fail the Vertical Line Test, all you
need is one vertical line that fits the bill, as the next example illustrates.

Example 1.3.3. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x.

x

y

−1 1

−1

1

2

3

4

The graph of S1

x

y

−1 1

−1

1

2

3

4

The graph of S2
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Solution. Both S1 and S2 are slight modifications to the relation S in the previous example whose
graph we determined passed the Vertical Line Test. In both S1 and S2, it is the addition of the
point (1, 2) which threatens to cause trouble. In S1, there is a point on the curve with x-coordinate
1 just below (1, 2), which means that both (1, 2) and this point on the curve lie on the vertical line
x = 1. (See the picture below and the left.) Hence, the graph of S1 fails the Vertical Line Test, so
y is not a function of x here. However, in S2 notice that the point with x-coordinate 1 on the curve
has been omitted, leaving an ‘open circle’ there. Hence, the vertical line x = 1 crosses the graph of
S2 only at the point (1, 2). Indeed, any vertical line will cross the graph at most once, so we have
that the graph of S2 passes the Vertical Line Test. Thus it describes y as a function of x.

x

y

−1

−1

1

2

3

4

S1 and the line x = 1

x

y

−1 1

−1

1

2

3

4

The graph of G for Ex. 1.3.4

Suppose a relation F describes y as a function of x. The sets of x- and y-coordinates are given
special names which we define below.

Definition 1.7. Suppose F is a relation which describes y as a function of x.

� The set of the x-coordinates of the points in F is called the domain of F .

� The set of the y-coordinates of the points in F is called the range of F .

We demonstrate finding the domain and range of functions given to us either graphically or via the
roster method in the following example.

Example 1.3.4. Find the domain and range of the function F = {(−3, 2), (0, 1), (4, 2), (5, 2)} and
of the function G whose graph is given above on the right.

Solution. The domain of F is the set of the x-coordinates of the points in F , namely {−3, 0, 4, 5}
and the range of F is the set of the y-coordinates, namely {1, 2}.
To determine the domain and range of G, we need to determine which x and y values occur as
coordinates of points on the given graph. To find the domain, it may be helpful to imagine collapsing
the curve to the x-axis and determining the portion of the x-axis that gets covered. This is called
projecting the curve to the x-axis. Before we start projecting, we need to pay attention to two
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subtle notations on the graph: the arrowhead on the lower left corner of the graph indicates that the
graph continues to curve downwards to the left forever more; and the open circle at (1, 3) indicates
that the point (1, 3) isn’t on the graph, but all points on the curve leading up to that point are.

project down

project up

x

y

−1 1

−1

1

2

3

4

The graph of G

x

y

−1 1

−1

1

2

3

4

The graph of G

We see from the figure that if we project the graph of G to the x-axis, we get all real numbers less
than 1. Using interval notation, we write the domain of G as (−∞, 1). To determine the range of
G, we project the curve to the y-axis as follows:

project left

project right

x

y

−1 1

−1

1

2

3

4

The graph of G

x

y

−1 1

−1

1

2

3

4

The graph of G

Note that even though there is an open circle at (1, 3), we still include the y value of 3 in our range,
since the point (−1, 3) is on the graph of G. We see that the range of G is all real numbers less
than or equal to 4, or, in interval notation, (−∞, 4].
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All functions are relations, but not all relations are functions. Thus the equations which described
the relations in Section1.2 may or may not describe y as a function of x. The algebraic representation
of functions is possibly the most important way to view them so we need a process for determining
whether or not an equation of a relation represents a function. (We delay the discussion of finding
the domain of a function given algebraically until Section 1.4.)

Example 1.3.5. Determine which equations represent y as a function of x.

1. x3 + y2 = 1 2. x2 + y3 = 1 3. x2y = 1− 3y

Solution. For each of these equations, we solve for y and determine whether each choice of x will
determine only one corresponding value of y.

1.
x3 + y2 = 1

y2 = 1− x3√
y2 =

√
1− x3 extract square roots

y = ±
√

1− x3

If we substitute x = 0 into our equation for y, we get y = ±
√

1− 03 = ±1, so that (0, 1)
and (0,−1) are on the graph of this equation. Hence, this equation does not represent y as a
function of x.

2.
x2 + y3 = 1

y3 = 1− x2

3
√
y3 = 3

√
1− x2

y = 3
√

1− x2

For every choice of x, the equation y = 3
√

1− x2 returns only one value of y. Hence, this
equation describes y as a function of x.

3.
x2y = 1− 3y

x2y + 3y = 1

y
(
x2 + 3

)
= 1 factor

y =
1

x2 + 3

For each choice of x, there is only one value for y, so this equation describes y as a function of x.

We could try to use our graphing calculator to verify our responses to the previous example, but
we immediately run into trouble. The calculator’s “Y=” menu requires that the equation be of the
form ‘y = some expression of x’. If we wanted to verify that the first equation in Example 1.3.5
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does not represent y as a function of x, we would need to enter two separate expressions into the
calculator: one for the positive square root and one for the negative square root we found when
solving the equation for y. As predicted, the resulting graph shown below clearly fails the Vertical
Line Test, so the equation does not represent y as a function of x.

Thus in order to use the calculator to show that x3 + y2 = 1 does not represent y as a function of x
we needed to know analytically that y was not a function of x so that we could use the calculator
properly. There are more advanced graphing utilities out there which can do implicit function
plots, but you need to know even more Algebra to make them work properly. Do you get the point
we’re trying to make here? We believe it is in your best interest to learn the analytic way of doing
things so that you are always smarter than your calculator.
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1.3.1 Exercises

In Exercises 1 - 12, determine whether or not the relation represents y as a function of x. Find the
domain and range of those relations which are functions.

1. {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

2. {(−3, 0), (1, 6), (2,−3), (4, 2), (−5, 6), (4,−9), (6, 2)}

3. {(−3, 0), (−7, 6), (5, 5), (6, 4), (4, 9), (3, 0)}

4. {(1, 2), (4, 4), (9, 6), (16, 8), (25, 10), (36, 12), . . .}

5. {(x, y) |x is an odd integer, and y is an even integer}

6. {(x, 1) |x is an irrational number}

7. {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . . }

8. {. . . , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . . }

9. {(−2, y) | − 3 < y < 4} 10. {(x, 3) | − 2 ≤ x < 4}

11. {
(
x, x2

)
|x is a real number} 12. {

(
x2, x

)
|x is a real number}

In Exercises 13 - 32, determine whether or not the relation represents y as a function of x. Find
the domain and range of those relations which are functions.

13.

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

14.

x

y

−4 −3 −2 −1 1

−1

1

2

3

4
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15.

x

y

−2 −1 1 2

1

2

3

4

5

16.

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

17.

x

y

1 2 3 4 5 6 7 8 9

1

2

3

18.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

19.

x

y

−4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

20.

x

y

−5 −4 −3 −2 −1 1 2 3

−2

−1

1

2

3

4

21.

x

y

−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

22.

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5
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23.

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

24.

x

y

−1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

25.

x

y

−2 −1 1 2

1

2

3

4

26.

x

y

−2 −1 1 2

1

2

3

4

27.

x

y

−2 −1 1 2

1

2

3

4

28.

x

y

−2 −1 1 2

1

2

3

4

29.

x

y

−2 −1 1 2

1

2

−2

−1

30.

x

y

−3 −2 −1 1 2 3

1

2

−2

−1
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31.

x

y

−2 −1 1 2

1

2

−2

−1

32.

x

y

−2 −1 1 2

1

2

−2

−1

In Exercises 33 - 47, determine whether or not the equation represents y as a function of x.

33. y = x3 − x 34. y =
√
x− 2 35. x3y = −4

36. x2 − y2 = 1 37. y =
x

x2 − 9
38. x = −6

39. x = y2 + 4 40. y = x2 + 4 41. x2 + y2 = 4

42. y =
√

4− x2 43. x2 − y2 = 4 44. x3 + y3 = 4

45. 2x+ 3y = 4 46. 2xy = 4 47. x2 = y2

48. Explain why the population P of Sasquatch in a given area is a function of time t. What
would be the range of this function?

49. Explain why the relation between your classmates and their email addresses may not be a
function. What about phone numbers and Social Security Numbers?

The process given in Example 1.3.5 for determining whether an equation of a relation represents y
as a function of x breaks down if we cannot solve the equation for y in terms of x. However, that
does not prevent us from proving that an equation fails to represent y as a function of x. What we
really need is two points with the same x-coordinate and different y-coordinates which both satisfy
the equation so that the graph of the relation would fail the Vertical Line Test 1.1. Discuss with
your classmates how you might find such points for the relations given in Exercises 50 - 53.

50. x3 + y3 − 3xy = 0 51. x4 = x2 + y2

52. y2 = x3 + 3x2 53. (x2 + y2)2 = x3 + y3
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1.3.2 Answers

1. Function
domain = {−3, −2, −1, 0, 1, 2 ,3}
range = {0, 1, 4, 9}

2. Not a function

3. Function
domain = {−7,−3, 3, 4, 5, 6}
range = {0, 4, 5, 6, 9}

4. Function
domain = {1, 4, 9, 16, 25, 36, . . .}
= {x |x is a perfect square}
range = {2, 4, 6, 8, 10, 12, . . .}
= {y | y is a positive even integer}

5. Not a function 6. Function
domain = {x |x is irrational}
range = {1}

7. Function
domain = {x|x = 2n for some whole number n}
range = {y | y is any whole number}

8. Function
domain = {x |x is any integer}
range =

{
y | y = n2 for some integer n

}
9. Not a function 10. Function

domain = [−2, 4), range = {3}

11. Function
domain = (−∞,∞)
range = [0,∞)

12. Not a function

13. Function
domain = {−4, −3, −2, −1, 0, 1}
range = {−1, 0, 1, 2, 3, 4}

14. Not a function

15. Function
domain = (−∞,∞)
range = [1,∞)

16. Not a function

17. Function
domain = [2,∞)
range = [0,∞)

18. Function
domain = (−∞,∞)
range = (0, 4]

19. Not a function 20. Function
domain = [−5,−3) ∪ (−3, 3)
range = (−2,−1) ∪ [0, 4)
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21. Function
domain = [−2,∞)
range = [−3,∞)

22. Not a function

23. Function
domain = [−5, 4)
range = [−4, 4)

24. Function
domain = [0, 3) ∪ (3, 6]
range = (−4,−1] ∪ [0, 4]

25. Function
domain = (−∞,∞)
range = (−∞, 4]

26. Function
domain = (−∞,∞)
range = (−∞, 4]

27. Function
domain = [−2,∞)
range = (−∞, 3]

28. Function
domain = (−∞,∞)
range = (−∞,∞)

29. Function
domain = (−∞, 0] ∪ (1,∞)
range = (−∞, 1] ∪ {2}

30. Function
domain = [−3, 3]
range = [−2, 2]

31. Not a function 32. Function
domain = (−∞,∞)
range = {2}

33. Function 34. Function 35. Function

36. Not a function 37. Function 38. Not a function

39. Not a function 40. Function 41. Not a function

42. Function 43. Not a function 44. Function

45. Function 46. Function 47. Not a function
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1.4 Function Notation

In Definition 1.6, we described a function as a special kind of relation − one in which each x-
coordinate is matched with only one y-coordinate. In this section, we focus more on the process
by which the x is matched with the y. If we think of the domain of a function as a set of inputs
and the range as a set of outputs, we can think of a function f as a process by which each input
x is matched with only one output y. Since the output is completely determined by the input x
and the process f , we symbolize the output with function notation: ‘f(x)’, read ‘f of x.’ In
other words, f(x) is the output which results by applying the process f to the input x. In this
case, the parentheses here do not indicate multiplication, as they do elsewhere in Algebra. This can
cause confusion if the context is not clear, so you must read carefully. This relationship is typically
visualized using a diagram similar to the one below.

f

x
Domain
(Inputs)

y = f(x)
Range

(Outputs)

The value of y is completely dependent on the choice of x. For this reason, x is often called the
independent variable, or argument of f , whereas y is often called the dependent variable.

As we shall see, the process of a function f is usually described using an algebraic formula. For
example, suppose a function f takes a real number and performs the following two steps, in sequence

1. multiply by 3

2. add 4

If we choose 5 as our input, in step 1 we multiply by 3 to get (5)(3) = 15. In step 2, we add 4 to
our result from step 1 which yields 15 + 4 = 19. Using function notation, we would write f(5) = 19
to indicate that the result of applying the process f to the input 5 gives the output 19. In general,
if we use x for the input, applying step 1 produces 3x. Following with step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(x) = 3x+ 4. Notice that to check our
formula for the case x = 5, we replace the occurrence of x in the formula for f(x) with 5 to get
f(5) = 3(5) + 4 = 15 + 4 = 19, as required.



56 Relations and Functions

Example 1.4.1. Suppose a function g is described by applying the following steps, in sequence

1. add 4

2. multiply by 3

Determine g(5) and find an expression for g(x).

Solution. Starting with 5, step 1 gives 5 + 4 = 9. Continuing with step 2, we get (3)(9) = 27. To
find a formula for g(x), we start with our input x. Step 1 produces x+ 4. We now wish to multiply
this entire quantity by 3, so we use a parentheses: 3(x+ 4) = 3x+ 12. Hence, g(x) = 3x+ 12. We
can check our formula by replacing x with 5 to get g(5) = 3(5) + 12 = 15 + 12 = 27X.

Most of the functions we will encounter in College Algebra will be described using formulas like
the ones we developed for f(x) and g(x) above. Evaluating formulas using this function notation
is a key skill for success in this and many other Math courses.

Example 1.4.2. Let f(x) = −x2 + 3x+ 4

1. Find and simplify the following.

(a) f(−1), f(0), f(2)

(b) f(2x), 2f(x)

(c) f(x+ 2), f(x) + 2, f(x) + f(2)

2. Solve f(x) = 4.

Solution.

1. (a) To find f(−1), we replace every occurrence of x in the expression f(x) with −1

f(−1) = −(−1)2 + 3(−1) + 4

= −(1) + (−3) + 4

= 0

Similarly, f(0) = −(0)2 + 3(0) + 4 = 4, and f(2) = −(2)2 + 3(2) + 4 = −4 + 6 + 4 = 6.

(b) To find f(2x), we replace every occurrence of x with the quantity 2x

f(2x) = −(2x)2 + 3(2x) + 4

= −(4x2) + (6x) + 4

= −4x2 + 6x+ 4

The expression 2f(x) means we multiply the expression f(x) by 2

2f(x) = 2
(
−x2 + 3x+ 4

)
= −2x2 + 6x+ 8
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(c) To find f(x+ 2), we replace every occurrence of x with the quantity x+ 2

f(x+ 2) = −(x+ 2)2 + 3(x+ 2) + 4

= −
(
x2 + 4x+ 4

)
+ (3x+ 6) + 4

= −x2 − 4x− 4 + 3x+ 6 + 4

= −x2 − x+ 6

To find f(x) + 2, we add 2 to the expression for f(x)

f(x) + 2 =
(
−x2 + 3x+ 4

)
+ 2

= −x2 + 3x+ 6

From our work above, we see f(2) = 6 so that

f(x) + f(2) =
(
−x2 + 3x+ 4

)
+ 6

= −x2 + 3x+ 10

2. Since f(x) = −x2 + 3x+ 4, the equation f(x) = 4 is equivalent to −x2 + 3x+ 4 = 4. Solving
we get −x2 + 3x = 0, or x(−x + 3) = 0. We get x = 0 or x = 3, and we can verify these
answers by checking that f(0) = 4 and f(3) = 4.

A few notes about Example 1.4.2 are in order. First note the difference between the answers for
f(2x) and 2f(x). For f(2x), we are multiplying the input by 2; for 2f(x), we are multiplying the
output by 2. As we see, we get entirely different results. Along these lines, note that f(x + 2),
f(x)+2 and f(x)+f(2) are three different expressions as well. Even though function notation uses
parentheses, as does multiplication, there is no general ‘distributive property’ of function notation.
Finally, note the practice of using parentheses when substituting one algebraic expression into
another; we highly recommend this practice as it will reduce careless errors.

Suppose now we wish to find r(3) for r(x) = 2x
x2−9

. Substitution gives

r(3) =
2(3)

(3)2 − 9
=

6

0
,

which is undefined. (Why is this, again?) The number 3 is not an allowable input to the function
r; in other words, 3 is not in the domain of r. Which other real numbers are forbidden in this
formula? We think back to arithmetic. The reason r(3) is undefined is because substitution results
in a division by 0. To determine which other numbers result in such a transgression, we set the
denominator equal to 0 and solve

x2 − 9 = 0

x2 = 9√
x2 =

√
9 extract square roots

x = ±3
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As long as we substitute numbers other than 3 and −3, the expression r(x) is a real number. Hence,
we write our domain in interval notation1 as (−∞,−3) ∪ (−3, 3) ∪ (3,∞). When a formula for a
function is given, we assume that the function is valid for all real numbers which make arithmetic
sense when substituted into the formula. This set of numbers is often called the implied domain2

of the function. At this stage, there are only two mathematical sins we need to avoid: division by
0 and extracting even roots of negative numbers. The following example illustrates these concepts.

Example 1.4.3. Find the domain3 of the following functions.

1. g(x) =
√

4− 3x 2. h(x) = 5
√

4− 3x

3. f(x) =
2

1− 4x

x− 3

4. F (x) =
4
√

2x+ 1

x2 − 1

5. r(t) =
4

6−
√
t+ 3

6. I(x) =
3x2

x

Solution.

1. The potential disaster for g is if the radicand4 is negative. To avoid this, we set 4− 3x ≥ 0.
From this, we get 3x ≤ 4 or x ≤ 4

3 . What this shows is that as long as x ≤ 4
3 , the expression

4− 3x ≥ 0, and the formula g(x) returns a real number. Our domain is
(
−∞, 4

3

]
.

2. The formula for h(x) is hauntingly close to that of g(x) with one key difference − whereas
the expression for g(x) includes an even indexed root (namely a square root), the formula
for h(x) involves an odd indexed root (the fifth root). Since odd roots of real numbers (even
negative real numbers) are real numbers, there is no restriction on the inputs to h. Hence,
the domain is (−∞,∞).

3. In the expression for f , there are two denominators. We need to make sure neither of them is
0. To that end, we set each denominator equal to 0 and solve. For the ‘small’ denominator,
we get x− 3 = 0 or x = 3. For the ‘large’ denominator

1See the Exercises for Section 1.1.
2or, ‘implicit domain’
3The word ‘implied’ is, well, implied.
4The ‘radicand’ is the expression ‘inside’ the radical.
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1− 4x

x− 3
= 0

1 =
4x

x− 3

(1)(x− 3) =

(
4x

���x− 3

)
��

��(x− 3) clear denominators

x− 3 = 4x

−3 = 3x

−1 = x

So we get two real numbers which make denominators 0, namely x = −1 and x = 3. Our
domain is all real numbers except −1 and 3: (−∞,−1) ∪ (−1, 3) ∪ (3,∞).

4. In finding the domain of F , we notice that we have two potentially hazardous issues: not
only do we have a denominator, we have a fourth (even-indexed) root. Our strategy is to
determine the restrictions imposed by each part and select the real numbers which satisfy
both conditions. To satisfy the fourth root, we require 2x+ 1 ≥ 0. From this we get 2x ≥ −1
or x ≥ −1

2 . Next, we round up the values of x which could cause trouble in the denominator
by setting the denominator equal to 0. We get x2 − 1 = 0, or x = ±1. Hence, in order for a
real number x to be in the domain of F , x ≥ −1

2 but x 6= ±1. In interval notation, this set
is
[
−1

2 , 1
)
∪ (1,∞).

5. Don’t be put off by the ‘t’ here. It is an independent variable representing a real number,
just like x does, and is subject to the same restrictions. As in the previous problem, we have
double danger here: we have a square root and a denominator. To satisfy the square root,
we need a non-negative radicand so we set t+ 3 ≥ 0 to get t ≥ −3. Setting the denominator
equal to zero gives 6 −

√
t+ 3 = 0, or

√
t+ 3 = 6. Squaring both sides gives t + 3 = 36, or

t = 33. Since we squared both sides in the course of solving this equation, we need to check
our answer.5 Sure enough, when t = 33, 6 −

√
t+ 3 = 6 −

√
36 = 0, so t = 33 will cause

problems in the denominator. At last we can find the domain of r: we need t ≥ −3, but
t 6= 33. Our final answer is [−3, 33) ∪ (33,∞).

6. It’s tempting to simplify I(x) = 3x2

x = 3x, and, since there are no longer any denominators,
claim that there are no longer any restrictions. However, in simplifying I(x), we are assuming
x 6= 0, since 0

0 is undefined.6 Proceeding as before, we find the domain of I to be all real
numbers except 0: (−∞, 0) ∪ (0,∞).

It is worth reiterating the importance of finding the domain of a function before simplifying, as
evidenced by the function I in the previous example. Even though the formula I(x) simplifies to

5Do you remember why? Consider squaring both sides to ‘solve’
√
t+ 1 = −2.

6More precisely, the fraction 0
0

is an ‘indeterminant form’. Calculus is required tame such beasts.
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3x, it would be inaccurate to write I(x) = 3x without adding the stipulation that x 6= 0. It would
be analogous to not reporting taxable income or some other sin of omission.

1.4.1 Modeling with Functions

The importance of Mathematics to our society lies in its value to approximate, or model real-world
phenomenon. Whether it be used to predict the high temperature on a given day, determine the
hours of daylight on a given day, or predict population trends of various and sundry real and myth-
ical beasts,7 Mathematics is second only to literacy in the importance humanity’s development.8

It is important to keep in mind that anytime Mathematics is used to approximate reality, there
are always limitations to the model. For example, suppose grapes are on sale at the local market
for $1.50 per pound. Then one pound of grapes costs $1.50, two pounds of grapes cost $3.00, and
so forth. Suppose we want to develop a formula which relates the cost of buying grapes to the
amount of grapes being purchased. Since these two quantities vary from situation to situation, we
assign them variables. Let c denote the cost of the grapes and let g denote the amount of grapes
purchased. To find the cost c of the grapes, we multiply the amount of grapes g by the price $1.50
dollars per pound to get

c = 1.5g

In order for the units to be correct in the formula, g must be measured in pounds of grapes in which
case the computed value of c is measured in dollars. Since we’re interested in finding the cost c
given an amount g, we think of g as the independent variable and c as the dependent variable.
Using the language of function notation, we write

c(g) = 1.5g

where g is the amount of grapes purchased (in pounds) and c(g) is the cost (in dollars). For example,
c(5) represents the cost, in dollars, to purchase 5 pounds of grapes. In this case, c(5) = 1.5(5) = 7.5,
so it would cost $7.50. If, on the other hand, we wanted to find the amount of grapes we can purchase
for $5, we would need to set c(g) = 5 and solve for g. In this case, c(g) = 1.5g, so solving c(g) = 5
is equivalent to solving 1.5g = 5 Doing so gives g = 5

1.5 = 3.3. This means we can purchase exactly
3.3 pounds of grapes for $5. Of course, you would be hard-pressed to buy exactly 3.3 pounds of
grapes,9 and this leads us to our next topic of discussion, the applied domain10 of a function.

Even though, mathematically, c(g) = 1.5g has no domain restrictions (there are no denominators
and no even-indexed radicals), there are certain values of g that don’t make any physical sense.
For example, g = −1 corresponds to ‘purchasing’ −1 pounds of grapes.11 Also, unless the ‘local
market’ mentioned is the State of California (or some other exporter of grapes), it also doesn’t make
much sense for g = 500,000,000, either. So the reality of the situation limits what g can be, and

7See Sections 2.5, 11.1, and 6.5, respectively.
8In Carl’s humble opinion, of course . . .
9You could get close... within a certain specified margin of error, perhaps.

10or, ‘explicit domain’
11Maybe this means returning a pound of grapes?
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these limits determine the applied domain of g. Typically, an applied domain is stated explicitly.
In this case, it would be common to see something like c(g) = 1.5g, 0 ≤ g ≤ 100, meaning the
number of pounds of grapes purchased is limited from 0 up to 100. The upper bound here, 100 may
represent the inventory of the market, or some other limit as set by local policy or law. Even with
this restriction, our model has its limitations. As we saw above, it is virtually impossible to buy
exactly 3.3 pounds of grapes so that our cost is exactly $5. In this case, being sensible shoppers,
we would most likely ‘round down’ and purchase 3 pounds of grapes or however close the market
scale can read to 3.3 without being over. It is time for a more sophisticated example.

Example 1.4.4. The height h in feet of a model rocket above the ground t seconds after lift-off is
given by

h(t) =

{
−5t2 + 100t, if 0 ≤ t ≤ 20

0, if t > 20

1. Find and interpret h(10) and h(60).

2. Solve h(t) = 375 and interpret your answers.

Solution.

1. We first note that the independent variable here is t, chosen because it represents time.
Secondly, the function is broken up into two rules: one formula for values of t between 0 and
20 inclusive, and another for values of t greater than 20. Since t = 10 satisfies the inequality
0 ≤ t ≤ 20, we use the first formula listed, h(t) = −5t2 + 100t, to find h(10). We get
h(10) = −5(10)2 + 100(10) = 500. Since t represents the number of seconds since lift-off and
h(t) is the height above the ground in feet, the equation h(10) = 500 means that 10 seconds
after lift-off, the model rocket is 500 feet above the ground. To find h(60), we note that t = 60
satisfies t > 20, so we use the rule h(t) = 0. This function returns a value of 0 regardless
of what value is substituted in for t, so h(60) = 0. This means that 60 seconds after lift-off,
the rocket is 0 feet above the ground; in other words, a minute after lift-off, the rocket has
already returned to Earth.

2. Since the function h is defined in pieces, we need to solve h(t) = 375 in pieces. For 0 ≤ t ≤ 20,
h(t) = −5t2 + 100t, so for these values of t, we solve −5t2 + 100t = 375. Rearranging terms,
we get 5t2 − 100t+ 375 = 0, and factoring gives 5(t− 5)(t− 15) = 0. Our answers are t = 5
and t = 15, and since both of these values of t lie between 0 and 20, we keep both solutions.
For t > 20, h(t) = 0, and in this case, there are no solutions to 0 = 375. In terms of the
model rocket, solving h(t) = 375 corresponds to finding when, if ever, the rocket reaches 375
feet above the ground. Our two answers, t = 5 and t = 15 correspond to the rocket reaching
this altitude twice – once 5 seconds after launch, and again 15 seconds after launch.12

12What goes up . . .
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The type of function in the previous example is called a piecewise-defined function, or ‘piecewise’
function for short. Many real-world phenomena, income tax formulas13 for example, are modeled
by such functions.

By the way, if we wanted to avoid using a piecewise function in Example 1.4.4, we could have used
h(t) = −5t2 + 100t on the explicit domain 0 ≤ t ≤ 20 because after 20 seconds, the rocket is on the
ground and stops moving. In many cases, though, piecewise functions are your only choice, so it’s
best to understand them well.

Mathematical modeling is not a one-section topic. It’s not even a one-course topic as is evidenced by
undergraduate and graduate courses in mathematical modeling being offered at many universities.
Thus our goal in this section cannot possibly be to tell you the whole story. What we can do is get
you started. As we study new classes of functions, we will see what phenomena they can be used
to model. In that respect, mathematical modeling cannot be a topic in a book, but rather, must
be a theme of the book. For now, we have you explore some very basic models in the Exercises
because you need to crawl to walk to run. As we learn more about functions, we’ll help you build
your own models and get you on your way to applying Mathematics to your world.

13See the Internal Revenue Service’s website

http://www.irs.gov/pub/irs-pdf/i1040tt.pdf
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1.4.2 Exercises

In Exercises 1 - 10, find an expression for f(x) and state its domain.

1. f is a function that takes a real number x and performs the following three steps in the order
given: (1) multiply by 2; (2) add 3; (3) divide by 4.

2. f is a function that takes a real number x and performs the following three steps in the order
given: (1) add 3; (2) multiply by 2; (3) divide by 4.

3. f is a function that takes a real number x and performs the following three steps in the order
given: (1) divide by 4; (2) add 3; (3) multiply by 2.

4. f is a function that takes a real number x and performs the following three steps in the order
given: (1) multiply by 2; (2) add 3; (3) take the square root.

5. f is a function that takes a real number x and performs the following three steps in the order
given: (1) add 3; (2) multiply by 2; (3) take the square root.

6. f is a function that takes a real number x and performs the following three steps in the order
given: (1) add 3; (2) take the square root; (3) multiply by 2.

7. f is a function that takes a real number x and performs the following three steps in the order
given: (1) take the square root; (2) subtract 13; (3) make the quantity the denominator of a
fraction with numerator 4.

8. f is a function that takes a real number x and performs the following three steps in the order
given: (1) subtract 13; (2) take the square root; (3) make the quantity the denominator of a
fraction with numerator 4.

9. f is a function that takes a real number x and performs the following three steps in the order
given: (1) take the square root; (2) make the quantity the denominator of a fraction with
numerator 4; (3) subtract 13.

10. f is a function that takes a real number x and performs the following three steps in the order
given: (1) make the quantity the denominator of a fraction with numerator 4; (2) take the
square root; (3) subtract 13.

In Exercises 11 - 18, use the given function f to find and simplify the following:

� f(3) � f(−1) � f
(

3
2

)
� f(4x) � 4f(x) � f(−x)

� f(x− 4) � f(x)− 4 � f
(
x2
)
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11. f(x) = 2x+ 1 12. f(x) = 3− 4x

13. f(x) = 2− x2 14. f(x) = x2 − 3x+ 2

15. f(x) =
x

x− 1 16. f(x) =
2

x3

17. f(x) = 6 18. f(x) = 0

In Exercises 19 - 26, use the given function f to find and simplify the following:

� f(2) � f(−2) � f(2a)

� 2f(a) � f(a+ 2) � f(a) + f(2)

� f
(

2
a

)
�

f(a)
2

� f(a+ h)

19. f(x) = 2x− 5 20. f(x) = 5− 2x

21. f(x) = 2x2 − 1 22. f(x) = 3x2 + 3x− 2

23. f(x) =
√

2x+ 1 24. f(x) = 117

25. f(x) =
x

2 26. f(x) =
2

x

In Exercises 27 - 34, use the given function f to find f(0) and solve f(x) = 0

27. f(x) = 2x− 1 28. f(x) = 3− 2
5x

29. f(x) = 2x2 − 6 30. f(x) = x2 − x− 12

31. f(x) =
√
x+ 4 32. f(x) =

√
1− 2x

33. f(x) =
3

4− x 34. f(x) =
3x2 − 12x

4− x2

35. Let f(x) =


x+ 5 if x ≤ −3√

9− x2 if −3 < x ≤ 3

−x+ 5 if x > 3

Compute the following function values.

(a) f(−4) (b) f(−3) (c) f(3)

(d) f(3.001) (e) f(−3.001) (f) f(2)
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36. Let f(x) =


x2 if x ≤ −1√

1− x2 if −1 < x ≤ 1

x if x > 1

Compute the following function values.

(a) f(4) (b) f(−3) (c) f(1)

(d) f(0) (e) f(−1) (f) f(−0.999)

In Exercises 37 - 62, find the (implied) domain of the function.

37. f(x) = x4 − 13x3 + 56x2 − 19 38. f(x) = x2 + 4

39. f(x) =
x− 2

x+ 1
40. f(x) =

3x

x2 + x− 2

41. f(x) =
2x

x2 + 3
42. f(x) =

2x

x2 − 3

43. f(x) =
x+ 4

x2 − 36
44. f(x) =

x− 2

x− 2

45. f(x) =
√

3− x 46. f(x) =
√

2x+ 5

47. f(x) = 9x
√
x+ 3

48. f(x) =

√
7− x
x2 + 1

49. f(x) =
√

6x− 2 50. f(x) =
6√

6x− 2

51. f(x) = 3
√

6x− 2 52. f(x) =
6

4−
√

6x− 2

53. f(x) =

√
6x− 2

x2 − 36
54. f(x) =

3
√

6x− 2

x2 + 36

55. s(t) =
t

t− 8
56. Q(r) =

√
r

r − 8

57. b(θ) =
θ√
θ − 8

58. A(x) =
√
x− 7 +

√
9− x

59. α(y) = 3

√
y

y − 8
60. g(v) =

1

4− 1

v2

61. T (t) =

√
t− 8

5− t
62. u(w) =

w − 8

5−
√
w
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63. The area A enclosed by a square, in square inches, is a function of the length of one of its
sides x, when measured in inches. This relation is expressed by the formula A(x) = x2 for
x > 0. Find A(3) and solve A(x) = 36. Interpret your answers to each. Why is x restricted
to x > 0?

64. The area A enclosed by a circle, in square meters, is a function of its radius r, when measured
in meters. This relation is expressed by the formula A(r) = πr2 for r > 0. Find A(2) and
solve A(r) = 16π. Interpret your answers to each. Why is r restricted to r > 0?

65. The volume V enclosed by a cube, in cubic centimeters, is a function of the length of one of its
sides x, when measured in centimeters. This relation is expressed by the formula V (x) = x3

for x > 0. Find V (5) and solve V (x) = 27. Interpret your answers to each. Why is x
restricted to x > 0?

66. The volume V enclosed by a sphere, in cubic feet, is a function of the radius of the sphere r,
when measured in feet. This relation is expressed by the formula V (r) = 4π

3 r
3 for r > 0. Find

V (3) and solve V (r) = 32π
3 . Interpret your answers to each. Why is r restricted to r > 0?

67. The height of an object dropped from the roof of an eight story building is modeled by:
h(t) = −16t2 + 64, 0 ≤ t ≤ 2. Here, h is the height of the object off the ground, in feet, t
seconds after the object is dropped. Find h(0) and solve h(t) = 0. Interpret your answers to
each. Why is t restricted to 0 ≤ t ≤ 2?

68. The temperature T in degrees Fahrenheit t hours after 6 AM is given by T (t) = −1
2 t

2 + 8t+ 3
for 0 ≤ t ≤ 12. Find and interpret T (0), T (6) and T (12).

69. The function C(x) = x2 − 10x + 27 models the cost, in hundreds of dollars, to produce x
thousand pens. Find and interpret C(0), C(2) and C(5).

70. Using data from the Bureau of Transportation Statistics, the average fuel economy F in miles
per gallon for passenger cars in the US can be modeled by F (t) = −0.0076t2 + 0.45t + 16,
0 ≤ t ≤ 28, where t is the number of years since 1980. Use your calculator to find F (0), F (14)
and F (28). Round your answers to two decimal places and interpret your answers to each.

71. The population of Sasquatch in Portage County can be modeled by the function P (t) = 150t
t+15 ,

where t represents the number of years since 1803. Find and interpret P (0) and P (205).
Discuss with your classmates what the applied domain and range of P should be.

72. For n copies of the book Me and my Sasquatch, a print on-demand company charges C(n)
dollars, where C(n) is determined by the formula

C(n) =


15n if 1 ≤ n ≤ 25

13.50n if 25 < n ≤ 50

12n if n > 50

(a) Find and interpret C(20).

http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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(b) How much does it cost to order 50 copies of the book? What about 51 copies?

(c) Your answer to 72b should get you thinking. Suppose a bookstore estimates it will sell
50 copies of the book. How many books can, in fact, be ordered for the same price as
those 50 copies? (Round your answer to a whole number of books.)

73. An on-line comic book retailer charges shipping costs according to the following formula

S(n) =

{
1.5n+ 2.5 if 1 ≤ n ≤ 14

0 if n ≥ 15

where n is the number of comic books purchased and S(n) is the shipping cost in dollars.

(a) What is the cost to ship 10 comic books?

(b) What is the significance of the formula S(n) = 0 for n ≥ 15?

74. The cost C (in dollars) to talk m minutes a month on a mobile phone plan is modeled by

C(m) =

{
25 if 0 ≤ m ≤ 1000

25 + 0.1(m− 1000) if m > 1000

(a) How much does it cost to talk 750 minutes per month with this plan?

(b) How much does it cost to talk 20 hours a month with this plan?

(c) Explain the terms of the plan verbally.

75. In Section 1.1.1 we defined the set of integers as Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.14 The
greatest integer of x, denoted by bxc, is defined to be the largest integer k with k ≤ x.

(a) Find b0.785c, b117c, b−2.001c, and bπ + 6c
(b) Discuss with your classmates how bxc may be described as a piecewise defined function.

HINT: There are infinitely many pieces!

(c) Is ba+ bc = bac+ bbc always true? What if a or b is an integer? Test some values, make
a conjecture, and explain your result.

76. We have through our examples tried to convince you that, in general, f(a + b) 6= f(a) +
f(b). It has been our experience that students refuse to believe us so we’ll try again with a
different approach. With the help of your classmates, find a function f for which the following
properties are always true.

(a) f(0) = f(−1 + 1) = f(−1) + f(1)

14The use of the letter Z for the integers is ostensibly because the German word zahlen means ‘to count.’
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(b) f(5) = f(2 + 3) = f(2) + f(3)

(c) f(−6) = f(0− 6) = f(0)− f(6)

(d) f(a+ b) = f(a) + f(b) regardless of what two numbers we give you for a and b.

How many functions did you find that failed to satisfy the conditions above? Did f(x) = x2

work? What about f(x) =
√
x or f(x) = 3x + 7 or f(x) =

1

x
? Did you find an attribute

common to those functions that did succeed? You should have, because there is only one
extremely special family of functions that actually works here. Thus we return to our previous
statement, in general, f(a+ b) 6= f(a) + f(b).
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1.4.3 Answers

1. f(x) = 2x+3
4

Domain: (−∞,∞)
2. f(x) = 2(x+3)

4 = x+3
2

Domain: (−∞,∞)

3. f(x) = 2
(
x
4 + 3

)
= 1

2x+ 6
Domain: (−∞,∞)

4. f(x) =
√

2x+ 3
Domain:

[
−3

2 ,∞
)

5. f(x) =
√

2(x+ 3) =
√

2x+ 6
Domain: [−3,∞)

6. f(x) = 2
√
x+ 3

Domain: [−3,∞)

7. f(x) = 4√
x−13

Domain: [0, 169) ∪ (169,∞)

8. f(x) = 4√
x−13

Domain: (13,∞)

9. f(x) = 4√
x
− 13

Domain: (0,∞)
10. f(x) =

√
4
x − 13 = 2√

x
− 13

Domain: (0,∞)

11. For f(x) = 2x+ 1

� f(3) = 7 � f(−1) = −1 � f
(

3
2

)
= 4

� f(4x) = 8x+ 1 � 4f(x) = 8x+ 4 � f(−x) = −2x+ 1

� f(x− 4) = 2x− 7 � f(x)− 4 = 2x− 3 � f
(
x2
)

= 2x2 + 1

12. For f(x) = 3− 4x

� f(3) = −9 � f(−1) = 7 � f
(

3
2

)
= −3

� f(4x) = 3− 16x � 4f(x) = 12− 16x � f(−x) = 4x+ 3

� f(x− 4) = 19− 4x � f(x)− 4 = −4x− 1 � f
(
x2
)

= 3− 4x2



70 Relations and Functions

13. For f(x) = 2− x2

� f(3) = −7 � f(−1) = 1 � f
(

3
2

)
= −1

4

� f(4x) = 2− 16x2 � 4f(x) = 8− 4x2 � f(−x) = 2− x2

� f(x−4) = −x2 +8x−14 � f(x)− 4 = −x2 − 2 � f
(
x2
)

= 2− x4

14. For f(x) = x2 − 3x+ 2

� f(3) = 2 � f(−1) = 6 � f
(

3
2

)
= −1

4

� f(4x) = 16x2 − 12x+ 2 � 4f(x) = 4x2 − 12x+ 8 � f(−x) = x2 + 3x+ 2

� f(x− 4) = x2− 11x+ 30 � f(x)− 4 = x2 − 3x− 2 � f
(
x2
)

= x4 − 3x2 + 2

15. For f(x) = x
x−1

� f(3) = 3
2 � f(−1) = 1

2 � f
(

3
2

)
= 3

� f(4x) = 4x
4x−1 � 4f(x) = 4x

x−1 � f(−x) = x
x+1

� f(x− 4) = x−4
x−5 � f(x)− 4 = x

x−1 − 4

= 4−3x
x−1

� f
(
x2
)

= x2

x2−1

16. For f(x) = 2
x3

� f(3) = 2
27 � f(−1) = −2 � f

(
3
2

)
= 16

27

� f(4x) = 1
32x3 � 4f(x) = 8

x3 � f(−x) = − 2
x3

� f(x− 4) = 2
(x−4)3

= 2
x3−12x2+48x−64

� f(x)− 4 = 2
x3 − 4

= 2−4x3

x3

� f
(
x2
)

= 2
x6

17. For f(x) = 6

� f(3) = 6 � f(−1) = 6 � f
(

3
2

)
= 6

� f(4x) = 6 � 4f(x) = 24 � f(−x) = 6

� f(x− 4) = 6 � f(x)− 4 = 2 � f
(
x2
)

= 6
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18. For f(x) = 0

� f(3) = 0 � f(−1) = 0 � f
(

3
2

)
= 0

� f(4x) = 0 � 4f(x) = 0 � f(−x) = 0

� f(x− 4) = 0 � f(x)− 4 = −4 � f
(
x2
)

= 0

19. For f(x) = 2x− 5

� f(2) = −1 � f(−2) = −9 � f(2a) = 4a− 5

� 2f(a) = 4a− 10 � f(a+ 2) = 2a− 1 � f(a) + f(2) = 2a− 6

� f
(

2
a

)
= 4

a − 5
= 4−5a

a

�
f(a)

2 = 2a−5
2

� f(a+ h) = 2a+ 2h− 5

20. For f(x) = 5− 2x

� f(2) = 1 � f(−2) = 9 � f(2a) = 5− 4a

� 2f(a) = 10− 4a � f(a+ 2) = 1− 2a � f(a) + f(2) = 6− 2a

� f
(

2
a

)
= 5− 4

a
= 5a−4

a

�
f(a)

2 = 5−2a
2

� f(a+ h) = 5− 2a− 2h

21. For f(x) = 2x2 − 1

� f(2) = 7 � f(−2) = 7 � f(2a) = 8a2 − 1

� 2f(a) = 4a2 − 2 � f(a+ 2) = 2a2 + 8a+ 7 � f(a) + f(2) = 2a2 + 6

� f
(

2
a

)
= 8

a2 − 1

= 8−a2

a2

�
f(a)

2 = 2a2−1
2

� f(a + h) = 2a2 + 4ah +
2h2 − 1
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22. For f(x) = 3x2 + 3x− 2

� f(2) = 16 � f(−2) = 4 � f(2a) = 12a2 + 6a− 2

� 2f(a) = 6a2 + 6a− 4 � f(a+2) = 3a2 +15a+16 � f(a)+f(2) = 3a2 +3a+14

� f
(

2
a

)
= 12

a2 + 6
a − 2

= 12+6a−2a2

a2

�
f(a)

2 = 3a2+3a−2
2

� f(a + h) = 3a2 + 6ah +
3h2 + 3a+ 3h− 2

23. For f(x) =
√

2x+ 1

� f(2) =
√

5 � f(−2) is not real � f(2a) =
√

4a+ 1

� 2f(a) = 2
√

2a+ 1 � f(a+ 2) =
√

2a+ 5 � f(a)+f(2) =
√

2a+ 1+
√

5

� f
(

2
a

)
=
√

4
a + 1

=
√

a+4
a

�
f(a)

2 =
√

2a+1
2

� f(a+h) =
√

2a+ 2h+ 1

24. For f(x) = 117

� f(2) = 117 � f(−2) = 117 � f(2a) = 117

� 2f(a) = 234 � f(a+ 2) = 117 � f(a) + f(2) = 234

� f
(

2
a

)
= 117 �

f(a)
2 = 117

2
� f(a+ h) = 117

25. For f(x) = x
2

� f(2) = 1 � f(−2) = −1 � f(2a) = a

� 2f(a) = a � f(a+ 2) = a+2
2 � f(a) + f(2) = a

2 + 1
= a+2

2

� f
(

2
a

)
= 1

a �
f(a)

2 = a
4

� f(a+ h) = a+h
2
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26. For f(x) = 2
x

� f(2) = 1 � f(−2) = −1 � f(2a) = 1
a

� 2f(a) = 4
a � f(a+ 2) = 2

a+2 � f(a) + f(2) = 2
a + 1

= a+2
2

� f
(

2
a

)
= a �

f(a)
2 = 1

a
� f(a+ h) = 2

a+h

27. For f(x) = 2x− 1, f(0) = −1 and f(x) = 0 when x = 1
2

28. For f(x) = 3− 2
5x, f(0) = 3 and f(x) = 0 when x = 15

2

29. For f(x) = 2x2 − 6, f(0) = −6 and f(x) = 0 when x = ±
√

3

30. For f(x) = x2 − x− 12, f(0) = −12 and f(x) = 0 when x = −3 or x = 4

31. For f(x) =
√
x+ 4, f(0) = 2 and f(x) = 0 when x = −4

32. For f(x) =
√

1− 2x, f(0) = 1 and f(x) = 0 when x = 1
2

33. For f(x) = 3
4−x , f(0) = 3

4 and f(x) is never equal to 0

34. For f(x) = 3x2−12x
4−x2 , f(0) = 0 and f(x) = 0 when x = 0 or x = 4

35. (a) f(−4) = 1 (b) f(−3) = 2 (c) f(3) = 0

(d) f(3.001) = 1.999 (e) f(−3.001) = 1.999 (f) f(2) =
√

5

36. (a) f(4) = 4 (b) f(−3) = 9 (c) f(1) = 0

(d) f(0) = 1 (e) f(−1) = 1 (f) f(−0.999) ≈ 0.0447

37. (−∞,∞) 38. (−∞,∞)

39. (−∞,−1) ∪ (−1,∞) 40. (−∞,−2) ∪ (−2, 1) ∪ (1,∞)

41. (−∞,∞) 42. (−∞,−
√

3) ∪ (−
√

3,
√

3) ∪ (
√

3,∞)

43. (−∞,−6) ∪ (−6, 6) ∪ (6,∞) 44. (−∞, 2) ∪ (2,∞)

45. (−∞, 3] 46.
[
−5

2 ,∞
)
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47. [−3,∞) 48. (−∞, 7]

49.
[

1
3 ,∞

)
50.

(
1
3 ,∞

)
51. (−∞,∞) 52.

[
1
3 , 3
)
∪ (3,∞)

53.
[

1
3 , 6
)
∪ (6,∞) 54. (−∞,∞)

55. (−∞, 8) ∪ (8,∞) 56. [0, 8) ∪ (8,∞)

57. (8,∞) 58. [7, 9]

59. (−∞, 8) ∪ (8,∞) 60.
(
−∞,−1

2

)
∪
(
−1

2 , 0
)
∪
(
0, 1

2

)
∪
(

1
2 ,∞

)
61. [0, 5) ∪ (5,∞) 62. [0, 25) ∪ (25,∞)

63. A(3) = 9, so the area enclosed by a square with a side of length 3 inches is 9 square inches.
The solutions to A(x) = 36 are x = ±6. Since x is restricted to x > 0, we only keep x = 6.
This means for the area enclosed by the square to be 36 square inches, the length of the side
needs to be 6 inches. Since x represents a length, x > 0.

64. A(2) = 4π, so the area enclosed by a circle with radius 2 meters is 4π square meters. The
solutions to A(r) = 16π are r = ±4. Since r is restricted to r > 0, we only keep r = 4. This
means for the area enclosed by the circle to be 16π square meters, the radius needs to be 4
meters. Since r represents a radius (length), r > 0.

65. V (5) = 125, so the volume enclosed by a cube with a side of length 5 centimeters is 125 cubic
centimeters. The solution to V (x) = 27 is x = 3. This means for the volume enclosed by
the cube to be 27 cubic centimeters, the length of the side needs to 3 centimeters. Since x
represents a length, x > 0.

66. V (3) = 36π, so the volume enclosed by a sphere with radius 3 feet is 36π cubic feet. The
solution to V (r) = 32π

3 is r = 2. This means for the volume enclosed by the sphere to be 32π
3

cubic feet, the radius needs to 2 feet. Since r represents a radius (length), r > 0.

67. h(0) = 64, so at the moment the object is dropped off the building, the object is 64 feet off of
the ground. The solutions to h(t) = 0 are t = ±2. Since we restrict 0 ≤ t ≤ 2, we only keep
t = 2. This means 2 seconds after the object is dropped off the building, it is 0 feet off the
ground. Said differently, the object hits the ground after 2 seconds. The restriction 0 ≤ t ≤ 2
restricts the time to be between the moment the object is released and the moment it hits
the ground.

68. T (0) = 3, so at 6 AM (0 hours after 6 AM), it is 3◦ Fahrenheit. T (6) = 33, so at noon (6
hours after 6 AM), the temperature is 33◦ Fahrenheit. T (12) = 27, so at 6 PM (12 hours
after 6 AM), it is 27◦ Fahrenheit.
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69. C(0) = 27, so to make 0 pens, it costs15 $2700. C(2) = 11, so to make 2000 pens, it costs
$1100. C(5) = 2, so to make 5000 pens, it costs $2000.

70. F (0) = 16.00, so in 1980 (0 years after 1980), the average fuel economy of passenger cars
in the US was 16.00 miles per gallon. F (14) = 20.81, so in 1994 (14 years after 1980), the
average fuel economy of passenger cars in the US was 20.81 miles per gallon. F (28) = 22.64,
so in 2008 (28 years after 1980), the average fuel economy of passenger cars in the US was
22.64 miles per gallon.

71. P (0) = 0 which means in 1803 (0 years after 1803), there are no Sasquatch in Portage County.
P (205) = 3075

22 ≈ 139.77, so in 2008 (205 years after 1803), there were between 139 and 140
Sasquatch in Portage County.

72. (a) C(20) = 300. It costs $300 for 20 copies of the book.

(b) C(50) = 675, so it costs $675 for 50 copies of the book. C(51) = 612, so it costs $612
for 51 copies of the book.

(c) 56 books.

73. (a) S(10) = 17.5, so it costs $17.50 to ship 10 comic books.

(b) There is free shipping on orders of 15 or more comic books.

74. (a) C(750) = 25, so it costs $25 to talk 750 minutes per month with this plan.

(b) Since 20 hours = 1200 minutes, we substitute m = 1200 and get C(1200) = 45. It costs
$45 to talk 20 hours per month with this plan.

(c) It costs $25 for up to 1000 minutes and 10 cents per minute for each minute over 1000
minutes.

75. (a) b0.785c = 0, b117c = 117, b−2.001c = −3, and bπ + 6c = 9

15This is called the ‘fixed’ or ‘start-up’ cost. We’ll revisit this concept on page 82.
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1.5 Function Arithmetic

In the previous section we used the newly defined function notation to make sense of expressions
such as ‘f(x) + 2’ and ‘2f(x)’ for a given function f . It would seem natural, then, that functions
should have their own arithmetic which is consistent with the arithmetic of real numbers. The
following definitions allow us to add, subtract, multiply and divide functions using the arithmetic
we already know for real numbers.

Function Arithmetic

Suppose f and g are functions and x is in both the domain of f and the domain of g.a

� The sum of f and g, denoted f + g, is the function defined by the formula

(f + g)(x) = f(x) + g(x)

� The difference of f and g, denoted f − g, is the function defined by the formula

(f − g)(x) = f(x)− g(x)

� The product of f and g, denoted fg, is the function defined by the formula

(fg)(x) = f(x)g(x)

� The quotient of f and g, denoted
f

g
, is the function defined by the formula

(
f

g

)
(x) =

f(x)

g(x)
,

provided g(x) 6= 0.

aThus x is an element of the intersection of the two domains.

In other words, to add two functions, we add their outputs; to subtract two functions, we subtract
their outputs, and so on. Note that while the formula (f + g)(x) = f(x) + g(x) looks suspiciously
like some kind of distributive property, it is nothing of the sort; the addition on the left hand side
of the equation is function addition, and we are using this equation to define the output of the new
function f + g as the sum of the real number outputs from f and g.

Example 1.5.1. Let f(x) = 6x2 − 2x and g(x) = 3− 1

x
.

1. Find (f + g)(−1) 2. Find (fg)(2)

3. Find the domain of g − f then find and simplify a formula for (g − f)(x).
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4. Find the domain of
(
g
f

)
then find and simplify a formula for

(
g
f

)
(x).

Solution.

1. To find (f + g)(−1) we first find f(−1) = 8 and g(−1) = 4. By definition, we have that
(f + g)(−1) = f(−1) + g(−1) = 8 + 4 = 12.

2. To find (fg)(2), we first need f(2) and g(2). Since f(2) = 20 and g(2) = 5
2 , our formula yields

(fg)(2) = f(2)g(2) = (20)
(

5
2

)
= 50.

3. One method to find the domain of g−f is to find the domain of g and of f separately, then find
the intersection of these two sets. Owing to the denominator in the expression g(x) = 3− 1

x ,
we get that the domain of g is (−∞, 0) ∪ (0,∞). Since f(x) = 6x2 − 2x is valid for all real
numbers, we have no further restrictions. Thus the domain of g − f matches the domain of
g, namely, (−∞, 0) ∪ (0,∞).

A second method is to analyze the formula for (g − f)(x) before simplifying and look for the
usual domain issues. In this case,

(g − f)(x) = g(x)− f(x) =

(
3− 1

x

)
−
(
6x2 − 2x

)
,

so we find, as before, the domain is (−∞, 0) ∪ (0,∞).

Moving along, we need to simplify a formula for (g − f)(x). In this case, we get common
denominators and attempt to reduce the resulting fraction. Doing so, we get

(g − f)(x) = g(x)− f(x)

=

(
3− 1

x

)
−
(
6x2 − 2x

)
= 3− 1

x
− 6x2 + 2x

=
3x

x
− 1

x
− 6x3

x
+

2x2

x
get common denominators

=
3x− 1− 6x3 − 2x2

x

=
−6x3 − 2x2 + 3x− 1

x

4. As in the previous example, we have two ways to approach finding the domain of g
f . First,

we can find the domain of g and f separately, and find the intersection of these two sets. In

addition, since
(
g
f

)
(x) = g(x)

f(x) , we are introducing a new denominator, namely f(x), so we

need to guard against this being 0 as well. Our previous work tells us that the domain of g
is (−∞, 0) ∪ (0,∞) and the domain of f is (−∞,∞). Setting f(x) = 0 gives 6x2 − 2x = 0
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or x = 0, 1
3 . As a result, the domain of g

f is all real numbers except x = 0 and x = 1
3 , or

(−∞, 0) ∪
(
0, 1

3

)
∪
(

1
3 ,∞

)
.

Alternatively, we may proceed as above and analyze the expression
(
g
f

)
(x) = g(x)

f(x) before

simplifying. In this case, (
g

f

)
(x) =

g(x)

f(x)
=

3− 1

x

6x2 − 2x

We see immediately from the ‘little’ denominator that x 6= 0. To keep the ‘big’ denominator
away from 0, we solve 6x2 − 2x = 0 and get x = 0 or x = 1

3 . Hence, as before, we find the
domain of g

f to be (−∞, 0) ∪
(
0, 1

3

)
∪
(

1
3 ,∞

)
.

Next, we find and simplify a formula for
(
g
f

)
(x).

(
g

f

)
(x) =

g(x)

f(x)

=

3− 1

x

6x2 − 2x

=

3− 1

x

6x2 − 2x
· x
x

simplify compound fractions

=

(
3− 1

x

)
x

(6x2 − 2x)x

=
3x− 1

(6x2 − 2x)x

=
3x− 1

2x2(3x− 1)
factor

= ��
���:

1
(3x− 1)

2x2
���

��(3x− 1)
cancel

=
1

2x2

Please note the importance of finding the domain of a function before simplifying its expression. In
number 4 in Example 1.5.1 above, had we waited to find the domain of gf until after simplifying, we’d

just have the formula 1
2x2 to go by, and we would (incorrectly!) state the domain as (−∞, 0)∪(0,∞),

since the other troublesome number, x = 1
3 , was canceled away.1

1We’ll see what this means geometrically in Chapter 4.
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Next, we turn our attention to the difference quotient of a function.

Definition 1.8. Given a function f , the difference quotient of f is the expression

f(x+ h)− f(x)

h

We will revisit this concept in Section 2.1, but for now, we use it as a way to practice function
notation and function arithmetic. For reasons which will become clear in Calculus, ‘simplifying’
a difference quotient means rewriting it in a form where the ‘h’ in the definition of the difference
quotient cancels from the denominator. Once that happens, we consider our work to be done.

Example 1.5.2. Find and simplify the difference quotients for the following functions

1. f(x) = x2 − x− 2 2. g(x) =
3

2x+ 1
3. r(x) =

√
x

Solution.

1. To find f(x+ h), we replace every occurrence of x in the formula f(x) = x2 − x− 2 with the
quantity (x+ h) to get

f(x+ h) = (x+ h)2 − (x+ h)− 2

= x2 + 2xh+ h2 − x− h− 2.

So the difference quotient is

f(x+ h)− f(x)

h
=

(
x2 + 2xh+ h2 − x− h− 2

)
−
(
x2 − x− 2

)
h

=
x2 + 2xh+ h2 − x− h− 2− x2 + x+ 2

h

=
2xh+ h2 − h

h

=
h (2x+ h− 1)

h
factor

=
�h (2x+ h− 1)

�h
cancel

= 2x+ h− 1.
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2. To find g(x + h), we replace every occurrence of x in the formula g(x) = 3
2x+1 with the

quantity (x+ h) to get

g(x+ h) =
3

2(x+ h) + 1

=
3

2x+ 2h+ 1
,

which yields

g(x+ h)− g(x)

h
=

3

2x+ 2h+ 1
− 3

2x+ 1
h

=

3

2x+ 2h+ 1
− 3

2x+ 1
h

· (2x+ 2h+ 1)(2x+ 1)

(2x+ 2h+ 1)(2x+ 1)

=
3(2x+ 1)− 3(2x+ 2h+ 1)

h(2x+ 2h+ 1)(2x+ 1)

=
6x+ 3− 6x− 6h− 3

h(2x+ 2h+ 1)(2x+ 1)

=
−6h

h(2x+ 2h+ 1)(2x+ 1)

=
−6�h

�h(2x+ 2h+ 1)(2x+ 1)

=
−6

(2x+ 2h+ 1)(2x+ 1)
.

Since we have managed to cancel the original ‘h’ from the denominator, we are done.

3. For r(x) =
√
x, we get r(x+ h) =

√
x+ h so the difference quotient is

r(x+ h)− r(x)

h
=

√
x+ h−

√
x

h

In order to cancel the ‘h’ from the denominator, we rationalize the numerator by multiplying
by its conjugate.2

2Rationalizing the numerator !? How’s that for a twist!
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r(x+ h)− r(x)

h
=

√
x+ h−

√
x

h

=

(√
x+ h−

√
x
)

h
·
(√
x+ h+

√
x
)(√

x+ h+
√
x
) Multiply by the conjugate.

=

(√
x+ h

)2 − (
√
x)

2

h
(√
x+ h+

√
x
) Difference of Squares.

=
(x+ h)− x

h
(√
x+ h+

√
x
)

=
h

h
(√
x+ h+

√
x
)

=
���

1

h

�h
(√
x+ h+

√
x
)

=
1√

x+ h+
√
x

Since we have removed the original ‘h’ from the denominator, we are done.

As mentioned before, we will revisit difference quotients in Section 2.1 where we will explain them
geometrically. For now, we want to move on to some classic applications of function arithmetic
from Economics and for that, we need to think like an entrepreneur.3

Suppose you are a manufacturer making a certain product.4 Let x be the production level,
that is, the number of items produced in a given time period. It is customary to let C(x) denote
the function which calculates the total cost of producing the x items. The quantity C(0), which
represents the cost of producing no items, is called the fixed cost, and represents the amount
of money required to begin production. Associated with the total cost C(x) is cost per item, or
average cost, denoted C(x) and read ‘C-bar’ of x. To compute C(x), we take the total cost C(x)
and divide by the number of items produced x to get

C(x) =
C(x)

x

On the retail end, we have the price p charged per item. To simplify the dialog and computations
in this text, we assume that the number of items sold equals the number of items produced. From a

3Not really, but “entrepreneur” is the buzzword of the day and we’re trying to be trendy.
4Poorly designed resin Sasquatch statues, for example. Feel free to choose your own entrepreneurial fantasy.
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retail perspective, it seems natural to think of the number of items sold, x, as a function of the price
charged, p. After all, the retailer can easily adjust the price to sell more product. In the language
of functions, x would be the dependent variable and p would be the independent variable or, using
function notation, we have a function x(p). While we will adopt this convention later in the text,5

we will hold with tradition at this point and consider the price p as a function of the number of
items sold, x. That is, we regard x as the independent variable and p as the dependent variable and
speak of the price-demand function, p(x). Hence, p(x) returns the price charged per item when
x items are produced and sold. Our next function to consider is the revenue function, R(x). The
function R(x) computes the amount of money collected as a result of selling x items. Since p(x)
is the price charged per item, we have R(x) = xp(x). Finally, the profit function, P (x) calculates
how much money is earned after the costs are paid. That is, P (x) = (R − C)(x) = R(x) − C(x).
We summarize all of these functions below.

Summary of Common Economic Functions

Suppose x represents the quantity of items produced and sold.

� The price-demand function p(x) calculates the price per item.

� The revenue function R(x) calculates the total money collected by selling x items at a
price p(x), R(x) = x p(x).

� The cost function C(x) calculates the cost to produce x items. The value C(0) is called
the fixed cost or start-up cost.

� The average cost function C(x) = C(x)
x calculates the cost per item when making x items.

Here, we necessarily assume x > 0.

� The profit function P (x) calculates the money earned after costs are paid when x items
are produced and sold, P (x) = (R− C)(x) = R(x)− C(x).

It is high time for an example.

Example 1.5.3. Let x represent the number of dOpi media players (‘dOpis’6) produced and sold
in a typical week. Suppose the cost, in dollars, to produce x dOpis is given by C(x) = 100x+ 2000,
for x ≥ 0, and the price, in dollars per dOpi, is given by p(x) = 450− 15x for 0 ≤ x ≤ 30.

1. Find and interpret C(0). 2. Find and interpret C(10).

3. Find and interpret p(0) and p(20). 4. Solve p(x) = 0 and interpret the result.

5. Find and simplify expressions for the revenue function R(x) and the profit function P (x).

6. Find and interpret R(0) and P (0). 7. Solve P (x) = 0 and interpret the result.

5See Example 5.2.4 in Section 5.2.
6Pronounced ‘dopeys’ . . .
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Solution.

1. We substitute x = 0 into the formula for C(x) and get C(0) = 100(0) + 2000 = 2000. This
means to produce 0 dOpis, it costs $2000. In other words, the fixed (or start-up) costs are
$2000. The reader is encouraged to contemplate what sorts of expenses these might be.

2. Since C(x) = C(x)
x , C(10) = C(10)

10 = 3000
10 = 300. This means when 10 dOpis are produced,

the cost to manufacture them amounts to $300 per dOpi.

3. Plugging x = 0 into the expression for p(x) gives p(0) = 450 − 15(0) = 450. This means no
dOpis are sold if the price is $450 per dOpi. On the other hand, p(20) = 450− 15(20) = 150
which means to sell 20 dOpis in a typical week, the price should be set at $150 per dOpi.

4. Setting p(x) = 0 gives 450 − 15x = 0. Solving gives x = 30. This means in order to sell 30
dOpis in a typical week, the price needs to be set to $0. What’s more, this means that even
if dOpis were given away for free, the retailer would only be able to move 30 of them.7

5. To find the revenue, we compute R(x) = xp(x) = x(450 − 15x) = 450x − 15x2. Since the
formula for p(x) is valid only for 0 ≤ x ≤ 30, our formula R(x) is also restricted to 0 ≤ x ≤ 30.
For the profit, P (x) = (R−C)(x) = R(x)−C(x). Using the given formula for C(x) and the
derived formula for R(x), we get P (x) =

(
450x− 15x2

)
−(100x+2000) = −15x2+350x−2000.

As before, the validity of this formula is for 0 ≤ x ≤ 30 only.

6. We find R(0) = 0 which means if no dOpis are sold, we have no revenue, which makes sense.
Turning to profit, P (0) = −2000 since P (x) = R(x)−C(x) and P (0) = R(0)−C(0) = −2000.
This means that if no dOpis are sold, more money ($2000 to be exact!) was put into producing
the dOpis than was recouped in sales. In number 1, we found the fixed costs to be $2000, so
it makes sense that if we sell no dOpis, we are out those start-up costs.

7. Setting P (x) = 0 gives −15x2 + 350x − 2000 = 0. Factoring gives −5(x − 10)(3x − 40) = 0
so x = 10 or x = 40

3 . What do these values mean in the context of the problem? Since
P (x) = R(x)−C(x), solving P (x) = 0 is the same as solving R(x) = C(x). This means that
the solutions to P (x) = 0 are the production (and sales) figures for which the sales revenue
exactly balances the total production costs. These are the so-called ‘break even’ points. The
solution x = 10 means 10 dOpis should be produced (and sold) during the week to recoup
the cost of production. For x = 40

3 = 13.3, things are a bit more complicated. Even though
x = 13.3 satisfies 0 ≤ x ≤ 30, and hence is in the domain of P , it doesn’t make sense in the
context of this problem to produce a fractional part of a dOpi.8 Evaluating P (13) = 15 and
P (14) = −40, we see that producing and selling 13 dOpis per week makes a (slight) profit,
whereas producing just one more puts us back into the red. While breaking even is nice, we
ultimately would like to find what production level (and price) will result in the largest profit,
and we’ll do just that . . . in Section 2.3.

7Imagine that! Giving something away for free and hardly anyone taking advantage of it . . .
8We’ve seen this sort of thing before in Section 1.4.1.
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1.5.1 Exercises

In Exercises 1 - 10, use the pair of functions f and g to find the following values if they exist.

� (f + g)(2) � (f − g)(−1) � (g − f)(1)

� (fg)
(

1
2

)
�

(
f
g

)
(0) �

(
g
f

)
(−2)

1. f(x) = 3x+ 1 and g(x) = 4− x 2. f(x) = x2 and g(x) = −2x+ 1

3. f(x) = x2 − x and g(x) = 12− x2 4. f(x) = 2x3 and g(x) = −x2 − 2x− 3

5. f(x) =
√
x+ 3 and g(x) = 2x− 1 6. f(x) =

√
4− x and g(x) =

√
x+ 2

7. f(x) = 2x and g(x) =
1

2x+ 1
8. f(x) = x2 and g(x) =

3

2x− 3

9. f(x) = x2 and g(x) =
1

x2
10. f(x) = x2 + 1 and g(x) =

1

x2 + 1

In Exercises 11 - 20, use the pair of functions f and g to find the domain of the indicated function
then find and simplify an expression for it.

� (f + g)(x) � (f − g)(x) � (fg)(x) �

(
f
g

)
(x)

11. f(x) = 2x+ 1 and g(x) = x− 2 12. f(x) = 1− 4x and g(x) = 2x− 1

13. f(x) = x2 and g(x) = 3x− 1 14. f(x) = x2 − x and g(x) = 7x

15. f(x) = x2 − 4 and g(x) = 3x+ 6 16. f(x) = −x2 + x+ 6 and g(x) = x2 − 9

17. f(x) =
x

2
and g(x) =

2

x
18. f(x) = x− 1 and g(x) =

1

x− 1

19. f(x) = x and g(x) =
√
x+ 1 20. f(x) =

√
x− 5 and g(x) = f(x) =

√
x− 5

In Exercises 21 - 45, find and simplify the difference quotient
f(x+ h)− f(x)

h
for the given function.

21. f(x) = 2x− 5 22. f(x) = −3x+ 5

23. f(x) = 6 24. f(x) = 3x2 − x

25. f(x) = −x2 + 2x− 1 26. f(x) = 4x2
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27. f(x) = x− x2 28. f(x) = x3 + 1

29. f(x) = mx+ b where m 6= 0 30. f(x) = ax2 + bx+ c where a 6= 0

31. f(x) =
2

x
32. f(x) =

3

1− x

33. f(x) =
1

x2
34. f(x) =

2

x+ 5

35. f(x) =
1

4x− 3
36. f(x) =

3x

x+ 1

37. f(x) =
x

x− 9 38. f(x) =
x2

2x+ 1

39. f(x) =
√
x− 9 40. f(x) =

√
2x+ 1

41. f(x) =
√
−4x+ 5 42. f(x) =

√
4− x

43. f(x) =
√
ax+ b, where a 6= 0. 44. f(x) = x

√
x

45. f(x) = 3
√
x. HINT: (a− b)

(
a2 + ab+ b2

)
= a3 − b3

In Exercises 46 - 50, C(x) denotes the cost to produce x items and p(x) denotes the price-demand
function in the given economic scenario. In each Exercise, do the following:

� Find and interpret C(0). � Find and interpret C(10).

� Find and interpret p(5) � Find and simplify R(x).

� Find and simplify P (x). � Solve P (x) = 0 and interpret.

46. The cost, in dollars, to produce x “I’d rather be a Sasquatch” T-Shirts is C(x) = 2x + 26,
x ≥ 0 and the price-demand function, in dollars per shirt, is p(x) = 30− 2x, 0 ≤ x ≤ 15.

47. The cost, in dollars, to produce x bottles of 100% All-Natural Certified Free-Trade Organic
Sasquatch Tonic is C(x) = 10x + 100, x ≥ 0 and the price-demand function, in dollars per
bottle, is p(x) = 35− x, 0 ≤ x ≤ 35.

48. The cost, in cents, to produce x cups of Mountain Thunder Lemonade at Junior’s Lemonade
Stand is C(x) = 18x + 240, x ≥ 0 and the price-demand function, in cents per cup, is
p(x) = 90− 3x, 0 ≤ x ≤ 30.

49. The daily cost, in dollars, to produce x Sasquatch Berry Pies C(x) = 3x+ 36, x ≥ 0 and the
price-demand function, in dollars per pie, is p(x) = 12− 0.5x, 0 ≤ x ≤ 24.
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50. The monthly cost, in hundreds of dollars, to produce x custom built electric scooters is
C(x) = 20x+ 1000, x ≥ 0 and the price-demand function, in hundreds of dollars per scooter,
is p(x) = 140− 2x, 0 ≤ x ≤ 70.

In Exercises 51 - 62, let f be the function defined by

f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)}

and let g be the function defined

g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}

. Compute the indicated value if it exists.

51. (f + g)(−3) 52. (f − g)(2) 53. (fg)(−1)

54. (g + f)(1) 55. (g − f)(3) 56. (gf)(−3)

57.
(
f
g

)
(−2) 58.

(
f
g

)
(−1) 59.

(
f
g

)
(2)

60.
(
g
f

)
(−1) 61.

(
g
f

)
(3) 62.

(
g
f

)
(−3)
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1.5.2 Answers

1. For f(x) = 3x+ 1 and g(x) = 4− x

� (f + g)(2) = 9 � (f − g)(−1) = −7 � (g − f)(1) = −1

� (fg)
(

1
2

)
= 35

4 �

(
f
g

)
(0) = 1

4 �

(
g
f

)
(−2) = −6

5

2. For f(x) = x2 and g(x) = −2x+ 1

� (f + g)(2) = 1 � (f − g)(−1) = −2 � (g − f)(1) = −2

� (fg)
(

1
2

)
= 0 �

(
f
g

)
(0) = 0 �

(
g
f

)
(−2) = 5

4

3. For f(x) = x2 − x and g(x) = 12− x2

� (f + g)(2) = 10 � (f − g)(−1) = −9 � (g − f)(1) = 11

� (fg)
(

1
2

)
= −47

16 �

(
f
g

)
(0) = 0 �

(
g
f

)
(−2) = 4

3

4. For f(x) = 2x3 and g(x) = −x2 − 2x− 3

� (f + g)(2) = 5 � (f − g)(−1) = 0 � (g − f)(1) = −8

� (fg)
(

1
2

)
= −17

16 �

(
f
g

)
(0) = 0 �

(
g
f

)
(−2) = 3

16

5. For f(x) =
√
x+ 3 and g(x) = 2x− 1

� (f + g)(2) = 3 +
√

5 � (f − g)(−1) = 3 +
√

2 � (g − f)(1) = −1

� (fg)
(

1
2

)
= 0 �

(
f
g

)
(0) = −

√
3 �

(
g
f

)
(−2) = −5

6. For f(x) =
√

4− x and g(x) =
√
x+ 2

� (f + g)(2) = 2 +
√

2 � (f − g)(−1) = −1 +
√

5 � (g − f)(1) = 0

� (fg)
(

1
2

)
=
√

35
2 �

(
f
g

)
(0) =

√
2 �

(
g
f

)
(−2) = 0
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7. For f(x) = 2x and g(x) = 1
2x+1

� (f + g)(2) = 21
5 � (f − g)(−1) = −1 � (g − f)(1) = −5

3

� (fg)
(

1
2

)
= 1

2 �

(
f
g

)
(0) = 0 �

(
g
f

)
(−2) = 1

12

8. For f(x) = x2 and g(x) = 3
2x−3

� (f + g)(2) = 7 � (f − g)(−1) = 8
5 � (g − f)(1) = −4

� (fg)
(

1
2

)
= −3

8 �

(
f
g

)
(0) = 0 �

(
g
f

)
(−2) = − 3

28

9. For f(x) = x2 and g(x) = 1
x2

� (f + g)(2) = 17
4 � (f − g)(−1) = 0 � (g − f)(1) = 0

� (fg)
(

1
2

)
= 1 �

(
f
g

)
(0) is undefined. �

(
g
f

)
(−2) = 1

16

10. For f(x) = x2 + 1 and g(x) = 1
x2+1

� (f + g)(2) = 26
5 � (f − g)(−1) = 3

2 � (g − f)(1) = −3
2

� (fg)
(

1
2

)
= 1 �

(
f
g

)
(0) = 1 �

(
g
f

)
(−2) = 1

25

11. For f(x) = 2x+ 1 and g(x) = x− 2

� (f + g)(x) = 3x− 1
Domain: (−∞,∞)

� (f − g)(x) = x+ 3
Domain: (−∞,∞)

� (fg)(x) = 2x2 − 3x− 2
Domain: (−∞,∞)

�

(
f
g

)
(x) = 2x+1

x−2

Domain: (−∞, 2) ∪ (2,∞)

12. For f(x) = 1− 4x and g(x) = 2x− 1

� (f + g)(x) = −2x
Domain: (−∞,∞)

� (f − g)(x) = 2− 6x
Domain: (−∞,∞)

� (fg)(x) = −8x2 + 6x− 1
Domain: (−∞,∞)

�

(
f
g

)
(x) = 1−4x

2x−1

Domain:
(
−∞, 1

2

)
∪
(

1
2 ,∞

)
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13. For f(x) = x2 and g(x) = 3x− 1

� (f + g)(x) = x2 + 3x− 1
Domain: (−∞,∞)

� (f − g)(x) = x2 − 3x+ 1
Domain: (−∞,∞)

� (fg)(x) = 3x3 − x2

Domain: (−∞,∞)
�

(
f
g

)
(x) = x2

3x−1

Domain:
(
−∞, 1

3

)
∪
(

1
3 ,∞

)
14. For f(x) = x2 − x and g(x) = 7x

� (f + g)(x) = x2 + 6x
Domain: (−∞,∞)

� (f − g)(x) = x2 − 8x
Domain: (−∞,∞)

� (fg)(x) = 7x3 − 7x2

Domain: (−∞,∞)
�

(
f
g

)
(x) = x−1

7

Domain: (−∞, 0) ∪ (0,∞)

15. For f(x) = x2 − 4 and g(x) = 3x+ 6

� (f + g)(x) = x2 + 3x+ 2
Domain: (−∞,∞)

� (f − g)(x) = x2 − 3x− 10
Domain: (−∞,∞)

� (fg)(x) = 3x3 + 6x2 − 12x− 24
Domain: (−∞,∞)

�

(
f
g

)
(x) = x−2

3

Domain: (−∞,−2) ∪ (−2,∞)

16. For f(x) = −x2 + x+ 6 and g(x) = x2 − 9

� (f + g)(x) = x− 3
Domain: (−∞,∞)

� (f − g)(x) = −2x2 + x+ 15
Domain: (−∞,∞)

� (fg)(x) = −x4 + x3 + 15x2 − 9x− 54
Domain: (−∞,∞)

�

(
f
g

)
(x) = −x+2

x+3

Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)

17. For f(x) = x
2 and g(x) = 2

x

� (f + g)(x) = x2+4
2x

Domain: (−∞, 0) ∪ (0,∞)
� (f − g)(x) = x2−4

2x
Domain: (−∞, 0) ∪ (0,∞)

� (fg)(x) = 1
Domain: (−∞, 0) ∪ (0,∞)

�

(
f
g

)
(x) = x2

4

Domain: (−∞, 0) ∪ (0,∞)
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18. For f(x) = x− 1 and g(x) = 1
x−1

� (f + g)(x) = x2−2x+2
x−1

Domain: (−∞, 1) ∪ (1,∞)
� (f − g)(x) = x2−2x

x−1
Domain: (−∞, 1) ∪ (1,∞)

� (fg)(x) = 1
Domain: (−∞, 1) ∪ (1,∞)

�

(
f
g

)
(x) = x2 − 2x+ 1

Domain: (−∞, 1) ∪ (1,∞)

19. For f(x) = x and g(x) =
√
x+ 1

� (f + g)(x) = x+
√
x+ 1

Domain: [−1,∞)
� (f − g)(x) = x−

√
x+ 1

Domain: [−1,∞)

� (fg)(x) = x
√
x+ 1

Domain: [−1,∞)
�

(
f
g

)
(x) = x√

x+1

Domain: (−1,∞)

20. For f(x) =
√
x− 5 and g(x) = f(x) =

√
x− 5

� (f + g)(x) = 2
√
x− 5

Domain: [5,∞)
� (f − g)(x) = 0

Domain: [5,∞)

� (fg)(x) = x− 5
Domain: [5,∞)

�

(
f
g

)
(x) = 1

Domain: (5,∞)

21. 2 22. −3

23. 0 24. 6x+ 3h− 1

25. −2x− h+ 2 26. 8x+ 4h

27. −2x− h+ 1 28. 3x2 + 3xh+ h2

29. m 30. 2ax+ ah+ b

31.
−2

x(x+ h)
32.

3

(1− x− h)(1− x)

33.
−(2x+ h)

x2(x+ h)2
34.

−2

(x+ 5)(x+ h+ 5)

35.
−4

(4x− 3)(4x+ 4h− 3)
36.

3

(x+ 1)(x+ h+ 1)
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37.
−9

(x− 9)(x+ h− 9) 38.
2x2 + 2xh+ 2x+ h

(2x+ 1)(2x+ 2h+ 1)

39.
1√

x+ h− 9 +
√
x− 9

40.
2√

2x+ 2h+ 1 +
√

2x+ 1

41.
−4√

−4x− 4h+ 5 +
√
−4x+ 5

42.
−1√

4− x− h+
√

4− x

43.
a√

ax+ ah+ b+
√
ax+ b 44.

3x2 + 3xh+ h2

(x+ h)3/2 + x3/2

45.
1

(x+ h)2/3 + (x+ h)1/3x1/3 + x2/3

46. � C(0) = 26, so the fixed costs are $26.

� C(10) = 4.6, so when 10 shirts are produced, the cost per shirt is $4.60.

� p(5) = 20, so to sell 5 shirts, set the price at $20 per shirt.

� R(x) = −2x2 + 30x, 0 ≤ x ≤ 15

� P (x) = −2x2 + 28x− 26, 0 ≤ x ≤ 15

� P (x) = 0 when x = 1 and x = 13. These are the ‘break even’ points, so selling 1 shirt
or 13 shirts will guarantee the revenue earned exactly recoups the cost of production.

47. � C(0) = 100, so the fixed costs are $100.

� C(10) = 20, so when 10 bottles of tonic are produced, the cost per bottle is $20.

� p(5) = 30, so to sell 5 bottles of tonic, set the price at $30 per bottle.

� R(x) = −x2 + 35x, 0 ≤ x ≤ 35

� P (x) = −x2 + 25x− 100, 0 ≤ x ≤ 35

� P (x) = 0 when x = 5 and x = 20. These are the ‘break even’ points, so selling 5 bottles
of tonic or 20 bottles of tonic will guarantee the revenue earned exactly recoups the cost
of production.

48. � C(0) = 240, so the fixed costs are 240¢ or $2.40.

� C(10) = 42, so when 10 cups of lemonade are made, the cost per cup is 42¢.

� p(5) = 75, so to sell 5 cups of lemonade, set the price at 75¢ per cup.

� R(x) = −3x2 + 90x, 0 ≤ x ≤ 30

� P (x) = −3x2 + 72x− 240, 0 ≤ x ≤ 30

� P (x) = 0 when x = 4 and x = 20. These are the ‘break even’ points, so selling 4 cups of
lemonade or 20 cups of lemonade will guarantee the revenue earned exactly recoups the
cost of production.
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49. � C(0) = 36, so the daily fixed costs are $36.

� C(10) = 6.6, so when 10 pies are made, the cost per pie is $6.60.

� p(5) = 9.5, so to sell 5 pies a day, set the price at $9.50 per pie.

� R(x) = −0.5x2 + 12x, 0 ≤ x ≤ 24

� P (x) = −0.5x2 + 9x− 36, 0 ≤ x ≤ 24

� P (x) = 0 when x = 6 and x = 12. These are the ‘break even’ points, so selling 6 pies or
12 pies a day will guarantee the revenue earned exactly recoups the cost of production.

50. � C(0) = 1000, so the monthly fixed costs are 1000 hundred dollars, or $100,000.

� C(10) = 120, so when 10 scooters are made, the cost per scooter is 120 hundred dollars,
or $12,000.

� p(5) = 130, so to sell 5 scooters a month, set the price at 130 hundred dollars, or $13,000
per scooter.

� R(x) = −2x2 + 140x, 0 ≤ x ≤ 70

� P (x) = −2x2 + 120x− 1000, 0 ≤ x ≤ 70

� P (x) = 0 when x = 10 and x = 50. These are the ‘break even’ points, so selling 10
scooters or 50 scooters a month will guarantee the revenue earned exactly recoups the
cost of production.

51. (f + g)(−3) = 2 52. (f − g)(2) = 3 53. (fg)(−1) = 0

54. (g + f)(1) = 0 55. (g − f)(3) = 3 56. (gf)(−3) = −8

57.
(
f
g

)
(−2) does not exist 58.

(
f
g

)
(−1) = 0 59.

(
f
g

)
(2) = 4

60.
(
g
f

)
(−1) does not exist 61.

(
g
f

)
(3) = −2 62.

(
g
f

)
(−3) = −1

2
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1.6 Graphs of Functions

In Section 1.3 we defined a function as a special type of relation; one in which each x-coordinate
was matched with only one y-coordinate. We spent most of our time in that section looking at
functions graphically because they were, after all, just sets of points in the plane. Then in Section
1.4 we described a function as a process and defined the notation necessary to work with functions
algebraically. So now it’s time to look at functions graphically again, only this time we’ll do so with
the notation defined in Section 1.4. We start with what should not be a surprising connection.

The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(x). That is, the
point (x, y) is on the graph of f if and only if y = f(x).

Example 1.6.1. Graph f(x) = x2 − x− 6.

Solution. To graph f , we graph the equation y = f(x). To this end, we use the techniques outlined
in Section 1.2.1. Specifically, we check for intercepts, test for symmetry, and plot additional points
as needed. To find the x-intercepts, we set y = 0. Since y = f(x), this means f(x) = 0.

f(x) = x2 − x− 6

0 = x2 − x− 6

0 = (x− 3)(x+ 2) factor

x− 3 = 0 or x+ 2 = 0

x = −2, 3

So we get (−2, 0) and (3, 0) as x-intercepts. To find the y-intercept, we set x = 0. Using function
notation, this is the same as finding f(0) and f(0) = 02 − 0 − 6 = −6. Thus the y-intercept is
(0,−6). As far as symmetry is concerned, we can tell from the intercepts that the graph possesses
none of the three symmetries discussed thus far. (You should verify this.) We can make a table
analogous to the ones we made in Section 1.2.1, plot the points and connect the dots in a somewhat
pleasing fashion to get the graph below on the right.

x f(x) (x, f(x))

−3 6 (−3, 6)

−2 0 (−2, 0)

−1 −4 (−1,−4)

0 −6 (0,−6)

1 −6 (1,−6)

2 −4 (2,−4)

3 0 (3, 0)

4 6 (4, 6)

x

y

−3−2−1 1 2 3 4

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7
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Graphing piecewise-defined functions is a bit more of a challenge.

Example 1.6.2. Graph: f(x) =

{
4− x2 if x < 1

x− 3, if x ≥ 1

Solution. We proceed as before – finding intercepts, testing for symmetry and then plotting
additional points as needed. To find the x-intercepts, as before, we set f(x) = 0. The twist is that
we have two formulas for f(x). For x < 1, we use the formula f(x) = 4 − x2. Setting f(x) = 0
gives 0 = 4 − x2, so that x = ±2. However, of these two answers, only x = −2 fits in the domain
x < 1 for this piece. This means the only x-intercept for the x < 1 region of the x-axis is (−2, 0).
For x ≥ 1, f(x) = x − 3. Setting f(x) = 0 gives 0 = x − 3, or x = 3. Since x = 3 satisfies the
inequality x ≥ 1, we get (3, 0) as another x-intercept. Next, we seek the y-intercept. Notice that
x = 0 falls in the domain x < 1. Thus f(0) = 4 − 02 = 4 yields the y-intercept (0, 4). As far
as symmetry is concerned, you can check that the equation y = 4 − x2 is symmetric about the
y-axis; unfortunately, this equation (and its symmetry) is valid only for x < 1. You can also verify
y = x−3 possesses none of the symmetries discussed in the Section 1.2.1. When plotting additional
points, it is important to keep in mind the restrictions on x for each piece of the function. The
sticking point for this function is x = 1, since this is where the equations change. When x = 1, we
use the formula f(x) = x− 3, so the point on the graph (1, f(1)) is (1,−2). However, for all values
less than 1, we use the formula f(x) = 4− x2. As we have discussed earlier in Section 1.2, there is
no real number which immediately precedes x = 1 on the number line. Thus for the values x = 0.9,
x = 0.99, x = 0.999, and so on, we find the corresponding y values using the formula f(x) = 4−x2.
Making a table as before, we see that as the x values sneak up to x = 1 in this fashion, the f(x)
values inch closer and closer1 to 4− 12 = 3. To indicate this graphically, we use an open circle at
the point (1, 3). Putting all of this information together and plotting additional points, we get

x f(x) (x, f(x))

0.9 3.19 (0.9, 3.19)

0.99 ≈ 3.02 (0.99, 3.02)

0.999 ≈ 3.002 (0.999, 3.002)

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

1We’ve just stepped into Calculus here!
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In the previous two examples, the x-coordinates of the x-intercepts of the graph of y = f(x) were
found by solving f(x) = 0. For this reason, they are called the zeros of f .

Definition 1.9. The zeros of a function f are the solutions to the equation f(x) = 0. In other
words, x is a zero of f if and only if (x, 0) is an x-intercept of the graph of y = f(x).

Of the three symmetries discussed in Section 1.2.1, only two are of significance to functions: sym-
metry about the y-axis and symmetry about the origin.2 Recall that we can test whether the
graph of an equation is symmetric about the y-axis by replacing x with −x and checking to see
if an equivalent equation results. If we are graphing the equation y = f(x), substituting −x for
x results in the equation y = f(−x). In order for this equation to be equivalent to the original
equation y = f(x) we need f(−x) = f(x). In a similar fashion, we recall that to test an equation’s
graph for symmetry about the origin, we replace x and y with −x and −y, respectively. Doing
this substitution in the equation y = f(x) results in −y = f(−x). Solving the latter equation for
y gives y = −f(−x). In order for this equation to be equivalent to the original equation y = f(x)
we need −f(−x) = f(x), or, equivalently, f(−x) = −f(x). These results are summarized below.

Testing the Graph of a Function for Symmetry

The graph of a function f is symmetric

� about the y-axis if and only if f(−x) = f(x) for all x in the domain of f .

� about the origin if and only if f(−x) = −f(x) for all x in the domain of f .

For reasons which won’t become clear until we study polynomials, we call a function even if its
graph is symmetric about the y-axis or odd if its graph is symmetric about the origin. Apart from
a very specialized family of functions which are both even and odd,3 functions fall into one of three
distinct categories: even, odd, or neither even nor odd.

Example 1.6.3. Determine analytically if the following functions are even, odd, or neither even
nor odd. Verify your result with a graphing calculator.

1. f(x) =
5

2− x2
2. g(x) =

5x

2− x2

3. h(x) =
5x

2− x3
4. i(x) =

5x

2x− x3

5. j(x) = x2 − x

100
− 1

6. p(x) =

{
x+ 3 if x < 0

−x+ 3, if x ≥ 0

Solution. The first step in all of these problems is to replace x with −x and simplify.

2Why are we so dismissive about symmetry about the x-axis for graphs of functions?
3Any ideas?
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1.

f(x) =
5

2− x2

f(−x) =
5

2− (−x)2

f(−x) =
5

2− x2

f(−x) = f(x)

Hence, f is even. The graphing calculator furnishes the following.

This suggests4 that the graph of f is symmetric about the y-axis, as expected.

2.

g(x) =
5x

2− x2

g(−x) =
5(−x)

2− (−x)2

g(−x) =
−5x

2− x2

It doesn’t appear that g(−x) is equivalent to g(x). To prove this, we check with an x value.
After some trial and error, we see that g(1) = 5 whereas g(−1) = −5. This proves that g is
not even, but it doesn’t rule out the possibility that g is odd. (Why not?) To check if g is
odd, we compare g(−x) with −g(x)

−g(x) = − 5x

2− x2

=
−5x

2− x2

−g(x) = g(−x)

Hence, g is odd. Graphically,

4‘Suggests’ is about the extent of what it can do.
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The calculator indicates the graph of g is symmetric about the origin, as expected.

3.

h(x) =
5x

2− x3

h(−x) =
5(−x)

2− (−x)3

h(−x) =
−5x

2 + x3

Once again, h(−x) doesn’t appear to be equivalent to h(x). We check with an x value, for
example, h(1) = 5 but h(−1) = −5

3 . This proves that h is not even and it also shows h is not
odd. (Why?) Graphically,

The graph of h appears to be neither symmetric about the y-axis nor the origin.

4.

i(x) =
5x

2x− x3

i(−x) =
5(−x)

2(−x)− (−x)3

i(−x) =
−5x

−2x+ x3

The expression i(−x) doesn’t appear to be equivalent to i(x). However, after checking some
x values, for example x = 1 yields i(1) = 5 and i(−1) = 5, it appears that i(−x) does, in fact,
equal i(x). However, while this suggests i is even, it doesn’t prove it. (It does, however, prove
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i is not odd.) To prove i(−x) = i(x), we need to manipulate our expressions for i(x) and
i(−x) and show that they are equivalent. A clue as to how to proceed is in the numerators:
in the formula for i(x), the numerator is 5x and in i(−x) the numerator is −5x. To re-write
i(x) with a numerator of −5x, we need to multiply its numerator by −1. To keep the value
of the fraction the same, we need to multiply the denominator by −1 as well. Thus

i(x) =
5x

2x− x3

=
(−1)5x

(−1) (2x− x3)

=
−5x

−2x+ x3

Hence, i(x) = i(−x), so i is even. The calculator supports our conclusion.

5.

j(x) = x2 − x

100
− 1

j(−x) = (−x)2 − −x
100
− 1

j(−x) = x2 +
x

100
− 1

The expression for j(−x) doesn’t seem to be equivalent to j(x), so we check using x = 1 to
get j(1) = − 1

100 and j(−1) = 1
100 . This rules out j being even. However, it doesn’t rule out

j being odd. Examining −j(x) gives

j(x) = x2 − x

100
− 1

−j(x) = −
(
x2 − x

100
− 1
)

−j(x) = −x2 +
x

100
+ 1

The expression −j(x) doesn’t seem to match j(−x) either. Testing x = 2 gives j(2) = 149
50

and j(−2) = 151
50 , so j is not odd, either. The calculator gives:
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The calculator suggests that the graph of j is symmetric about the y-axis which would imply
that j is even. However, we have proven that is not the case.

6. Testing the graph of y = p(x) for symmetry is complicated by the fact p(x) is a piecewise-
defined function. As always, we handle this by checking the condition for symmetry by
checking it on each piece of the domain. We first consider the case when x < 0 and set about
finding the correct expression for p(−x). Even though p(x) = x+3 for x < 0, p(−x) 6= −x+3
here. The reason for this is that since x < 0, −x > 0 which means to find p(−x), we need to
use the other formula for p(x), namely p(x) = −x+3. Hence, for x < 0, p(−x) = −(−x)+3 =
x + 3 = p(x). For x ≥ 0, p(x) = −x + 3 and we have two cases. If x > 0, then −x < 0 so
p(−x) = (−x) + 3 = −x + 3 = p(x). If x = 0, then p(0) = 3 = p(−0). Hence, in all cases,
p(−x) = p(x), so p is even. Since p(0) = 3 but p(−0) = p(0) = 3 6= −3, we also have p is not
odd. While graphing y = p(x) is not onerous to do by hand, it is instructive to see how to
enter this into our calculator. By using some of the logical commands,5 we have:

The calculator bears shows that the graph appears to be symmetric about the y-axis.

There are two lessons to be learned from the last example. The first is that sampling function
values at particular x values is not enough to prove that a function is even or odd − despite the
fact that j(−1) = −j(1), j turned out not to be odd. Secondly, while the calculator may suggest
mathematical truths, it is the Algebra which proves mathematical truths.6

5Consult your owner’s manual, instructor, or favorite video site!
6Or, in other words, don’t rely too heavily on the machine!
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1.6.1 General Function Behavior

The last topic we wish to address in this section is general function behavior. As you shall see in
the next several chapters, each family of functions has its own unique attributes and we will study
them all in great detail. The purpose of this section’s discussion, then, is to lay the foundation for
that further study by investigating aspects of function behavior which apply to all functions. To
start, we will examine the concepts of increasing, decreasing and constant. Before defining the
concepts algebraically, it is instructive to first look at them graphically. Consider the graph of the
function f below.

(−4,−3)

(−2, 4.5)

(3,−8)

(6, 5.5)

(4,−6)

(5,−6)

x

y

−4 −3 −2 −1 1 2 3 4 5 6 7

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

1

2

3

4

5

6

7

The graph of y = f(x)

Reading from left to right, the graph ‘starts’ at the point (−4,−3) and ‘ends’ at the point (6, 5.5). If
we imagine walking from left to right on the graph, between (−4,−3) and (−2, 4.5), we are walking
‘uphill’; then between (−2, 4.5) and (3,−8), we are walking ‘downhill’; and between (3,−8) and
(4,−6), we are walking ‘uphill’ once more. From (4,−6) to (5,−6), we ‘level off’, and then resume
walking ‘uphill’ from (5,−6) to (6, 5.5). In other words, for the x values between −4 and −2
(inclusive), the y-coordinates on the graph are getting larger, or increasing, as we move from left
to right. Since y = f(x), the y values on the graph are the function values, and we say that the
function f is increasing on the interval [−4,−2]. Analogously, we say that f is decreasing on the
interval [−2, 3] increasing once more on the interval [3, 4], constant on [4, 5], and finally increasing
once again on [5, 6]. It is extremely important to notice that the behavior (increasing, decreasing
or constant) occurs on an interval on the x-axis. When we say that the function f is increasing
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on [−4,−2] we do not mention the actual y values that f attains along the way. Thus, we report
where the behavior occurs, not to what extent the behavior occurs.7 Also notice that we do not
say that a function is increasing, decreasing or constant at a single x value. In fact, we would run
into serious trouble in our previous example if we tried to do so because x = −2 is contained in an
interval on which f was increasing and one on which it is decreasing. (There’s more on this issue
– and many others – in the Exercises.)

We’re now ready for the more formal algebraic definitions of what it means for a function to be
increasing, decreasing or constant.

Definition 1.10. Suppose f is a function defined on an interval I. We say f is:

� increasing on I if and only if f(a) < f(b) for all real numbers a, b in I with a < b.

� decreasing on I if and only if f(a) > f(b) for all real numbers a, b in I with a < b.

� constant on I if and only if f(a) = f(b) for all real numbers a, b in I.

It is worth taking some time to see that the algebraic descriptions of increasing, decreasing and
constant as stated in Definition 1.10 agree with our graphical descriptions given earlier. You should
look back through the examples and exercise sets in previous sections where graphs were given to
see if you can determine the intervals on which the functions are increasing, decreasing or constant.
Can you find an example of a function for which none of the concepts in Definition 1.10 apply?

Now let’s turn our attention to a few of the points on the graph. Clearly the point (−2, 4.5) does
not have the largest y value of all of the points on the graph of f − indeed that honor goes to
(6, 5.5) − but (−2, 4.5) should get some sort of consolation prize for being ‘the top of the hill’
between x = −4 and x = 3. We say that the function f has a local maximum8 at the point
(−2, 4.5), because the y-coordinate 4.5 is the largest y-value (hence, function value) on the curve
‘near’9 x = −2. Similarly, we say that the function f has a local minimum10 at the point (3,−8),
since the y-coordinate −8 is the smallest function value near x = 3. Although it is tempting to
say that local extrema11 occur when the function changes from increasing to decreasing or vice
versa, it is not a precise enough way to define the concepts for the needs of Calculus. At the risk of
being pedantic, we will present the traditional definitions and thoroughly vet the pathologies they
induce in the Exercises. We have one last observation to make before we proceed to the algebraic
definitions and look at a fairly tame, yet helpful, example.

If we look at the entire graph, we see that the largest y value (the largest function value) is 5.5 at
x = 6. In this case, we say the maximum12 of f is 5.5; similarly, the minimum13 of f is −8.

7The notions of how quickly or how slowly a function increases or decreases are explored in Calculus.
8Also called ‘relative maximum’.
9We will make this more precise in a moment.

10Also called a ‘relative minimum’.
11‘Maxima’ is the plural of ‘maximum’ and ‘mimima’ is the plural of ‘minimum’. ‘Extrema’ is the plural of

‘extremum’ which combines maximum and minimum.
12Sometimes called the ‘absolute’ or ‘global’ maximum.
13Again, ‘absolute’ or ‘global’ minimum can be used.
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We formalize these concepts in the following definitions.

Definition 1.11. Suppose f is a function with f(a) = b.

� We say f has a local maximum at the point (a, b) if and only if there is an open interval
I containing a for which f(a) ≥ f(x) for all x in I. The value f(a) = b is called ‘a local
maximum value of f ’ in this case.

� We say f has a local minimum at the point (a, b) if and only if there is an open interval
I containing a for which f(a) ≤ f(x) for all x in I. The value f(a) = b is called ‘a local
minimum value of f ’ in this case.

� The value b is called the maximum of f if b ≥ f(x) for all x in the domain of f .

� The value b is called the minimum of f if b ≤ f(x) for all x in the domain of f .

It’s important to note that not every function will have all of these features. Indeed, it is possible
to have a function with no local or absolute extrema at all! (Any ideas of what such a function’s
graph would have to look like?) We shall see examples of functions in the Exercises which have one
or two, but not all, of these features, some that have instances of each type of extremum and some
functions that seem to defy common sense. In all cases, though, we shall adhere to the algebraic
definitions above as we explore the wonderful diversity of graphs that functions provide us.

Here is the ‘tame’ example which was promised earlier. It summarizes all of the concepts presented
in this section as well as some from previous sections so you should spend some time thinking
deeply about it before proceeding to the Exercises.

Example 1.6.4. Given the graph of y = f(x) below, answer all of the following questions.

(−2, 0) (2, 0)

(4,−3)(−4,−3)

(0, 3)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4
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1. Find the domain of f . 2. Find the range of f .

3. List the x-intercepts, if any exist. 4. List the y-intercepts, if any exist.

5. Find the zeros of f . 6. Solve f(x) < 0.

7. Determine f(2). 8. Solve f(x) = −3.

9. Find the number of solutions to f(x) = 1. 10. Does f appear to be even, odd, or neither?

11. List the intervals on which f is increasing. 12. List the intervals on which f is decreasing.

13. List the local maximums, if any exist. 14. List the local minimums, if any exist.

15. Find the maximum, if it exists. 16. Find the minimum, if it exists.

Solution.

1. To find the domain of f , we proceed as in Section 1.3. By projecting the graph to the x-axis,
we see that the portion of the x-axis which corresponds to a point on the graph is everything
from −4 to 4, inclusive. Hence, the domain is [−4, 4].

2. To find the range, we project the graph to the y-axis. We see that the y values from −3 to
3, inclusive, constitute the range of f . Hence, our answer is [−3, 3].

3. The x-intercepts are the points on the graph with y-coordinate 0, namely (−2, 0) and (2, 0).

4. The y-intercept is the point on the graph with x-coordinate 0, namely (0, 3).

5. The zeros of f are the x-coordinates of the x-intercepts of the graph of y = f(x) which are
x = −2, 2.

6. To solve f(x) < 0, we look for the x values of the points on the graph where the y-coordinate is
less than 0. Graphically, we are looking for where the graph is below the x-axis. This happens
for the x values from −4 to −2 and again from 2 to 4. So our answer is [−4,−2) ∪ (2, 4].

7. Since the graph of f is the graph of the equation y = f(x), f(2) is the y-coordinate of the
point which corresponds to x = 2. Since the point (2, 0) is on the graph, we have f(2) = 0.

8. To solve f(x) = −3, we look where y = f(x) = −3. We find two points with a y-coordinate
of −3, namely (−4,−3) and (4,−3). Hence, the solutions to f(x) = −3 are x = ±4.

9. As in the previous problem, to solve f(x) = 1, we look for points on the graph where the
y-coordinate is 1. Even though these points aren’t specified, we see that the curve has two
points with a y value of 1, as seen in the graph below. That means there are two solutions to
f(x) = 1.
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x

y

−4 −3 −2 −1 1 2 3 4
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10. The graph appears to be symmetric about the y-axis. This suggests14 that f is even.

11. As we move from left to right, the graph rises from (−4,−3) to (0, 3). This means f is
increasing on the interval [−4, 0]. (Remember, the answer here is an interval on the x-axis.)

12. As we move from left to right, the graph falls from (0, 3) to (4,−3). This means f is decreasing
on the interval [0, 4]. (Remember, the answer here is an interval on the x-axis.)

13. The function has its only local maximum at (0, 3) so f(0) = 3 is the local minimum value.

14. There are no local minimums. Why don’t (−4,−3) and (4,−3) count? Let’s consider the
point (−4,−3) for a moment. Recall that, in the definition of local minimum, there needs to
be an open interval I which contains x = −4 such that f(−4) < f(x) for all x in I different
from −4. But if we put an open interval around x = −4 a portion of that interval will lie
outside of the domain of f . Because we are unable to fulfill the requirements of the definition
for a local minimum, we cannot claim that f has one at (−4,−3). The point (4,−3) fails for
the same reason − no open interval around x = 4 stays within the domain of f .

15. The maximum value of f is the largest y-coordinate which is 3.

16. The minimum value of f is the smallest y-coordinate which is −3.

With few exceptions, we will not develop techniques in College Algebra which allow us to determine
the intervals on which a function is increasing, decreasing or constant or to find the local maximums
and local minimums analytically; this is the business of Calculus.15 When we have need to find such
beasts, we will resort to the calculator. Most graphing calculators have ‘Minimum’ and ‘Maximum’
features which can be used to approximate these values, as we now demonstrate.

14but does not prove
15Although, truth be told, there is only one step of Calculus involved, followed by several pages of algebra.
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Example 1.6.5. Let f(x) =
15x

x2 + 3
. Use a graphing calculator to approximate the intervals on

which f is increasing and those on which it is decreasing. Approximate all extrema.

Solution. Entering this function into the calculator gives

Using the Minimum and Maximum features, we get

To two decimal places, f appears to have its only local minimum at (−1.73,−4.33) and its only
local maximum at (1.73, 4.33). Given the symmetry about the origin suggested by the graph, the
relation between these points shouldn’t be too surprising. The function appears to be increasing on
[−1.73, 1.73] and decreasing on (−∞,−1.73]∪ [1.73,∞). This makes −4.33 the (absolute) minimum
and 4.33 the (absolute) maximum.

Example 1.6.6. Find the points on the graph of y = (x − 3)2 which are closest to the origin.
Round your answers to two decimal places.

Solution. Suppose a point (x, y) is on the graph of y = (x− 3)2. Its distance to the origin (0, 0)
is given by

d =
√

(x− 0)2 + (y − 0)2

=
√
x2 + y2

=

√
x2 + [(x− 3)2]2 Since y = (x− 3)2

=
√
x2 + (x− 3)4

Given a value for x, the formula d =
√
x2 + (x− 3)4 is the distance from (0, 0) to the point (x, y)

on the curve y = (x − 3)2. What we have defined, then, is a function d(x) which we wish to
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minimize over all values of x. To accomplish this task analytically would require Calculus so as
we’ve mentioned before, we can use a graphing calculator to find an approximate solution. Using
the calculator, we enter the function d(x) as shown below and graph.

Using the Minimum feature, we see above on the right that the (absolute) minimum occurs near
x = 2. Rounding to two decimal places, we get that the minimum distance occurs when x = 2.00.
To find the y value on the parabola associated with x = 2.00, we substitute 2.00 into the equation
to get y = (x − 3)2 = (2.00 − 3)2 = 1.00. So, our final answer is (2.00, 1.00).16 (What does the y
value listed on the calculator screen mean in this problem?)

16It seems silly to list a final answer as (2.00, 1.00). Indeed, Calculus confirms that the exact answer to this problem
is, in fact, (2, 1). As you are well aware by now, the authors are overly pedantic, and as such, use the decimal places
to remind the reader that any result garnered from a calculator in this fashion is an approximation, and should be
treated as such.
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1.6.2 Exercises

In Exercises 1 - 12, sketch the graph of the given function. State the domain of the function,
identify any intercepts and test for symmetry.

1. f(x) = 2− x 2. f(x) =
x− 2

3
3. f(x) = x2 + 1

4. f(x) = 4− x2 5. f(x) = 2 6. f(x) = x3

7. f(x) = x(x− 1)(x+ 2) 8. f(x) =
√
x− 2 9. f(x) =

√
5− x

10. f(x) = 3− 2
√
x+ 2 11. f(x) = 3

√
x 12. f(x) =

1

x2 + 1

In Exercises 13 - 20, sketch the graph of the given piecewise-defined function.

13. f(x) =

{
4− x if x ≤ 3

2 if x > 3
14. f(x) =

{
x2 if x ≤ 0

2x if x > 0

15. f(x) =


−3 if x < 0

2x− 3 if 0 ≤ x ≤ 3

3 if x > 3

16. f(x) =


x2 − 4 if x ≤ −2

4− x2 if −2 < x < 2

x2 − 4 if x ≥ 2

17. f(x) =

{
−2x− 4 if x < 0

3x if x ≥ 0
18. f(x) =

{ √
x+ 4 if −4 ≤ x < 5√
x− 1 if x ≥ 5

19. f(x) =


x2 if x ≤ −2

3− x if −2 < x < 2

4 if x ≥ 2
20. f(x) =


1

x
if −6 < x < −1

x if −1 < x < 1
√
x if 1 < x < 9

In Exercises 21 - 41, determine analytically if the following functions are even, odd or neither.

21. f(x) = 7x 22. f(x) = 7x+ 2 23. f(x) = 7

24. f(x) = 3x2 − 4 25. f(x) = 4− x2 26. f(x) = x2 − x− 6

27. f(x) = 2x3 − x 28. f(x) = −x5 + 2x3 − x 29. f(x) = x6 − x4 + x2 + 9

30. f(x) = x3 + x2 + x+ 1 31. f(x) =
√

1− x 32. f(x) =
√

1− x2

33. f(x) = 0 34. f(x) = 3
√
x 35. f(x) =

3
√
x2
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36. f(x) =
3

x2
37. f(x) =

2x− 1

x+ 1
38. f(x) =

3x

x2 + 1

39. f(x) =
x2 − 3

x− 4x3
40. f(x) =

9√
4− x2 41. f(x) =

3
√
x3 + x

5x

In Exercises 42 - 57, use the graph of y = f(x) given below to answer the question.
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42. Find the domain of f . 43. Find the range of f .

44. Determine f(−2). 45. Solve f(x) = 4.

46. List the x-intercepts, if any exist. 47. List the y-intercepts, if any exist.

48. Find the zeros of f . 49. Solve f(x) ≥ 0.

50. Find the number of solutions to f(x) = 1. 51. Does f appear to be even, odd, or neither?

52. List the intervals where f is increasing. 53. List the intervals where f is decreasing.

54. List the local maximums, if any exist. 55. List the local minimums, if any exist.

56. Find the maximum, if it exists. 57. Find the minimum, if it exists.
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In Exercises 58 - 73, use the graph of y = f(x) given below to answer the question.
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58. Find the domain of f . 59. Find the range of f .

60. Determine f(2). 61. Solve f(x) = −5.

62. List the x-intercepts, if any exist. 63. List the y-intercepts, if any exist.

64. Find the zeros of f . 65. Solve f(x) ≤ 0.

66. Find the number of solutions to f(x) = 3. 67. Does f appear to be even, odd, or neither?

68. List the intervals where f is increasing. 69. List the intervals where f is decreasing.

70. List the local maximums, if any exist. 71. List the local minimums, if any exist.

72. Find the maximum, if it exists. 73. Find the minimum, if it exists.

In Exercises 74 - 77, use your graphing calculator to approximate the local and absolute extrema
of the given function. Approximate the intervals on which the function is increasing and those on
which it is decreasing. Round your answers to two decimal places.

74. f(x) = x4 − 3x3 − 24x2 + 28x+ 48 75. f(x) = x2/3(x− 4)

76. f(x) =
√

9− x2 77. f(x) = x
√

9− x2
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In Exercises 78 - 85, use the graphs of y = f(x) and y = g(x) below to find the function value.

x

y

1 2 3 4

1
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y = f(x)

x

y

1 2 3 4

1

2

3

4

y = g(x)

78. (f + g)(0) 79. (f + g)(1) 80. (f − g)(1) 81. (g − f)(2)

82. (fg)(2) 83. (fg)(1) 84.
(
f
g

)
(4) 85.

(
g
f

)
(2)

The graph below represents the height h of a Sasquatch (in feet) as a function of its age N in years.
Use it to answer the questions in Exercises 86 - 90.

N

y

15 30 45 60

2

4

6

8

y = h(N)

86. Find and interpret h(0).

87. How tall is the Sasquatch when she is 15 years old?

88. Solve h(N) = 6 and interpret.

89. List the interval over which h is constant and interpret your answer.

90. List the interval over which h is decreasing and interpret your answer.
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For Exercises 91 - 93, let f(x) = bxc be the greatest integer function as defined in Exercise 75 in
Section 1.4.

91. Graph y = f(x). Be careful to correctly describe the behavior of the graph near the integers.

92. Is f even, odd, or neither? Explain.

93. Discuss with your classmates which points on the graph are local minimums, local maximums
or both. Is f ever increasing? Decreasing? Constant?

In Exercises 94 - 95, use your graphing calculator to show that the given function does not have
any extrema, neither local nor absolute.

94. f(x) = x3 + x− 12 95. f(x) = −5x+ 2

96. In Exercise 71 in Section 1.4, we saw that the population of Sasquatch in Portage County

could be modeled by the function P (t) =
150t

t+ 15
, where t = 0 represents the year 1803. Use

your graphing calculator to analyze the general function behavior of P . Will there ever be a
time when 200 Sasquatch roam Portage County?

97. Suppose f and g are both even functions. What can be said about the functions f + g, f − g,
fg and f

g ? What if f and g are both odd? What if f is even but g is odd?

98. One of the most important aspects of the Cartesian Coordinate Plane is its ability to put
Algebra into geometric terms and Geometry into algebraic terms. We’ve spent most of this
chapter looking at this very phenomenon and now you should spend some time with your
classmates reviewing what we’ve done. What major results do we have that tie Algebra and
Geometry together? What concepts from Geometry have we not yet described algebraically?
What topics from Intermediate Algebra have we not yet discussed geometrically?

It’s now time to “thoroughly vet the pathologies induced” by the precise definitions of local maxi-
mum and local minimum. We’ll do this by providing you and your classmates a series of Exercises
to discuss. You will need to refer back to Definition 1.10 (Increasing, Decreasing and Constant)
and Definition 1.11 (Maximum and Minimum) during the discussion.

99. Consider the graph of the function f given below.

x

y

−2 −1 1 2

−3

−2

−1

1

2

3
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(a) Show that f has a local maximum but not a local minimum at the point (−1, 1).

(b) Show that f has a local minimum but not a local maximum at the point (1, 1).

(c) Show that f has a local maximum AND a local minimum at the point (0, 1).

(d) Show that f is constant on the interval [−1, 1] and thus has both a local maximum AND
a local minimum at every point (x, f(x)) where −1 < x < 1.

100. Using Example 1.6.4 as a guide, show that the function g whose graph is given below does
not have a local maximum at (−3, 5) nor does it have a local minimum at (3,−3). Find its
extrema, both local and absolute. What’s unique about the point (0,−4) on this graph? Also
find the intervals on which g is increasing and those on which g is decreasing.

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

5

101. We said earlier in the section that it is not good enough to say local extrema exist where a
function changes from increasing to decreasing or vice versa. As a previous exercise showed,
we could have local extrema when a function is constant so now we need to examine some
functions whose graphs do indeed change direction. Consider the functions graphed below.
Notice that all four of them change direction at an open circle on the graph. Examine each
for local extrema. What is the effect of placing the “dot” on the y-axis above or below the
open circle? What could you say if no function value were assigned to x = 0?

(a)

x

y

−2 −1 1 2
−1

1

2

3

4

Function I (b)

x

y

−2 −1 1 2
−1

1

2

3

4

Function II
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(c)

x

y

−2 −1 1 2
−1

1

2

3

4

Function III (d)

x

y

−2 −1 1 2

1

2

3

4

5

Function IV
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1.6.3 Answers

1. f(x) = 2− x
Domain: (−∞,∞)

x-intercept: (2, 0)

y-intercept: (0, 2)

No symmetry
x

y

−2 −1 1 2 3

−1

1

2

3

2. f(x) =
x− 2

3
Domain: (−∞,∞)

x-intercept: (2, 0)

y-intercept:
(
0,−2

3

)
No symmetry

x

y

−1 1 2 3 4

−1

1

3. f(x) = x2 + 1

Domain: (−∞,∞)

x-intercept: None

y-intercept: (0, 1)

Even

x

y

−2 −1 1 2

1

2

3

4

5

4. f(x) = 4− x2

Domain: (−∞,∞)

x-intercepts: (−2, 0), (2, 0)

y-intercept: (0, 4)

Even x

y

−2 −1 1 2

1

2

3

4

5. f(x) = 2

Domain: (−∞,∞)

x-intercept: None

y-intercept: (0, 2)

Even
x

y

−2 −1 1 2

1

2

3
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6. f(x) = x3

Domain: (−∞,∞)

x-intercept: (0, 0)

y-intercept: (0, 0)

Odd

x

y

−2−1 1 2

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

7. f(x) = x(x− 1)(x+ 2)

Domain: (−∞,∞)

x-intercepts: (−2, 0), (0, 0), (1, 0)

y-intercept: (0, 0)

No symmetry x

y

−2 −1 1 2

1

2

3

4

8. f(x) =
√
x− 2

Domain: [2,∞)

x-intercept: (2, 0)

y-intercept: None

No symmetry
x

y

1 2 3 4 5 6 7 8 9

1

2

3

9. f(x) =
√

5− x
Domain: (−∞, 5]

x-intercept: (5, 0)

y-intercept: (0,
√

5)

No symmetry
x

y

−4 −3 −2 −1 1 2 3 4 5

1

2

3
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10. f(x) = 3− 2
√
x+ 2

Domain: [−2,∞)

x-intercept:
(

1
4 , 0
)

y-intercept: (0, 3− 2
√

2)

No symmetry x

y

−2 −1 1 2

1

2

3

4

11. f(x) = 3
√
x

Domain: (−∞,∞)

x-intercept: (0, 0)

y-intercept: (0, 0)

Odd

x

y

−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−2

−1

1

2

12. f(x) =
1

x2 + 1

Domain: (−∞,∞)

x-intercept: None

y-intercept: (0, 1)

Even

x

y

−2 −1 1 2

1

13.
y

x

1

2

3

4

5

−1 1 2 3 4 5 6 7

14.
y

x

1

2

3

4

5

6

−3−2−1 1 2 3

15.
y

x

−2

−1

1

2

3

−4−3−2−1 1 2 3 4

16.

y

x

1

2

3

4

5

−2−1 1 2
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17.

x

y

−2 −1 1

−4

−3

−2

−1

1

2

3

18.

x

y

−4 −3 −2 −1 1 2 3 4 5 6 7

1

2

3

19.

x

y

−2 −1 1 2 3

1

2

3

4

5

6

20.

x

y

−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−1

1

2

3

21. odd 22. neither 23. even

24. even 25. even 26. neither

27. odd 28. odd 29. even

30. neither 31. neither 32. even

33. even and odd 34. odd 35. even

36. even 37. neither 38. odd

39. odd 40. even 41. even

42. [−5, 3] 43. [−5, 4] 44. f(−2) = 2

45. x = −3 46. (−4, 0), (−1, 0), (1, 0) 47. (0,−1)

48. −4, −1, 1 49. [−4,−1] ∪ [1, 3] 50. 4
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51. neither 52. [−5,−3], [0, 2] 53. [−3, 0], [2, 3]

54. f(−3) = 4, f(2) = 3 55. f(0) = −1

56. f(−3) = 4 57. f(−5) = −5

58. [−4, 4] 59. [−5, 5) 60. f(2) = 3

61. x = −2 62. (−4, 0), (0, 0), (4, 0) 63. (0, 0)

64. −4, 0, 4 65. [−4, 0] ∪ {4} 66. 3

67. neither 68. [−2, 2) 69. [−4,−2], (2, 4]

70. none 71. f(−2) = −5, f(2) = 3

72. none 73. f(−2) = −5

74. No absolute maximum
Absolute minimum f(4.55) ≈ −175.46
Local minimum at (−2.84,−91.32)
Local maximum at (0.54, 55.73)
Local minimum at (4.55,−175.46)
Increasing on [−2.84, 0.54], [4.55,∞)
Decreasing on (−∞,−2.84], [0.54, 4.55]

75. No absolute maximum
No absolute minimum
Local maximum at (0, 0)
Local minimum at (1.60,−3.28)
Increasing on (−∞, 0], [1.60,∞)
Decreasing on [0, 1.60]

76. Absolute maximum f(0) = 3
Absolute minimum f(±3) = 0
Local maximum at (0, 3)
No local minimum
Increasing on [−3, 0]
Decreasing on [0, 3]

77. Absolute maximum f(2.12) ≈ 4.50
Absolute minimum f(−2.12) ≈ −4.50
Local maximum (2.12, 4.50)
Local minimum (−2.12,−4.50)
Increasing on [−2.12, 2.12]
Decreasing on [−3,−2.12], [2.12, 3]

78. (f + g)(0) = 4 79. (f + g)(1) = 5 80. (f − g)(1) = −1 81. (g − f)(2) = 0

82. (fg)(2) = 9 83. (fg)(1) = 6 84.
(
f
g

)
(4) = 0 85.

(
g
f

)
(2) = 1

86. h(0) = 2, so the Sasquatch is 2 feet tall at birth.

87. h(15) = 6, so the Saquatch is 6 feet tall when she is 15 years old.

88. h(N) = 6 when N = 15 and N = 60. This means the Sasquatch is 6 feet tall when she is 15
and 60 years old.

89. h is constant on [30, 45]. This means the Sasquatch’s height is constant (at 8 feet) for these
years.
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90. h is decreasing on [45, 60]. This means the Sasquatch is getting shorter from the age of 45 to
the age of 60. (Sasquatchteoporosis, perhaps?)

91.

x

y ...

...

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

1

2

3

4

5

6

The graph of f(x) = bxc.

92. Note that f(1.1) = 1, but f(−1.1) = −2,
so f is neither even nor odd.
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1.7 Transformations

In this section, we study how the graphs of functions change, or transform, when certain specialized
modifications are made to their formulas. The transformations we will study fall into three broad
categories: shifts, reflections and scalings, and we will present them in that order. Suppose the
graph below is the complete graph of a function f .

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

The Fundamental Graphing Principle for Functions says that for a point (a, b) to be on the graph,
f(a) = b. In particular, we know f(0) = 1, f(2) = 3, f(4) = 3 and f(5) = 5. Suppose we wanted to
graph the function defined by the formula g(x) = f(x)+2. Let’s take a minute to remind ourselves
of what g is doing. We start with an input x to the function f and we obtain the output f(x).
The function g takes the output f(x) and adds 2 to it. In order to graph g, we need to graph the
points (x, g(x)). How are we to find the values for g(x) without a formula for f(x)? The answer is
that we don’t need a formula for f(x), we just need the values of f(x). The values of f(x) are the
y values on the graph of y = f(x). For example, using the points indicated on the graph of f , we
can make the following table.

x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x))

0 (0, 1) 1 3 (0, 3)

2 (2, 3) 3 5 (2, 5)

4 (4, 3) 3 5 (4, 5)

5 (5, 5) 5 7 (5, 7)

In general, if (a, b) is on the graph of y = f(x), then f(a) = b, so g(a) = f(a) + 2 = b+ 2. Hence,
(a, b+2) is on the graph of g. In other words, to obtain the graph of g, we add 2 to the y-coordinate
of each point on the graph of f . Geometrically, adding 2 to the y-coordinate of a point moves the
point 2 units above its previous location. Adding 2 to every y-coordinate on a graph en masse is
usually described as ‘shifting the graph up 2 units’. Notice that the graph retains the same basic
shape as before, it is just 2 units above its original location. In other words, we connect the four
points we moved in the same manner in which they were connected before. We have the results
side-by-side at the top of the next page.
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(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

6

7

y = f(x)

shift up 2 units
−−−−−−−−−−−−→

add 2 to each y-coordinate

(0, 3)

(2, 5)

(4, 5)

(5, 7)

x

y

1 2 3 4 5

1

2

4

5

6

7

y = g(x) = f(x) + 2

You’ll note that the domain of f and the domain of g are the same, namely [0, 5], but that the
range of f is [1, 5] while the range of g is [3, 7]. In general, shifting a function vertically like this
will leave the domain unchanged, but could very well affect the range. You can easily imagine what
would happen if we wanted to graph the function j(x) = f(x)− 2. Instead of adding 2 to each of
the y-coordinates on the graph of f , we’d be subtracting 2. Geometrically, we would be moving
the graph down 2 units. We leave it to the reader to verify that the domain of j is the same as f ,
but the range of j is [−1, 3]. What we have discussed is generalized in the following theorem.

Theorem 1.2. Vertical Shifts. Suppose f is a function and k is a positive number.

� To graph y = f(x) + k, shift the graph of y = f(x) up k units by adding k to the
y-coordinates of the points on the graph of f .

� To graph y = f(x) − k, shift the graph of y = f(x) down k units by subtracting k from
the y-coordinates of the points on the graph of f .

The key to understanding Theorem 1.2 and, indeed, all of the theorems in this section comes from
an understanding of the Fundamental Graphing Principle for Functions. If (a, b) is on the graph
of f , then f(a) = b. Substituting x = a into the equation y = f(x) + k gives y = f(a) + k = b+ k.
Hence, (a, b+k) is on the graph of y = f(x)+k, and we have the result. In the language of ‘inputs’
and ‘outputs’, Theorem 1.2 can be paraphrased as “Adding to, or subtracting from, the output of
a function causes the graph to shift up or down, respectively.” So what happens if we add to or
subtract from the input of the function?

Keeping with the graph of y = f(x) above, suppose we wanted to graph g(x) = f(x+ 2). In other
words, we are looking to see what happens when we add 2 to the input of the function.1 Let’s try
to generate a table of values of g based on those we know for f . We quickly find that we run into
some difficulties.

1We have spent a lot of time in this text showing you that f(x+ 2) and f(x) + 2 are, in general, wildly different
algebraic animals. We will see momentarily that their geometry is also dramatically different.
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x (x, f(x)) f(x) g(x) = f(x+ 2) (x, g(x))

0 (0, 1) 1 f(0 + 2) = f(2) = 3 (0, 3)

2 (2, 3) 3 f(2 + 2) = f(4) = 3 (2, 3)

4 (4, 3) 3 f(4 + 2) = f(6) =?

5 (5, 5) 5 f(5 + 2) = f(7) =?

When we substitute x = 4 into the formula g(x) = f(x+ 2), we are asked to find f(4 + 2) = f(6)
which doesn’t exist because the domain of f is only [0, 5]. The same thing happens when we
attempt to find g(5). What we need here is a new strategy. We know, for instance, f(0) = 1. To
determine the corresponding point on the graph of g, we need to figure out what value of x we must
substitute into g(x) = f(x + 2) so that the quantity x + 2, works out to be 0. Solving x + 2 = 0
gives x = −2, and g(−2) = f((−2) + 2) = f(0) = 1 so (−2, 1) is on the graph of g. To use the fact
f(2) = 3, we set x+ 2 = 2 to get x = 0. Substituting gives g(0) = f(0 + 2) = f(2) = 3. Continuing
in this fashion, we get

x x+ 2 g(x) = f(x+ 2) (x, g(x))

−2 0 g(−2) = f(0) = 1 (−2, 1)

0 2 g(0) = f(2) = 3 (0, 3)

2 4 g(2) = f(4) = 3 (2, 3)

3 5 g(3) = f(5) = 5 (3, 5)

In summary, the points (0, 1), (2, 3), (4, 3) and (5, 5) on the graph of y = f(x) give rise to the
points (−2, 1), (0, 3), (2, 3) and (3, 5) on the graph of y = g(x), respectively. In general, if (a, b) is
on the graph of y = f(x), then f(a) = b. Solving x + 2 = a gives x = a − 2 so that g(a − 2) =
f((a − 2) + 2) = f(a) = b. As such, (a − 2, b) is on the graph of y = g(x). The point (a − 2, b) is
exactly 2 units to the left of the point (a, b) so the graph of y = g(x) is obtained by shifting the
graph y = f(x) to the left 2 units, as pictured below.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

−2 −1 1 2 3 4 5

2

3

4

5

y = f(x)

shift left 2 units
−−−−−−−−−−−−→

subtract 2 from each x-coordinate

(−2, 1)

(0, 3)
(2, 3)

(3, 5)

x

y

−2 −1 1 2 3 4 5

1

2

4

5

y = g(x) = f(x+ 2)

Note that while the ranges of f and g are the same, the domain of g is [−2, 3] whereas the domain
of f is [0, 5]. In general, when we shift the graph horizontally, the range will remain the same, but
the domain could change. If we set out to graph j(x) = f(x − 2), we would find ourselves adding
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2 to all of the x values of the points on the graph of y = f(x) to effect a shift to the right 2 units.
Generalizing these notions produces the following result.

Theorem 1.3. Horizontal Shifts. Suppose f is a function and h is a positive number.

� To graph y = f(x+ h), shift the graph of y = f(x) left h units by subtracting h from the
x-coordinates of the points on the graph of f .

� To graph y = f(x − h), shift the graph of y = f(x) right h units by adding h to the
x-coordinates of the points on the graph of f .

In other words, Theorem 1.3 says that adding to or subtracting from the input to a function
amounts to shifting the graph left or right, respectively. Theorems 1.2 and 1.3 present a theme
which will run common throughout the section: changes to the outputs from a function affect the
y-coordinates of the graph, resulting in some kind of vertical change; changes to the inputs to a
function affect the x-coordinates of the graph, resulting in some kind of horizontal change.

Example 1.7.1.

1. Graph f(x) =
√
x. Plot at least three points.

2. Use your graph in 1 to graph g(x) =
√
x− 1.

3. Use your graph in 1 to graph j(x) =
√
x− 1.

4. Use your graph in 1 to graph m(x) =
√
x+ 3− 2.

Solution.

1. Owing to the square root, the domain of f is x ≥ 0, or [0,∞). We choose perfect squares to
build our table and graph below. From the graph we verify the domain of f is [0,∞) and the
range of f is also [0,∞).

x f(x) (x, f(x))

0 0 (0, 0)

1 1 (1, 1)

4 2 (4, 2)

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

y = f(x) =
√
x

2. The domain of g is the same as the domain of f , since the only condition on both functions
is that x ≥ 0. If we compare the formula for g(x) with f(x), we see that g(x) = f(x)− 1. In
other words, we have subtracted 1 from the output of the function f . By Theorem 1.2, we
know that in order to graph g, we shift the graph of f down one unit by subtracting 1 from
each of the y-coordinates of the points on the graph of f . Applying this to the three points
we have specified on the graph, we move (0, 0) to (0,−1), (1, 1) to (1, 0), and (4, 2) to (4, 1).
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The rest of the points follow suit, and we connect them with the same basic shape as before.
We confirm the domain of g is [0,∞) and find the range of g to be [−1,∞).

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

y = f(x) =
√
x

shift down 1 unit
−−−−−−−−−−−−→

subtract 1 from each y-coordinate

(0,−1)

(1, 0)

(4, 1)

x

y

1 2 3 4

1

2

y = g(x) =
√
x− 1

3. Solving x − 1 ≥ 0 gives x ≥ 1, so the domain of j is [1,∞). To graph j, we note that
j(x) = f(x − 1). In other words, we are subtracting 1 from the input of f . According to
Theorem 1.3, this induces a shift to the right of the graph of f . We add 1 to the x-coordinates
of the points on the graph of f and get the result below. The graph reaffirms that the domain
of j is [1,∞) and tells us that the range of j is [0,∞).

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4 5

1

2

y = f(x) =
√
x

shift right 1 unit
−−−−−−−−−−−−→

add 1 to each x-coordinate

(1, 0)

(2, 1)

(5, 2)

x

y

2 3 4 5

1

2

y = j(x) =
√
x− 1

4. To find the domain of m, we solve x + 3 ≥ 0 and get [−3,∞). Comparing the formulas of
f(x) and m(x), we have m(x) = f(x+ 3)− 2. We have 3 being added to an input, indicating
a horizontal shift, and 2 being subtracted from an output, indicating a vertical shift. We
leave it to the reader to verify that, in this particular case, the order in which we perform
these transformations is immaterial; we will arrive at the same graph regardless as to which
transformation we apply first.2 We follow the convention ‘inputs first’,3 and to that end we
first tackle the horizontal shift. Letting m1(x) = f(x + 3) denote this intermediate step,
Theorem 1.3 tells us that the graph of y = m1(x) is the graph of f shifted to the left 3 units.
Hence, we subtract 3 from each of the x-coordinates of the points on the graph of f .

2We shall see in the next example that order is generally important when applying more than one transformation
to a graph.

3We could equally have chosen the convention ‘outputs first’.
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(0, 0)

(1, 1)

(4, 2)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = f(x) =
√
x

shift left 3 units
−−−−−−−−−−−−→

subtract 3 from each x-coordinate

(−3, 0)

(−2, 1)

(1, 2)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = m1(x) = f(x+ 3) =
√
x+ 3

Since m(x) = f(x+ 3)− 2 and f(x+ 3) = m1(x), we have m(x) = m1(x)− 2. We can apply
Theorem 1.2 and obtain the graph of m by subtracting 2 from the y-coordinates of each of
the points on the graph of m1(x). The graph verifies that the domain of m is [−3,∞) and
we find the range of m to be [−2,∞).

(−3, 0)

(−2, 1)

(1, 2)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = m1(x) = f(x+ 3) =
√
x+ 3

shift down 2 units
−−−−−−−−−−−−→

subtract 2 from each y-coordinate

(−3,−2)

(−2,−1)

(1, 0)

x

y

−3 −2 −1 1 2 3 4

−1

−2

1

2

y = m(x) = m1(x)− 2 =
√
x+ 3− 2

Keep in mind that we can check our answer to any of these kinds of problems by showing that any
of the points we’ve moved lie on the graph of our final answer. For example, we can check that
(−3,−2) is on the graph of m by computing m(−3) =

√
(−3) + 3− 2 =

√
0− 2 = −2X

We now turn our attention to reflections. We know from Section 1.1 that to reflect a point (x, y)
across the x-axis, we replace y with −y. If (x, y) is on the graph of f , then y = f(x), so replacing y
with −y is the same as replacing f(x) with −f(x). Hence, the graph of y = −f(x) is the graph of f
reflected across the x-axis. Similarly, the graph of y = f(−x) is the graph of f reflected across the
y-axis. Returning to the language of inputs and outputs, multiplying the output from a function
by −1 reflects its graph across the x-axis, while multiplying the input to a function by −1 reflects
the graph across the y-axis.4

4The expressions −f(x) and f(−x) should look familiar - they are the quantities we used in Section 1.6 to test if
a function was even, odd or neither. The interested reader is invited to explore the role of reflections and symmetry
of functions. What happens if you reflect an even function across the y-axis? What happens if you reflect an odd
function across the y-axis? What about the x-axis?
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Theorem 1.4. Reflections. Suppose f is a function.

� To graph y = −f(x), reflect the graph of y = f(x) across the x-axis by multiplying the
y-coordinates of the points on the graph of f by −1.

� To graph y = f(−x), reflect the graph of y = f(x) across the y-axis by multiplying the
x-coordinates of the points on the graph of f by −1.

Applying Theorem 1.4 to the graph of y = f(x) given at the beginning of the section, we can graph
y = −f(x) by reflecting the graph of f about the x-axis

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

−1

−2

−3

−4

−5

2

3

4

5

y = f(x)

reflect across x-axis
−−−−−−−−−−−−→

multiply each y-coordinate by −1

(0,−1)

(2,−3)

(4,−3)

(5,−5)

x

y

1 2 3 4 5

−2

−3

−4

−5

1

2

3

4

5

y = −f(x)

By reflecting the graph of f across the y-axis, we obtain the graph of y = f(−x).

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

−1−2−3−4−5 1 2 3 4 5

2

3

4

5

y = f(x)

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

(0, 1)

(−2, 3)

(−4, 3)

(−5, 5)

x

y

−1−2−3−4−5 1 2 3 4 5

2

3

4

5

y = f(−x)

With the addition of reflections, it is now more important than ever to consider the order of
transformations, as the next example illustrates.

Example 1.7.2. Let f(x) =
√
x. Use the graph of f from Example 1.7.1 to graph the following

functions. Also, state their domains and ranges.

1. g(x) =
√
−x 2. j(x) =

√
3− x 3. m(x) = 3−

√
x
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Solution.

1. The mere sight of
√
−x usually causes alarm, if not panic. When we discussed domains in

Section 1.4, we clearly banished negatives from the radicands of even roots. However, we
must remember that x is a variable, and as such, the quantity −x isn’t always negative. For
example, if x = −4, −x = 4, thus

√
−x =

√
−(−4) = 2 is perfectly well-defined. To find the

domain analytically, we set −x ≥ 0 which gives x ≤ 0, so that the domain of g is (−∞, 0].
Since g(x) = f(−x), Theorem 1.4 tells us that the graph of g is the reflection of the graph
of f across the y-axis. We accomplish this by multiplying each x-coordinate on the graph
of f by −1, so that the points (0, 0), (1, 1), and (4, 2) move to (0, 0), (−1, 1), and (−4, 2),
respectively. Graphically, we see that the domain of g is (−∞, 0] and the range of g is the
same as the range of f , namely [0,∞).

(0, 0)

(1, 1)

(4, 2)

x

y

−1−2−3−4 1 2 3 4

1

2

y = f(x) =
√
x

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

(0, 0)(−1, 1)

(−4, 2)

x

y

−1−2−3−4 1 2 3 4

1

2

y = g(x) = f(−x) =
√
−x

2. To determine the domain of j(x) =
√

3− x, we solve 3 − x ≥ 0 and get x ≤ 3, or (−∞, 3].
To determine which transformations we need to apply to the graph of f to obtain the graph
of j, we rewrite j(x) =

√
−x+ 3 = f(−x+ 3). Comparing this formula with f(x) =

√
x, we

see that not only are we multiplying the input x by −1, which results in a reflection across
the y-axis, but also we are adding 3, which indicates a horizontal shift to the left. Does it
matter in which order we do the transformations? If so, which order is the correct order?
Let’s consider the point (4, 2) on the graph of f . We refer to the discussion leading up to
Theorem 1.3. We know f(4) = 2 and wish to find the point on y = j(x) = f(−x+ 3) which
corresponds to (4, 2). We set −x+ 3 = 4 and solve. Our first step is to subtract 3 from both
sides to get −x = 1. Subtracting 3 from the x-coordinate 4 is shifting the point (4, 2) to
the left. From −x = 1, we then multiply5 both sides by −1 to get x = −1. Multiplying the
x-coordinate by −1 corresponds to reflecting the point about the y-axis. Hence, we perform
the horizontal shift first, then follow it with the reflection about the y-axis. Starting with
f(x) =

√
x, we let j1(x) be the intermediate function which shifts the graph of f 3 units to

the left, j1(x) = f(x+ 3).

(0, 0)

(1, 1)

(4, 2)

x

y

−4 −3 −2 −1 1 2 3 4

1

2

y = f(x) =
√
x

shift left 3 units
−−−−−−−−−−−−→

subtract 3 from each x-coordinate

(−3, 0)

(−2, 1)

(1, 2)

x

y

−4 −3 −2 −1 1 2 3 4

1

2

y = j1(x) = f(x+ 3) =
√
x+ 3

5Or divide - it amounts to the same thing.
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To obtain the function j, we reflect the graph of j1 about y-axis. Theorem 1.4 tells us we
have j(x) = j1(−x). Putting it all together, we have j(x) = j1(−x) = f(−x+ 3) =

√
−x+ 3,

which is what we want.6 From the graph, we confirm the domain of j is (−∞, 3] and we get
that the range is [0,∞).

(−3, 0)

(−2, 1)

(1, 2)

x

y

−4 −3 −2 −1 1 2 3 4

1

2

y = j1(x) =
√
x+ 3

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

(3, 0)

(2, 1)
(−1, 2)

x

y

−4 −3 −2 −1 1 2 3 4

2

y = j(x) = j1(−x) =
√
−x+ 3

3. The domain of m works out to be the domain of f , [0,∞). Rewriting m(x) = −
√
x + 3, we

see m(x) = −f(x) + 3. Since we are multiplying the output of f by −1 and then adding
3, we once again have two transformations to deal with: a reflection across the x-axis and
a vertical shift. To determine the correct order in which to apply the transformations, we
imagine trying to determine the point on the graph of m which corresponds to (4, 2) on the
graph of f . Since in the formula for m(x), the input to f is just x, we substitute to find
m(4) = −f(4) + 3 = −2 + 3 = 1. Hence, (4, 1) is the corresponding point on the graph of
m. If we closely examine the arithmetic, we see that we first multiply f(4) by −1, which
corresponds to the reflection across the x-axis, and then we add 3, which corresponds to
the vertical shift. If we define an intermediate function m1(x) = −f(x) to take care of the
reflection, we get

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

−2

−1

1

2

3

y = f(x) =
√
x

reflect across x-axis
−−−−−−−−−−−−→

multiply each y-coordinate by −1

(0, 0)

(1,−1)

(4,−2)

x

y

1 2 3 4

−1

−2

1

2

3

y = m1(x) = −f(x) = −
√
x

To shift the graph of m1 up 3 units, we set m(x) = m1(x) + 3. Since m1(x) = −f(x), when
we put it all together, we get m(x) = m1(x) + 3 = −f(x) + 3 = −

√
x + 3. We see from the

graph that the range of m is (−∞, 3].

6If we had done the reflection first, then j1(x) = f(−x). Following this by a shift left would give us j(x) =
j1(x + 3) = f(−(x + 3)) = f(−x − 3) =

√
−x− 3 which isn’t what we want. However, if we did the reflection first

and followed it by a shift to the right 3 units, we would have arrived at the function j(x). We leave it to the reader
to verify the details.
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(0, 0)

(1,−1)

(4,−2)

x

y

1 2 3 4

−1

−2

1

2

3

shift up 3 units
−−−−−−−−−−−−→

add 3 to each y-coordinate

(0, 3)
(1, 2)

(4, 1)

x

y

1 2 3 4

−1

−2

1

2

y = m1(x) = −
√
x y = m(x) = m1(x) + 3 = −

√
x+ 3

We now turn our attention to our last class of transformations known as scalings. A thorough
discussion of scalings can get complicated because they are not as straight-forward as the previous
transformations. A quick review of what we’ve covered so far, namely vertical shifts, horizontal
shifts and reflections, will show you why those transformations are known as rigid transforma-
tions. Simply put, they do not change the shape of the graph, only its position and orientation in
the plane. If, however, we wanted to make a new graph twice as tall as a given graph, or one-third
as wide, we would be changing the shape of the graph. This type of transformation is called non-
rigid for obvious reasons. Not only will it be important for us to differentiate between modifying
inputs versus outputs, we must also pay close attention to the magnitude of the changes we make.
As you will see shortly, the Mathematics turns out to be easier than the associated grammar.

Suppose we wish to graph the function g(x) = 2f(x) where f(x) is the function whose graph is
given at the beginning of the section. From its graph, we can build a table of values for g as before.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

x (x, f(x)) f(x) g(x) = 2f(x) (x, g(x))

0 (0, 1) 1 2 (0, 2)

2 (2, 3) 3 6 (2, 6)

4 (4, 3) 3 6 (4, 6)

5 (5, 5) 5 10 (5, 10)

In general, if (a, b) is on the graph of f , then f(a) = b so that g(a) = 2f(a) = 2b puts (a, 2b) on
the graph of g. In other words, to obtain the graph of g, we multiply all of the y-coordinates of
the points on the graph of f by 2. Multiplying all of the y-coordinates of all of the points on the
graph of f by 2 causes what is known as a ‘vertical scaling7 by a factor of 2’, and the results are
given on the next page.

7Also called a ‘vertical stretching’, ‘vertical expansion’ or ‘vertical dilation’ by a factor of 2.
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(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

6

7

8

9

10

y = f(x)

vertical scaling by a factor of 2
−−−−−−−−−−−−−−−−−−−−→

multiply each y-coordinate by 2

(0, 2)

(2, 6)

(4, 6)

(5, 10)

x

y

1 2 3 4 5

1

3

4

5

6

7

8

9

10

y = 2f(x)

If we wish to graph y = 1
2f(x), we multiply the all of the y-coordinates of the points on the graph

of f by 1
2 . This creates a ‘vertical scaling8 by a factor of 1

2 ’ as seen below.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

vertical scaling by a factor of 1
2

−−−−−−−−−−−−−−−−−−−−→
multiply each y-coordinate by 1

2

(
0, 1

2

)
(
2, 3

2

)
(
4, 3

2

)
(
5, 5

2

)

x

y

1 2 3 4 5

1

2

3

4

5

y = 1
2
f(x)

These results are generalized in the following theorem.

Theorem 1.5. Vertical Scalings. Suppose f is a function and a > 0. To graph y = af(x),
multiply all of the y-coordinates of the points on the graph of f by a. We say the graph of f
has been vertically scaled by a factor of a.

� If a > 1, we say the graph of f has undergone a vertical stretching (expansion, dilation)
by a factor of a.

� If 0 < a < 1, we say the graph of f has undergone a vertical shrinking (compression,
contraction) by a factor of 1

a .

8Also called ‘vertical shrinking’, ‘vertical compression’ or ‘vertical contraction’ by a factor of 2.
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A few remarks about Theorem 1.5 are in order. First, a note about the verbiage. To the authors,
the words ‘stretching’, ‘expansion’, and ‘dilation’ all indicate something getting bigger. Hence,
‘stretched by a factor of 2’ makes sense if we are scaling something by multiplying it by 2. Similarly,
we believe words like ‘shrinking’, ‘compression’ and ‘contraction’ all indicate something getting
smaller, so if we scale something by a factor of 1

2 , we would say it ‘shrinks by a factor of 2’ - not
‘shrinks by a factor of 1

2 ’. This is why we have written the descriptions ‘stretching by a factor of
a’ and ‘shrinking by a factor of 1

a ’ in the statement of the theorem. Second, in terms of inputs and
outputs, Theorem 1.5 says multiplying the outputs from a function by positive number a causes
the graph to be vertically scaled by a factor of a. It is natural to ask what would happen if we
multiply the inputs of a function by a positive number. This leads us to our last transformation of
the section.

Referring to the graph of f given at the beginning of this section, suppose we want to graph
g(x) = f(2x). In other words, we are looking to see what effect multiplying the inputs to f by 2
has on its graph. If we attempt to build a table directly, we quickly run into the same problem we
had in our discussion leading up to Theorem 1.3, as seen in the table on the left below. We solve
this problem in the same way we solved this problem before. For example, if we want to determine
the point on g which corresponds to the point (2, 3) on the graph of f , we set 2x = 2 so that x = 1.
Substituting x = 1 into g(x), we obtain g(1) = f(2 · 1) = f(2) = 3, so that (1, 3) is on the graph of
g. Continuing in this fashion, we obtain the table on the lower right.

x (x, f(x)) f(x) g(x) = f(2x) (x, g(x))

0 (0, 1) 1 f(2 · 0) = f(0) = 1 (0, 1)

2 (2, 3) 3 f(2 · 2) = f(4) = 3 (2, 3)

4 (4, 3) 3 f(2 · 4) = f(8) =?

5 (5, 5) 5 f(2 · 5) = f(10) =?

x 2x g(x) = f(2x) (x, g(x))

0 0 g(0) = f(0) = 1 (0, 0)

1 2 g(1) = f(2) = 3 (1, 3)

2 4 g(2) = f(4) = 3 (2, 3)
5
2 5 g

(
5
2

)
= f(5) = 5

(
5
2 , 5
)

In general, if (a, b) is on the graph of f , then f(a) = b. Hence g
(
a
2

)
= f

(
2 · a2

)
= f(a) = b so that(

a
2 , b
)

is on the graph of g. In other words, to graph g we divide the x-coordinates of the points on
the graph of f by 2. This results in a horizontal scaling9 by a factor of 1

2 .

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5

2

3

4

5

y = f(x)

horizontal scaling by a factor of 1
2

−−−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 1

2

(0, 1)

(1, 3)

(2, 3)

(
5
2
, 5
)

x

y

1 2 3 4 5

2

3

4

5

y = g(x) = f(2x)

9Also called ‘horizontal shrinking’, ‘horizontal compression’ or ‘horizontal contraction’ by a factor of 2.



132 Relations and Functions

If, on the other hand, we wish to graph y = f
(

1
2x
)
, we end up multiplying the x-coordinates

of the points on the graph of f by 2 which results in a horizontal scaling10 by a factor of 2, as
demonstrated below.

(0, 1)

(2, 3)

(4, 3)

(5, 5)

x

y

1 2 3 4 5 6 7 8 9 10

2

3

4

5

y = f(x)

horizontal scaling by a factor of 2
−−−−−−−−−−−−−−−−−−−−→

multiply each x-coordinate by 2

(0, 1)

(4, 3)

(8, 3)

(10, 5)

x

y

1 2 3 4 5 6 7 8 9 10

2

3

4

5

y = g(x) = f
(

1
2
x
)

We have the following theorem.

Theorem 1.6. Horizontal Scalings. Suppose f is a function and b > 0. To graph y = f(bx),
divide all of the x-coordinates of the points on the graph of f by b. We say the graph of f has
been horizontally scaled by a factor of 1

b .

� If 0 < b < 1, we say the graph of f has undergone a horizontal stretching (expansion,
dilation) by a factor of 1

b .

� If b > 1, we say the graph of f has undergone a horizontal shrinking (compression, con-
traction) by a factor of b.

Theorem 1.6 tells us that if we multiply the input to a function by b, the resulting graph is scaled
horizontally by a factor of 1

b since the x-values are divided by b to produce corresponding points on
the graph of y = f(bx). The next example explores how vertical and horizontal scalings sometimes
interact with each other and with the other transformations introduced in this section.

Example 1.7.3. Let f(x) =
√
x. Use the graph of f from Example 1.7.1 to graph the following

functions. Also, state their domains and ranges.

1. g(x) = 3
√
x 2. j(x) =

√
9x 3. m(x) = 1−

√
x+3

2

Solution.

1. First we note that the domain of g is [0,∞) for the usual reason. Next, we have g(x) = 3f(x)
so by Theorem 1.5, we obtain the graph of g by multiplying all of the y-coordinates of the
points on the graph of f by 3. The result is a vertical scaling of the graph of f by a factor of
3. We find the range of g is also [0,∞).

10Also called ‘horizontal stretching’, ‘horizontal expansion’ or ‘horizontal dilation’ by a factor of 2.
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(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

3

4

5

6

y = f(x) =
√
x

vertical scale by a factor of 3
−−−−−−−−−−−−−−−−−−−−−→

multiply each y-coordinate by 3

(0, 0)

(1, 3)

(4, 6)

x

y

1 2 3 4

1

2

3

4

5

6

y = g(x) = 3f(x) = 3
√
x

2. To determine the domain of j, we solve 9x ≥ 0 to find x ≥ 0. Our domain is once again
[0,∞). We recognize j(x) = f(9x) and by Theorem 1.6, we obtain the graph of j by dividing
the x-coordinates of the points on the graph of f by 9. From the graph, we see the range of
j is also [0,∞).

(0, 0)

(1, 1)

(4, 2)

x

y

1 2 3 4

1

2

y = f(x) =
√
x

horizontal scale by a factor of 1
9

−−−−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 1

9

(0, 0)

(
1
9
, 1
)

(
4
9
, 2
)

x

y

1 2 3 4

1

2

y = j(x) = f(9x) =
√

9x

3. Solving x+3
2 ≥ 0 gives x ≥ −3, so the domain of m is [−3,∞). To take advantage of what

we know of transformations, we rewrite m(x) = −
√

1
2x+ 3

2 + 1, or m(x) = −f
(

1
2x+ 3

2

)
+ 1.

Focusing on the inputs first, we note that the input to f in the formula for m(x) is 1
2x + 3

2 .
Multiplying the x by 1

2 corresponds to a horizontal stretching by a factor of 2, and adding
the 3

2 corresponds to a shift to the left by 3
2 . As before, we resolve which to perform first

by thinking about how we would find the point on m corresponding to a point on f , in this
case, (4, 2). To use f(4) = 2, we solve 1

2x + 3
2 = 4. Our first step is to subtract the 3

2
(the horizontal shift) to obtain 1

2x = 5
2 . Next, we multiply by 2 (the horizontal stretching)

and obtain x = 5. We define two intermediate functions to handle first the shift, then the

stretching. In accordance with Theorem 1.3, m1(x) = f
(
x+ 3

2

)
=
√
x+ 3

2 will shift the

graph of f to the left 3
2 units.
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(0, 0)

(1, 1)

(4, 2)

x

y

−1−2−3 1 2 3 4 5

1

2

−2

−1

y = f(x) =
√
x

shift left 3
2

units

−−−−−−−−−−−−→
subtract 3

2
from each x-coordinate

(
− 3

2
, 0
)

(
− 1

2
, 1
)

(
5
2
, 2
)

x

y

−1−2−3 1 2 3 4 5

2

−2

y = m1(x) = f
(
x+ 3

2

)
=
√
x+ 3

2

Next, m2(x) = m1

(
1
2x
)

=
√

1
2x+ 3

2 will, according to Theorem 1.6, horizontally stretch the

graph of m1 by a factor of 2.

(
− 3

2
, 0
)

(
− 1

2
, 1
)

(
5
2
, 2
)

x

y

−1−2−3 1 2 3 4 5

2

−2

y = m1(x) =
√
x+ 3

2

horizontal scale by a factor of 2

−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 2

(−3, 0)

(−1, 1)

(5, 2)

x

y

−1−2 1 2 3 4 5

2

−1

−2

y = m2(x) = m1

(
1
2
x
)

=
√

1
2
x+ 3

2

We now examine what’s happening to the outputs. From m(x) = −f
(

1
2x+ 3

2

)
+ 1, we see

that the output from f is being multiplied by −1 (a reflection about the x-axis) and then a 1
is added (a vertical shift up 1). As before, we can determine the correct order by looking at
how the point (4, 2) is moved. We already know that to make use of the equation f(4) = 2,
we need to substitute x = 5. We get m(5) = −f

(
1
2(5) + 3

2

)
+ 1 = −f(4) + 1 = −2 + 1 = −1.

We see that f(4) (the output from f) is first multiplied by −1 then the 1 is added meaning we
first reflect the graph about the x-axis then shift up 1. Theorem 1.4 tells us m3(x) = −m2(x)
will handle the reflection.

(−3, 0)

(−1, 1)

(5, 2)

x

y

−1−2 1 2 3 4 5

2

−1

−2

y = m2(x) =
√

1
2
x+ 3

2

reflect across x-axis

−−−−−−−−−−−−→
multiply each y-coordinate by −1

(−3, 0)

(−1,−1)

(5,−2)

x

y

−1−2 1 2 3 4 5

1

2

−2

y = m3(x) = −m2(x) = −
√

1
2
x+ 3

2
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Finally, to handle the vertical shift, Theorem 1.2 gives m(x) = m3(x) + 1, and we see that
the range of m is (−∞, 1].

(−3, 0)

(−1,−1)

(5,−2)

x

y

−1−2 1 2 3 4 5

1

2

−2

y = m3(x) = −m2(x) = −
√

1
2
x+ 3

2

shift up 1 unit

−−−−−−−−−−−−→
add 1 to each y-coordinate

(−3, 1)

(−1, 0)

(5,−1)

x

y

−1−2 1 2 3 4 5

2

−2

y = m(x) = m3(x) + 1 = −
√

1
2
x+ 3

2
+ 1

Some comments about Example 1.7.3 are in order. First, recalling the properties of radicals from
Intermediate Algebra, we know that the functions g and j are the same, since j and g have the
same domains and j(x) =

√
9x =

√
9
√
x = 3

√
x = g(x). (We invite the reader to verify that all of

the points we plotted on the graph of g lie on the graph of j and vice-versa.) Hence, for f(x) =
√
x,

a vertical stretch by a factor of 3 and a horizontal shrinking by a factor of 9 result in the same
transformation. While this kind of phenomenon is not universal, it happens commonly enough with
some of the families of functions studied in College Algebra that it is worthy of note. Secondly, to
graph the function m, we applied a series of four transformations. While it would have been easier
on the authors to simply inform the reader of which steps to take, we have strived to explain why
the order in which the transformations were applied made sense. We generalize the procedure in
the theorem below.

Theorem 1.7. Transformations. Suppose f is a function. If A 6= 0 and B 6= 0, then to graph

g(x) = Af(Bx+H) +K

1. Subtract H from each of the x-coordinates of the points on the graph of f . This results in
a horizontal shift to the left if H > 0 or right if H < 0.

2. Divide the x-coordinates of the points on the graph obtained in Step 1 by B. This results
in a horizontal scaling, but may also include a reflection about the y-axis if B < 0.

3. Multiply the y-coordinates of the points on the graph obtained in Step 2 by A. This results
in a vertical scaling, but may also include a reflection about the x-axis if A < 0.

4. Add K to each of the y-coordinates of the points on the graph obtained in Step 3. This
results in a vertical shift up if K > 0 or down if K < 0.

Theorem 1.7 can be established by generalizing the techniques developed in this section. Suppose
(a, b) is on the graph of f . Then f(a) = b, and to make good use of this fact, we set Bx+H = a
and solve. We first subtract the H (causing the horizontal shift) and then divide by B. If B
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is a positive number, this induces only a horizontal scaling by a factor of 1
B . If B < 0, then

we have a factor of −1 in play, and dividing by it induces a reflection about the y-axis. So we
have x = a−H

B as the input to g which corresponds to the input x = a to f . We now evaluate
g
(
a−H
B

)
= Af

(
B · a−HB +H

)
+ K = Af(a) + K = Ab + K. We notice that the output from f is

first multiplied by A. As with the constant B, if A > 0, this induces only a vertical scaling. If
A < 0, then the −1 induces a reflection across the x-axis. Finally, we add K to the result, which is
our vertical shift. A less precise, but more intuitive way to paraphrase Theorem 1.7 is to think of
the quantity Bx+H is the ‘inside’ of the function f . What’s happening inside f affects the inputs
or x-coordinates of the points on the graph of f . To find the x-coordinates of the corresponding
points on g, we undo what has been done to x in the same way we would solve an equation. What’s
happening to the output can be thought of as things happening ‘outside’ the function, f . Things
happening outside affect the outputs or y-coordinates of the points on the graph of f . Here, we
follow the usual order of operations agreement: we first multiply by A then add K to find the
corresponding y-coordinates on the graph of g.

Example 1.7.4. Below is the complete graph of y = f(x). Use it to graph g(x) = 4−3f(1−2x)
2 .

(−2, 0) (2, 0)

(4,−3)(−4,−3)

(0, 3)

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Solution. We use Theorem 1.7 to track the five ‘key points’ (−4,−3), (−2, 0), (0, 3), (2, 0) and
(4,−3) indicated on the graph of f to their new locations. We first rewrite g(x) in the form
presented in Theorem 1.7, g(x) = −3

2f(−2x+ 1) + 2. We set −2x+ 1 equal to the x-coordinates of
the key points and solve. For example, solving −2x+ 1 = −4, we first subtract 1 to get −2x = −5
then divide by −2 to get x = 5

2 . Subtracting the 1 is a horizontal shift to the left 1 unit. Dividing by
−2 can be thought of as a two step process: dividing by 2 which compresses the graph horizontally
by a factor of 2 followed by dividing (multiplying) by −1 which causes a reflection across the y-axis.
We summarize the results in the table on the next page.
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(a, f(a)) a −2x+ 1 = a x

(−4,−3) −4 −2x+ 1 = −4 x = 5
2

(−2, 0) −2 −2x+ 1 = −2 x = 3
2

(0, 3) 0 −2x+ 1 = 0 x = 1
2

(2, 0) 2 −2x+ 1 = 2 x = −1
2

(4,−3) 4 −2x+ 1 = 4 x = −3
2

Next, we take each of the x values and substitute them into g(x) = −3
2f(−2x + 1) + 2 to get the

corresponding y-values. Substituting x = 5
2 , and using the fact that f(−4) = −3, we get

g

(
5

2

)
= −3

2
f

(
−2

(
5

2

)
+ 1

)
+ 2 = −3

2
f(−4) + 2 = −3

2
(−3) + 2 =

9

2
+ 2 =

13

2

We see that the output from f is first multiplied by −3
2 . Thinking of this as a two step process,

multiplying by 3
2 then by −1, we have a vertical stretching by a factor of 3

2 followed by a reflection
across the x-axis. Adding 2 results in a vertical shift up 2 units. Continuing in this manner, we
get the table below.

x g(x) (x, g(x))
5
2

13
2

(
5
2 ,

13
2

)
3
2 2

(
3
2 , 2
)

1
2 −5

2

(
1
2 ,−

5
2

)
−1

2 2
(
−1

2 , 2
)

−3
2

13
2

(
−3

2 ,
13
2

)
To graph g, we plot each of the points in the table above and connect them in the same order and
fashion as the points to which they correspond. Plotting f and g side-by-side gives

(−2, 0) (2, 0)

(4,−3)(−4,−3)

(0, 3)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

5

6

(
− 3

2
, 13

2

)

(
− 1

2
, 2
)

(
1
2
,− 5

2

)

(
3
2
, 2
)

(
5
2
, 13

2

)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

3

4

5

6
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The reader is strongly encouraged11 to graph the series of functions which shows the gradual trans-
formation of the graph of f into the graph of g. We have outlined the sequence of transformations
in the above exposition; all that remains is to plot the five intermediate stages.

Our last example turns the tables and asks for the formula of a function given a desired sequence
of transformations. If nothing else, it is a good review of function notation.

Example 1.7.5. Let f(x) = x2. Find and simplify the formula of the function g(x) whose graph
is the result of f undergoing the following sequence of transformations. Check your answer using
a graphing calculator.

1. Vertical shift up 2 units

2. Reflection across the x-axis

3. Horizontal shift right 1 unit

4. Horizontal stretching by a factor of 2

Solution. We build up to a formula for g(x) using intermediate functions as we’ve seen in previous
examples. We let g1 take care of our first step. Theorem 1.2 tells us g1(x) = f(x)+2 = x2+2. Next,
we reflect the graph of g1 about the x-axis using Theorem 1.4: g2(x) = −g1(x) = −

(
x2 + 2

)
=

−x2 − 2. We shift the graph to the right 1 unit, according to Theorem 1.3, by setting g3(x) =
g2(x− 1) = −(x− 1)2 − 2 = −x2 + 2x− 3. Finally, we induce a horizontal stretch by a factor of 2

using Theorem 1.6 to get g(x) = g3

(
1
2x
)

= −
(

1
2x
)2

+ 2
(

1
2x
)
− 3 which yields g(x) = −1

4x
2 +x− 3.

We use the calculator to graph the stages below to confirm our result.

shift up 2 units

−−−−−−−−−−−−→
add 2 to each y-coordinate

y = f(x) = x2 y = g1(x) = f(x) + 2 = x2 + 2

reflect across x-axis

−−−−−−−−−−−−→
multiply each y-coordinate by −1

y = g1(x) = x2 + 2 y = g2(x) = −g1(x) = −x2 − 2

11You really should do this once in your life.
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shift right 1 unit

−−−−−−−−−−−−→
add 1 to each x-coordinate

y = g2(x) = −x2 − 2 y = g3(x) = g2(x− 1) = −x2 + 2x− 3

horizontal stretch by a factor of 2

−−−−−−−−−−−−−−−−−−→
multiply each x-coordinate by 2

y = g3(x) = −x2 + 2x− 3 y = g(x) = g3

(
1
2x
)

= −1
4x

2 + x− 3

We have kept the viewing window the same in all of the graphs above. This had the undesirable
consequence of making the last graph look ‘incomplete’ in that we cannot see the original shape
of f(x) = x2. Altering the viewing window results in a more complete graph of the transformed
function as seen below.

y = g(x)

This example brings our first chapter to a close. In the chapters which lie ahead, be on the lookout
for the concepts developed here to resurface as we study different families of functions.
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1.7.1 Exercises

Suppose (2,−3) is on the graph of y = f(x). In Exercises 1 - 18, use Theorem 1.7 to find a point
on the graph of the given transformed function.

1. y = f(x) + 3 2. y = f(x+ 3) 3. y = f(x)− 1

4. y = f(x− 1) 5. y = 3f(x) 6. y = f(3x)

7. y = −f(x) 8. y = f(−x) 9. y = f(x− 3) + 1

10. y = 2f(x+ 1) 11. y = 10− f(x) 12. y = 3f(2x)− 1

13. y = 1
2f(4− x) 14. y = 5f(2x+ 1) + 3 15. y = 2f(1− x)− 1

16. y = f

(
7− 2x

4

)
17. y =

f(3x)− 1

2
18. y =

4− f(3x− 1)

7

The complete graph of y = f(x) is given below. In Exercises 19 - 27, use it and Theorem 1.7 to
graph the given transformed function.

x

y

(−2, 2)

(0, 0)

(2, 2)

−4 −3 −2 −1 2 3 4

1

2

3

4

The graph for Ex. 19 - 27

19. y = f(x) + 1 20. y = f(x)− 2 21. y = f(x+ 1)

22. y = f(x− 2) 23. y = 2f(x) 24. y = f(2x)

25. y = 2− f(x) 26. y = f(2− x) 27. y = 2− f(2− x)

28. Some of the answers to Exercises 19 - 27 above should be the same. Which ones match up?
What properties of the graph of y = f(x) contribute to the duplication?
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The complete graph of y = f(x) is given below. In Exercises 29 - 37, use it and Theorem 1.7 to
graph the given transformed function.

x

y

(−2, 0)

(0, 4)

(2, 0)

(4,−2)

−4 −3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4

The graph for Ex. 29 - 37

29. y = f(x)− 1 30. y = f(x+ 1) 31. y = 1
2f(x)

32. y = f(2x) 33. y = −f(x) 34. y = f(−x)

35. y = f(x+ 1)− 1 36. y = 1− f(x) 37. y = 1
2f(x+ 1)− 1

The complete graph of y = f(x) is given below. In Exercises 38 - 49, use it and Theorem 1.7 to
graph the given transformed function.

(−3, 0)

(0, 3)

(3, 0)
x

y

−3 −2 −1 1 2 3

−1

1

2

3

The graph for Ex. 38 - 49

38. g(x) = f(x) + 3 39. h(x) = f(x)− 1
2 40. j(x) = f

(
x− 2

3

)
41. a(x) = f(x+ 4) 42. b(x) = f(x+ 1)− 1 43. c(x) = 3

5f(x)

44. d(x) = −2f(x) 45. k(x) = f
(

2
3x
)

46. m(x) = −1
4f(3x)

47. n(x) = 4f(x− 3)− 6 48. p(x) = 4 + f(1− 2x) 49. q(x) = −1
2f
(
x+4

2

)
− 3
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The complete graph of y = S(x) is given below.

x

y

(−2, 0)

(−1,−3)

(0, 0)

(1, 3)

(2, 0)−2 −1 1

−3

−2

−1

1

2

3

The graph of y = S(x)

The purpose of Exercises 50 - 53 is to graph y = 1
2S(−x+ 1) + 1 by graphing each transformation,

one step at a time.

50. y = S1(x) = S(x+ 1) 51. y = S2(x) = S1(−x) = S(−x+ 1)

52. y = S3(x) = 1
2S2(x) = 1

2S(−x+ 1) 53. y = S4(x) = S3(x) + 1 = 1
2S(−x+ 1) + 1

Let f(x) =
√
x. Find a formula for a function g whose graph is obtained from f from the given

sequence of transformations.

54. (1) shift right 2 units; (2) shift down 3 units

55. (1) shift down 3 units; (2) shift right 2 units

56. (1) reflect across the x-axis; (2) shift up 1 unit

57. (1) shift up 1 unit; (2) reflect across the x-axis

58. (1) shift left 1 unit; (2) reflect across the y-axis; (3) shift up 2 units

59. (1) reflect across the y-axis; (2) shift left 1 unit; (3) shift up 2 units

60. (1) shift left 3 units; (2) vertical stretch by a factor of 2; (3) shift down 4 units

61. (1) shift left 3 units; (2) shift down 4 units; (3) vertical stretch by a factor of 2

62. (1) shift right 3 units; (2) horizontal shrink by a factor of 2; (3) shift up 1 unit

63. (1) horizontal shrink by a factor of 2; (2) shift right 3 units; (3) shift up 1 unit
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64. The graph of y = f(x) = 3
√
x is given below on the left and the graph of y = g(x) is given

on the right. Find a formula for g based on transformations of the graph of f . Check your
answer by confirming that the points shown on the graph of g satisfy the equation y = g(x).

x

y

−11−10−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

1

2

3

4

5

y = 3
√
x

x

y

−11−10−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

1

2

3

4

5

y = g(x)

65. For many common functions, the properties of Algebra make a horizontal scaling the same
as a vertical scaling by (possibly) a different factor. For example, we stated earlier that√

9x = 3
√
x. With the help of your classmates, find the equivalent vertical scaling produced

by the horizontal scalings y = (2x)3, y = |5x|, y = 3
√

27x and y =
(

1
2x
)2

. What about

y = (−2x)3, y = | − 5x|, y = 3
√
−27x and y =

(
−1

2x
)2

?

66. We mentioned earlier in the section that, in general, the order in which transformations are
applied matters, yet in our first example with two transformations the order did not matter.
(You could perform the shift to the left followed by the shift down or you could shift down
and then left to achieve the same result.) With the help of your classmates, determine the
situations in which order does matter and those in which it does not.

67. What happens if you reflect an even function across the y-axis?

68. What happens if you reflect an odd function across the y-axis?

69. What happens if you reflect an even function across the x-axis?

70. What happens if you reflect an odd function across the x-axis?

71. How would you describe symmetry about the origin in terms of reflections?

72. As we saw in Example 1.7.5, the viewing window on the graphing calculator affects how we see
the transformations done to a graph. Using two different calculators, find viewing windows
so that f(x) = x2 on the one calculator looks like g(x) = 3x2 on the other.
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1.7.2 Answers

1. (2, 0) 2. (−1,−3) 3. (2,−4)

4. (3,−3) 5. (2,−9) 6.
(

2
3 ,−3

)
7. (2, 3) 8. (−2,−3) 9. (5,−2)

10. (1,−6) 11. (2, 13) 12. y = (1,−10)

13.
(
2,−3

2

)
14.

(
1
2 ,−12

)
15. (−1,−7)

16.
(
−1

2 ,−3
)

17.
(

2
3 ,−2

)
18. (1, 1)

19. y = f(x) + 1

x

y

(−2, 3)

(0, 1)

(2, 3)

−4 −3 −2 −1 1 2 3 4

1

2

3

4

20. y = f(x)− 2

x

y

(−2, 0)

(0,−2)

(2, 0)−4 −1 1 4

−2

−1

1

2

21. y = f(x+ 1)

x

y

(−3, 2)

(−1, 0)

(1, 2)

−5 −4 −3 1 2 3

1

2

3

4

22. y = f(x− 2)

x

y

(0, 2)

(2, 0)

(4, 2)

−2 −1 3 4 5 6

1

2

4

23. y = 2f(x)

x

y

(−2, 4)

(0, 0)

(2, 4)

−4 −3 −2 −1 2 3 4

1

2

3

4

24. y = f(2x)

x

y

(−1, 2)

(0, 0)

(1, 2)

−4 −3 −2 −1 2 3 4

1

2

3

4
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25. y = 2− f(x)

x

y

(−2, 0)

(0, 2)

(2, 0)−4 −3 3 4

1

2

26. y = f(2− x)

x

y

(0, 2)

(2, 0)

(4, 2)

−2 −1 3 4 5 6

1

2

4

27. y = 2− f(2− x)

x

y

(0, 0)

(2, 2)

(4, 0)−2 −1 2 5 6

1

2

3

4

29. y = f(x)− 1

x

y

(−2,−1)

(0, 3)

(2,−1)

(4,−3)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

30. y = f(x+ 1)

x

y

(−3, 0)

(−1, 4)

(1, 0)

(3,−2)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

31. y = 1
2f(x)

x

y

(−2, 0)

(0, 2)

(2, 0) (4,−1)

−4 −3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4
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32. y = f(2x)

x

y

(−1, 0)

(0, 4)

(1, 0)

(2,−2)

−4 −3 −2 2 3 4

−4

−3

−2

1

2

3

4

33. y = −f(x)

x

y

(−2, 0)

(0,−4)

(2, 0)

(4, 2)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

34. y = f(−x)

x

y

(2, 0)

(0, 4)

(−2, 0)

(−4,−2)

−4 −3 −1 1 3 4

−4

−3

−2

−1

1

2

3

4

35. y = f(x+ 1)− 1

x

y

(−3,−1)

(−1, 3)

(1,−1)

(3,−3)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

36. y = 1− f(x)

x

y

(−2, 1)

(0,−3)

(2, 1)

(4, 3)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4

37. y = 1
2f(x+ 1)− 1

x

y

(−3,−1)

(−1, 1)

(1,−1)

(3,−2)

−4 −3 −1−2 1 2 3 4

−4

−3

−2

−1

1

2

3

4
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38. g(x) = f(x) + 3

(−3, 3)

(0, 6)

(3, 3)

x

y

−3 −2 −1 1 2 3

−1

1

2

3

4

5

6

39. h(x) = f(x)− 1
2

(
−3,− 1

2

)

(
0, 5

2

)

(
3,− 1

2

)x

y

−3 −2 −1 1 2 3

−1

1

2

3

40. j(x) = f
(
x− 2

3

)

(
− 7

3
, 0

)

(
2
3
, 3

)

(
11
3
, 0

)x

y

−3 −2 −1 1 2 3

−1

1

2

3

41. a(x) = f(x+ 4)

(−7, 0)

(−4, 3)

(−1, 0)
x

y

−7 −6 −5 −4 −3 −2 −1

1

2

3

42. b(x) = f(x+ 1)− 1

(−4,−1)

(−1, 2)

(2,−1)

x

y

−4 −3 −2 −1 1 2

−1

1

2

43. c(x) = 3
5f(x)

(−3, 0)

(
0, 9

5

)

(3, 0)
x

y

−3 −2 −1 1 2 3

−1

1

2

44. d(x) = −2f(x)

(−3, 0)

(0,−6)

(3, 0)

x

y

−3 −2 −1 1 2 3

−6

−5

−4

−3

−2

−1

45. k(x) = f
(

2
3x
)

(
− 9

2
, 0

)

(0, 3)

(
9
2
, 0

)x

y

−4 −3 −2 −1 1 2 3 4

−1

1

2

3
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46. m(x) = −1
4f(3x)

(−1, 0)

(
0,− 3

4

)
(1, 0)

x

y

−1 1

−1

47. n(x) = 4f(x− 3)− 6

(0,−6)

(3, 6)

(6,−6)

x

y

1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

48. p(x) = 4 + f(1− 2x) = f(−2x+ 1) + 4

(−1, 4)

(
1
2
, 7

)

(2, 4)

x

y

−1 1 2

−1

1

2

3

4

5

6

7

49. q(x) = − 1
2f
(
x+4
2

)
− 3 = − 1

2f
(
1
2x+ 2

)
− 3

(−10,−3)

(
−4,− 9

2

)
(2,−3)

x

y

−10−9−8−7−6−5−4−3−2−1 1 2

−4

−3

−2

−1
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50. y = S1(x) = S(x+ 1)

x

y

(−3, 0)

(−2,−3)

(−1, 0)

(0, 3)

(1, 0)−3 −2 −1

−3

−2

−1

1

2

3

51. y = S2(x) = S1(−x) = S(−x+ 1)

x

y

(3, 0)

(2,−3)

(1, 0)

(0, 3)

(−1, 0) 1 2 3

−3

−2

−1

1

2

3

52. y = S3(x) = 1
2S2(x) = 1

2S(−x+ 1)

x

y

(3, 0)

(
2,− 3

2

)

(1, 0)

(
0, 3

2

)

(−1, 0) 1 2 3

−2

−1

1

2

53. y = S4(x) = S3(x) + 1 = 1
2S(−x+ 1) + 1

x

y

(3, 1)

(
2,− 1

2

)

(1, 1)

(
0, 5

2

)

(−1, 1)

−1 1 3

−1

1

2

3

54. g(x) =
√
x− 2− 3 55. g(x) =

√
x− 2− 3

56. g(x) = −
√
x+ 1 57. g(x) = −(

√
x+ 1) = −

√
x− 1

58. g(x) =
√
−x+ 1 + 2 59. g(x) =

√
−(x+ 1) + 2 =

√
−x− 1 + 2

60. g(x) = 2
√
x+ 3− 4 61. g(x) = 2

(√
x+ 3− 4

)
= 2
√
x+ 3− 8

62. g(x) =
√

2x− 3 + 1 63. g(x) =
√

2(x− 3) + 1 =
√

2x− 6 + 1

64. g(x) = −2 3
√
x+ 3− 1 or g(x) = 2 3

√
−x− 3− 1
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Chapter 2

Linear and Quadratic Functions

2.1 Linear Functions

We now begin the study of families of functions. Our first family, linear functions, are old friends as
we shall soon see. Recall from Geometry that two distinct points in the plane determine a unique
line containing those points, as indicated below.

P (x0, y0)

Q (x1, y1)

To give a sense of the ‘steepness’ of the line, we recall that we can compute the slope of the line
using the formula below.

Equation 2.1. The slope m of the line containing the points P (x0, y0) and Q (x1, y1) is:

m =
y1 − y0

x1 − x0

,

provided x1 6= x0.

A couple of notes about Equation 2.1 are in order. First, don’t ask why we use the letter ‘m’ to
represent slope. There are many explanations out there, but apparently no one really knows for
sure.1 Secondly, the stipulation x1 6= x0 ensures that we aren’t trying to divide by zero. The reader
is invited to pause to think about what is happening geometrically; the anxious reader can skip
along to the next example.

Example 2.1.1. Find the slope of the line containing the following pairs of points, if it exists.
Plot each pair of points and the line containing them.

1See www.mathforum.org or www.mathworld.wolfram.com for discussions on this topic.

http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html
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1. P (0, 0), Q(2, 4) 2. P (−1, 2), Q(3, 4)

3. P (−2, 3), Q(2,−3) 4. P (−3, 2), Q(4, 2)

5. P (2, 3), Q(2,−1) 6. P (2, 3), Q(2.1,−1)

Solution. In each of these examples, we apply the slope formula, Equation 2.1.

1. m =
4− 0

2− 0
=

4

2
= 2

P

Q

x

y

1 2 3 4

1

2

3

4

2. m =
4− 2

3− (−1)
=

2

4
=

1

2 P

Q

x

y

−1 1 2 3

1

2

3

4

3. m =
−3− 3

2− (−2)
=
−6

4
= −3

2

P

Q

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

4. m =
2− 2

4− (−3)
=

0

7
= 0 P Q

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3
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5. m =
−1− 3

2− 2
=
−4

0
, which is undefined

P

Q

x

y

1 2

−3

−2

−1

1

2

3

6. m =
−1− 3

2.1− 2
=
−4

0.1
= −40

P

Q

x

y

1 2

−3

−2

−1

1

2

3

A few comments about Example 2.1.1 are in order. First, for reasons which will be made clear
soon, if the slope is positive then the resulting line is said to be increasing. If it is negative, we
say the line is decreasing. A slope of 0 results in a horizontal line which we say is constant, and
an undefined slope results in a vertical line.2 Second, the larger the slope is in absolute value, the
steeper the line. You may recall from Intermediate Algebra that slope can be described as the
ratio ‘ rise

run ’. For example, in the second part of Example 2.1.1, we found the slope to be 1
2 . We can

interpret this as a rise of 1 unit upward for every 2 units to the right we travel along the line, as
shown below.

‘over 2’

‘up 1’

x

y

−1 1 2 3

1

2

3

4

2Some authors use the unfortunate moniker ‘no slope’ when a slope is undefined. It’s easy to confuse the notions
of ‘no slope’ with ‘slope of 0’. For this reason, we will describe slopes of vertical lines as ‘undefined’.
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Using more formal notation, given points (x0, y0) and (x1, y1), we use the Greek letter delta ‘∆’ to
write ∆y = y1 − y0 and ∆x = x1 − x0. In most scientific circles, the symbol ∆ means ‘change in’.

Hence, we may write

m =
∆y

∆x
,

which describes the slope as the rate of change of y with respect to x. Rates of change abound
in the ‘real world’, as the next example illustrates.

Example 2.1.2. Suppose that two separate temperature readings were taken at the ranger station
on the top of Mt. Sasquatch: at 6 AM the temperature was 24◦F and at 10 AM it was 32◦F.

1. Find the slope of the line containing the points (6, 24) and (10, 32).

2. Interpret your answer to the first part in terms of temperature and time.

3. Predict the temperature at noon.

Solution.

1. For the slope, we have m = 32−24
10−6 = 8

4 = 2.

2. Since the values in the numerator correspond to the temperatures in ◦F, and the values in

the denominator correspond to time in hours, we can interpret the slope as 2 =
2

1
=

2◦ F

1 hour
,

or 2◦F per hour. Since the slope is positive, we know this corresponds to an increasing line.
Hence, the temperature is increasing at a rate of 2◦F per hour.

3. Noon is two hours after 10 AM. Assuming a temperature increase of 2◦F per hour, in two
hours the temperature should rise 4◦F. Since the temperature at 10 AM is 32◦F, we would
expect the temperature at noon to be 32 + 4 = 36◦F.

Now it may well happen that in the previous scenario, at noon the temperature is only 33◦F.
This doesn’t mean our calculations are incorrect, rather, it means that the temperature change
throughout the day isn’t a constant 2◦F per hour. As discussed in Section 1.4.1, mathematical
models are just that: models. The predictions we get out of the models may be mathematically
accurate, but may not resemble what happens in the real world.

In Section 1.2, we discussed the equations of vertical and horizontal lines. Using the concept of
slope, we can develop equations for the other varieties of lines. Suppose a line has a slope of m and
contains the point (x0, y0). Suppose (x, y) is another point on the line, as indicated below.

(x0, y0)

(x, y)
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Equation 2.1 yields

m =
y − y0

x− x0

m (x− x0) = y − y0

y − y0 = m (x− x0)

We have just derived the point-slope form of a line.3

Equation 2.2. The point-slope form of the line with slope m containing the point (x0, y0) is
the equation y − y0 = m (x− x0).

Example 2.1.3. Write the equation of the line containing the points (−1, 3) and (2, 1).

Solution. In order to use Equation 2.2 we need to find the slope of the line in question so we
use Equation 2.1 to get m = ∆y

∆x = 1−3
2−(−1) = −2

3 . We are spoiled for choice for a point (x0, y0).

We’ll use (−1, 3) and leave it to the reader to check that using (2, 1) results in the same equation.
Substituting into the point-slope form of the line, we get

y − y0 = m (x− x0)

y − 3 = −2

3
(x− (−1))

y − 3 = −2

3
(x+ 1)

y − 3 = −2

3
x− 2

3

y = −2

3
x+

7

3
.

We can check our answer by showing that both (−1, 3) and (2, 1) are on the graph of y = −2
3x+ 7

3
algebraically, as we did in Section 1.2.1.

In simplifying the equation of the line in the previous example, we produced another form of a
line, the slope-intercept form. This is the familiar y = mx + b form you have probably seen in
Intermediate Algebra. The ‘intercept’ in ‘slope-intercept’ comes from the fact that if we set x = 0,
we get y = b. In other words, the y-intercept of the line y = mx+ b is (0, b).

Equation 2.3. The slope-intercept form of the line with slope m and y-intercept (0, b) is the
equation y = mx+ b.

Note that if we have slope m = 0, we get the equation y = b which matches our formula for a
horizontal line given in Section 1.2. The formula given in Equation 2.3 can be used to describe all
lines except vertical lines. All lines except vertical lines are functions (Why is this?) so we have
finally reached a good point to introduce linear functions.

3We can also understand this equation in terms of applying transformations to the function I(x) = x. See the
Exercises.
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Definition 2.1. A linear function is a function of the form

f(x) = mx+ b,

where m and b are real numbers with m 6= 0. The domain of a linear function is (−∞,∞).

For the case m = 0, we get f(x) = b. These are given their own classification.

Definition 2.2. A constant function is a function of the form

f(x) = b,

where b is real number. The domain of a constant function is (−∞,∞).

Recall that to graph a function, f , we graph the equation y = f(x). Hence, the graph of a
linear function is a line with slope m and y-intercept (0, b); the graph of a constant function is a
horizontal line (a line with slope m = 0) and a y-intercept of (0, b). Now think back to Section 1.6.1,
specifically Definition 1.10 concerning increasing, decreasing and constant functions. A line with
positive slope was called an increasing line because a linear function with m > 0 is an increasing
function. Similarly, a line with a negative slope was called a decreasing line because a linear function
with m < 0 is a decreasing function. And horizontal lines were called constant because, well, we
hope you’ve already made the connection.

Example 2.1.4. Graph the following functions. Identify the slope and y-intercept.

1. f(x) = 3

2. f(x) = 3x− 1

3. f(x) =
3− 2x

4

4. f(x) =
x2 − 4

x− 2

Solution.

1. To graph f(x) = 3, we graph y = 3. This is a horizontal line (m = 0) through (0, 3).

2. The graph of f(x) = 3x− 1 is the graph of the line y = 3x− 1. Comparison of this equation
with Equation 2.3 yields m = 3 and b = −1. Hence, our slope is 3 and our y-intercept is
(0,−1). To get another point on the line, we can plot (1, f(1)) = (1, 2).
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x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = 3

x

y

−2−1 1 2−1

1

2

3

4

f(x) = 3x− 1

3. At first glance, the function f(x) = 3−2x
4 does not fit the form in Definition 2.1 but after some

rearranging we get f(x) = 3−2x
4 = 3

4 −
2x
4 = −1

2x+ 3
4 . We identify m = −1

2 and b = 3
4 . Hence,

our graph is a line with a slope of −1
2 and a y-intercept of

(
0, 3

4

)
. Plotting an additional

point, we can choose (1, f(1)) to get
(
1, 1

4

)
.

4. If we simplify the expression for f , we get

f(x) =
x2 − 4

x− 2
=
��

��(x− 2)(x+ 2)

���
�(x− 2)

= x+ 2.

If we were to state f(x) = x + 2, we would be committing a sin of omission. Remember, to
find the domain of a function, we do so before we simplify! In this case, f has big problems
when x = 2, and as such, the domain of f is (−∞, 2) ∪ (2,∞). To indicate this, we write
f(x) = x + 2, x 6= 2. So, except at x = 2, we graph the line y = x + 2. The slope m = 1
and the y-intercept is (0, 2). A second point on the graph is (1, f(1)) = (1, 3). Since our
function f is not defined at x = 2, we put an open circle at the point that would be on the
line y = x+ 2 when x = 2, namely (2, 4).

x

y

−3 −2 −1 1 2 3

1

2

f(x) =
3− 2x

4

x

y

−1 1 2 3

1

2

3

4

f(x) =
x2 − 4

x− 2
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The last two functions in the previous example showcase some of the difficulty in defining a linear
function using the phrase ‘of the form’ as in Definition 2.1, since some algebraic manipulations may
be needed to rewrite a given function to match ‘the form’. Keep in mind that the domains of linear
and constant functions are all real numbers (−∞,∞), so while f(x) = x2−4

x−2 simplified to a formula
f(x) = x + 2, f is not considered a linear function since its domain excludes x = 2. However, we
would consider

f(x) =
2x2 + 2

x2 + 1

to be a constant function since its domain is all real numbers (Can you tell us why?) and

f(x) =
2x2 + 2

x2 + 1
=

2���
��(

x2 + 1
)

���
��(

x2 + 1
) = 2

The following example uses linear functions to model some basic economic relationships.

Example 2.1.5. The cost C, in dollars, to produce x PortaBoy4 game systems for a local retailer
is given by C(x) = 80x+ 150 for x ≥ 0.

1. Find and interpret C(10).

2. How many PortaBoys can be produced for $15,000?

3. Explain the significance of the restriction on the domain, x ≥ 0.

4. Find and interpret C(0).

5. Find and interpret the slope of the graph of y = C(x).

Solution.

1. To find C(10), we replace every occurrence of x with 10 in the formula for C(x) to get
C(10) = 80(10) + 150 = 950. Since x represents the number of PortaBoys produced, and
C(x) represents the cost, in dollars, C(10) = 950 means it costs $950 to produce 10 PortaBoys
for the local retailer.

2. To find how many PortaBoys can be produced for $15,000, we solve C(x) = 15000, or 80x+
150 = 15000. Solving, we get x = 14850

80 = 185.625. Since we can only produce a whole
number amount of PortaBoys, we can produce 185 PortaBoys for $15,000.

3. The restriction x ≥ 0 is the applied domain, as discussed in Section 1.4.1. In this context,
x represents the number of PortaBoys produced. It makes no sense to produce a negative
quantity of game systems.5

4The similarity of this name to PortaJohn is deliberate.
5Actually, it makes no sense to produce a fractional part of a game system, either, as we saw in the previous part

of this example. This absurdity, however, seems quite forgivable in some textbooks but not to us.

http://www.toilets.com
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4. We find C(0) = 80(0) + 150 = 150. This means it costs $150 to produce 0 PortaBoys. As
mentioned on page 82, this is the fixed, or start-up cost of this venture.

5. If we were to graph y = C(x), we would be graphing the portion of the line y = 80x + 150
for x ≥ 0. We recognize the slope, m = 80. Like any slope, we can interpret this as a rate of
change. Here, C(x) is the cost in dollars, while x measures the number of PortaBoys so

m =
∆y

∆x
=

∆C

∆x
= 80 =

80

1
=

$80

1 PortaBoy
.

In other words, the cost is increasing at a rate of $80 per PortaBoy produced. This is often
called the variable cost for this venture.

The next example asks us to find a linear function to model a related economic problem.

Example 2.1.6. The local retailer in Example 2.1.5 has determined that the number x of PortaBoy
game systems sold in a week is related to the price p in dollars of each system. When the price was
$220, 20 game systems were sold in a week. When the systems went on sale the following week, 40
systems were sold at $190 a piece.

1. Find a linear function which fits this data. Use the weekly sales x as the independent variable
and the price p as the dependent variable.

2. Find a suitable applied domain.

3. Interpret the slope.

4. If the retailer wants to sell 150 PortaBoys next week, what should the price be?

5. What would the weekly sales be if the price were set at $150 per system?

Solution.

1. We recall from Section 1.4 the meaning of ‘independent’ and ‘dependent’ variable. Since x is
to be the independent variable, and p the dependent variable, we treat x as the input variable
and p as the output variable. Hence, we are looking for a function of the form p(x) = mx+ b.
To determine m and b, we use the fact that 20 PortaBoys were sold during the week when
the price was 220 dollars and 40 units were sold when the price was 190 dollars. Using
function notation, these two facts can be translated as p(20) = 220 and p(40) = 190. Since
m represents the rate of change of p with respect to x, we have

m =
∆p

∆x
=

190− 220

40− 20
=
−30

20
= −1.5.

We now have determined p(x) = −1.5x+ b. To determine b, we can use our given data again.
Using p(20) = 220, we substitute x = 20 into p(x) = 1.5x+ b and set the result equal to 220:
−1.5(20) + b = 220. Solving, we get b = 250. Hence, we get p(x) = −1.5x + 250. We can
check our formula by computing p(20) and p(40) to see if we get 220 and 190, respectively.
You may recall from page 82 that the function p(x) is called the price-demand (or simply
demand) function for this venture.
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2. To determine the applied domain, we look at the physical constraints of the problem. Cer-
tainly, we can’t sell a negative number of PortaBoys, so x ≥ 0. However, we also note that
the slope of this linear function is negative, and as such, the price is decreasing as more units
are sold. Thus another constraint on the price is p(x) ≥ 0. Solving −1.5x + 250 ≥ 0 results

in −1.5x ≥ −250 or x ≤ 500

3
= 166.6. Since x represents the number of PortaBoys sold in a

week, we round down to 166. As a result, a reasonable applied domain for p is [0, 166].

3. The slope m = −1.5, once again, represents the rate of change of the price of a system with
respect to weekly sales of PortaBoys. Since the slope is negative, we have that the price
is decreasing at a rate of $1.50 per PortaBoy sold. (Said differently, you can sell one more
PortaBoy for every $1.50 drop in price.)

4. To determine the price which will move 150 PortaBoys, we find p(150) = −1.5(150)+250 = 25.
That is, the price would have to be $25.

5. If the price of a PortaBoy were set at $150, we have p(x) = 150, or, −1.5x+250 = 150. Solving,
we get −1.5x = −100 or x = 66.6. This means you would be able to sell 66 PortaBoys a week
if the price were $150 per system.

Not all real-world phenomena can be modeled using linear functions. Nevertheless, it is possible to
use the concept of slope to help analyze non-linear functions using the following.

Definition 2.3. Let f be a function defined on the interval [a, b]. The average rate of change
of f over [a, b] is defined as:

∆f

∆x
=
f(b)− f(a)

b− a

Geometrically, if we have the graph of y = f(x), the average rate of change over [a, b] is the slope of
the line which connects (a, f(a)) and (b, f(b)). This is called the secant line through these points.
For that reason, some textbooks use the notation msec for the average rate of change of a function.
Note that for a linear function m = msec, or in other words, its rate of change over an interval is
the same as its average rate of change.

(a, f(a))

(b, f(b))

y = f(x)

The graph of y = f(x) and its secant line through (a, f(a)) and (b, f(b))

The interested reader may question the adjective ‘average’ in the phrase ‘average rate of change’.
In the figure above, we can see that the function changes wildly on [a, b], yet the slope of the secant
line only captures a snapshot of the action at a and b. This situation is entirely analogous to the
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average speed on a trip. Suppose it takes you 2 hours to travel 100 miles. Your average speed is
100 miles
2 hours = 50 miles per hour. However, it is entirely possible that at the start of your journey, you

traveled 25 miles per hour, then sped up to 65 miles per hour, and so forth. The average rate of
change is akin to your average speed on the trip. Your speedometer measures your speed at any
one instant along the trip, your instantaneous rate of change, and this is one of the central
themes of Calculus.6

When interpreting rates of change, we interpret them the same way we did slopes. In the context
of functions, it may be helpful to think of the average rate of change as:

change in outputs

change in inputs

Example 2.1.7. Recall from page 82, the revenue from selling x units at a price p per unit is given
by the formula R = xp. Suppose we are in the scenario of Examples 2.1.5 and 2.1.6.

1. Find and simplify an expression for the weekly revenue R(x) as a function of weekly sales x.

2. Find and interpret the average rate of change of R(x) over the interval [0, 50].

3. Find and interpret the average rate of change of R(x) as x changes from 50 to 100 and
compare that to your result in part 2.

4. Find and interpret the average rate of change of weekly revenue as weekly sales increase from
100 PortaBoys to 150 PortaBoys.

Solution.

1. Since R = xp, we substitute p(x) = −1.5x+250 from Example 2.1.6 to get R(x) = x(−1.5x+
250) = −1.5x2 + 250x. Since we determined the price-demand function p(x) is restricted to
0 ≤ x ≤ 166, R(x) is restricted to these values of x as well.

2. Using Definition 2.3, we get that the average rate of change is

∆R

∆x
=
R(50)−R(0)

50− 0
=

8750− 0

50− 0
= 175.

Interpreting this slope as we have in similar situations, we conclude that for every additional
PortaBoy sold during a given week, the weekly revenue increases $175.

3. The wording of this part is slightly different than that in Definition 2.3, but its meaning is to
find the average rate of change of R over the interval [50, 100]. To find this rate of change,
we compute

∆R

∆x
=
R(100)−R(50)

100− 50
=

10000− 8750

50
= 25.

6Here we go again...
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In other words, for each additional PortaBoy sold, the revenue increases by $25. Note that
while the revenue is still increasing by selling more game systems, we aren’t getting as much
of an increase as we did in part 2 of this example. (Can you think of why this would happen?)

4. Translating the English to the mathematics, we are being asked to find the average rate of
change of R over the interval [100, 150]. We find

∆R

∆x
=
R(150)−R(100)

150− 100
=

3750− 10000

50
= −125.

This means that we are losing $125 dollars of weekly revenue for each additional PortaBoy
sold. (Can you think why this is possible?)

We close this section with a new look at difference quotients which were first introduced in Section
1.4. If we wish to compute the average rate of change of a function f over the interval [x, x + h],
then we would have

∆f

∆x
=
f(x+ h)− f(x)

(x+ h)− x
=
f(x+ h)− f(x)

h

As we have indicated, the rate of change of a function (average or otherwise) is of great importance
in Calculus.7 Also, we have the geometric interpretation of difference quotients which was promised
to you back on page 81 – a difference quotient yields the slope of a secant line.

7So we are not torturing you with these for nothing.
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2.1.1 Exercises

In Exercises 1 - 10, find both the point-slope form and the slope-intercept form of the line with the
given slope which passes through the given point.

1. m = 3, P (3,−1) 2. m = −2, P (−5, 8)

3. m = −1, P (−7,−1) 4. m = 2
3 , P (−2, 1)

5. m = −1
5 , P (10, 4) 6. m = 1

7 , P (−1, 4)

7. m = 0, P (3, 117) 8. m = −
√

2, P (0,−3)

9. m = −5, P (
√

3, 2
√

3) 10. m = 678, P (−1,−12)

In Exercises 11 - 20, find the slope-intercept form of the line which passes through the given points.

11. P (0, 0), Q(−3, 5) 12. P (−1,−2), Q(3,−2)

13. P (5, 0), Q(0,−8) 14. P (3,−5), Q(7, 4)

15. P (−1, 5), Q(7, 5) 16. P (4,−8), Q(5,−8)

17. P
(

1
2 ,

3
4

)
, Q

(
5
2 ,−

7
4

)
18. P

(
2
3 ,

7
2

)
, Q

(
−1

3 ,
3
2

)
19. P

(√
2,−
√

2
)
, Q

(
−
√

2,
√

2
)

20. P
(
−
√

3,−1
)
, Q

(√
3, 1
)

In Exercises 21 - 26, graph the function. Find the slope, y-intercept and x-intercept, if any exist.

21. f(x) = 2x− 1 22. f(x) = 3− x

23. f(x) = 3 24. f(x) = 0

25. f(x) = 2
3x+ 1

3 26. f(x) =
1− x

2

27. Find all of the points on the line y = 2x+ 1 which are 4 units from the point (−1, 3).

28. Jeff can walk comfortably at 3 miles per hour. Find a linear function d that represents the
total distance Jeff can walk in t hours, assuming he doesn’t take any breaks.

29. Carl can stuff 6 envelopes per minute. Find a linear function E that represents the total
number of envelopes Carl can stuff after t hours, assuming he doesn’t take any breaks.

30. A landscaping company charges $45 per cubic yard of mulch plus a delivery charge of $20.
Find a linear function which computes the total cost C (in dollars) to deliver x cubic yards
of mulch.
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31. A plumber charges $50 for a service call plus $80 per hour. If she spends no longer than 8
hours a day at any one site, find a linear function that represents her total daily charges C
(in dollars) as a function of time t (in hours) spent at any one given location.

32. A salesperson is paid $200 per week plus 5% commission on her weekly sales of x dollars.
Find a linear function that represents her total weekly pay, W (in dollars) in terms of x.
What must her weekly sales be in order for her to earn $475.00 for the week?

33. An on-demand publisher charges $22.50 to print a 600 page book and $15.50 to print a 400
page book. Find a linear function which models the cost of a book C as a function of the
number of pages p. Interpret the slope of the linear function and find and interpret C(0).

34. The Topology Taxi Company charges $2.50 for the first fifth of a mile and $0.45 for each
additional fifth of a mile. Find a linear function which models the taxi fare F as a function
of the number of miles driven, m. Interpret the slope of the linear function and find and
interpret F (0).

35. Water freezes at 0◦ Celsius and 32◦ Fahrenheit and it boils at 100◦C and 212◦F.

(a) Find a linear function F that expresses temperature in the Fahrenheit scale in terms of
degrees Celsius. Use this function to convert 20◦C into Fahrenheit.

(b) Find a linear function C that expresses temperature in the Celsius scale in terms of
degrees Fahrenheit. Use this function to convert 110◦F into Celsius.

(c) Is there a temperature n such that F (n) = C(n)?

36. Legend has it that a bull Sasquatch in rut will howl approximately 9 times per hour when it is
40◦F outside and only 5 times per hour if it’s 70◦F . Assuming that the number of howls per
hour, N , can be represented by a linear function of temperature Fahrenheit, find the number
of howls per hour he’ll make when it’s only 20◦F outside. What is the applied domain of this
function? Why?

37. Economic forces beyond anyone’s control have changed the cost function for PortaBoys to
C(x) = 105x+ 175. Rework Example 2.1.5 with this new cost function.

38. In response to the economic forces in Exercise 37 above, the local retailer sets the selling price
of a PortaBoy at $250. Remarkably, 30 units were sold each week. When the systems went
on sale for $220, 40 units per week were sold. Rework Examples 2.1.6 and 2.1.7 with this new
data. What difficulties do you encounter?

39. A local pizza store offers medium two-topping pizzas delivered for $6.00 per pizza plus a
$1.50 delivery charge per order. On weekends, the store runs a ‘game day’ special: if six or
more medium two-topping pizzas are ordered, they are $5.50 each with no delivery charge.
Write a piecewise-defined linear function which calculates the cost C (in dollars) of p medium
two-topping pizzas delivered during a weekend.
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40. A restaurant offers a buffet which costs $15 per person. For parties of 10 or more people, a
group discount applies, and the cost is $12.50 per person. Write a piecewise-defined linear
function which calculates the total bill T of a party of n people who all choose the buffet.

41. A mobile plan charges a base monthly rate of $10 for the first 500 minutes of air time plus
a charge of 15¢ for each additional minute. Write a piecewise-defined linear function which
calculates the monthly cost C (in dollars) for using m minutes of air time.

HINT: You may want to revisit Exercise 74 in Section 1.4

42. The local pet shop charges 12¢ per cricket up to 100 crickets, and 10¢ per cricket thereafter.
Write a piecewise-defined linear function which calculates the price P , in dollars, of purchasing
c crickets.

43. The cross-section of a swimming pool is below. Write a piecewise-defined linear function
which describes the depth of the pool, D (in feet) as a function of:

(a) the distance (in feet) from the edge of the shallow end of the pool, d.

(b) the distance (in feet) from the edge of the deep end of the pool, s.

(c) Graph each of the functions in (a) and (b). Discuss with your classmates how to trans-
form one into the other and how they relate to the diagram of the pool.

d ft. s ft.

37 ft.

15 ft.

10 ft.8 ft.

2 ft.

In Exercises 44 - 49, compute the average rate of change of the function over the specified interval.

44. f(x) = x3, [−1, 2] 45. f(x) =
1

x
, [1, 5]

46. f(x) =
√
x, [0, 16] 47. f(x) = x2, [−3, 3]

48. f(x) =
x+ 4

x− 3
, [5, 7] 49. f(x) = 3x2 + 2x− 7, [−4, 2]



166 Linear and Quadratic Functions

In Exercises 50 - 53, compute the average rate of change of the given function over the interval
[x, x+ h]. Here we assume [x, x+ h] is in the domain of the function.

50. f(x) = x3 51. f(x) =
1

x

52. f(x) =
x+ 4

x− 3
53. f(x) = 3x2 + 2x− 7

54. The height of an object dropped from the roof of an eight story building is modeled by:
h(t) = −16t2 + 64, 0 ≤ t ≤ 2. Here, h is the height of the object off the ground in feet, t
seconds after the object is dropped. Find and interpret the average rate of change of h over
the interval [0, 2].

55. Using data from Bureau of Transportation Statistics, the average fuel economy F in miles
per gallon for passenger cars in the US can be modeled by F (t) = −0.0076t2 + 0.45t + 16,
0 ≤ t ≤ 28, where t is the number of years since 1980. Find and interpret the average rate of
change of F over the interval [0, 28].

56. The temperature T in degrees Fahrenheit t hours after 6 AM is given by:

T (t) = −1

2
t2 + 8t+ 32, 0 ≤ t ≤ 12

(a) Find and interpret T (4), T (8) and T (12).

(b) Find and interpret the average rate of change of T over the interval [4, 8].

(c) Find and interpret the average rate of change of T from t = 8 to t = 12.

(d) Find and interpret the average rate of temperature change between 10 AM and 6 PM.

57. Suppose C(x) = x2− 10x+ 27 represents the costs, in hundreds, to produce x thousand pens.
Find and interpret the average rate of change as production is increased from making 3000
to 5000 pens.

58. With the help of your classmates find several other “real-world” examples of rates of change
that are used to describe non-linear phenomena.

(Parallel Lines) Recall from Intermediate Algebra that parallel lines have the same slope. (Please
note that two vertical lines are also parallel to one another even though they have an undefined
slope.) In Exercises 59 - 64, you are given a line and a point which is not on that line. Find the
line parallel to the given line which passes through the given point.

59. y = 3x+ 2, P (0, 0) 60. y = −6x+ 5, P (3, 2)

http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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61. y = 2
3x− 7, P (6, 0) 62. y =

4− x
3

, P (1,−1)

63. y = 6, P (3,−2) 64. x = 1, P (−5, 0)

(Perpendicular Lines) Recall from Intermediate Algebra that two non-vertical lines are perpendic-
ular if and only if they have negative reciprocal slopes. That is to say, if one line has slope m1 and
the other has slope m2 then m1 ·m2 = −1. (You will be guided through a proof of this result in
Exercise 71.) Please note that a horizontal line is perpendicular to a vertical line and vice versa, so
we assume m1 6= 0 and m2 6= 0. In Exercises 65 - 70, you are given a line and a point which is not
on that line. Find the line perpendicular to the given line which passes through the given point.

65. y = 1
3x+ 2, P (0, 0) 66. y = −6x+ 5, P (3, 2)

67. y = 2
3x− 7, P (6, 0) 68. y =

4− x
3

, P (1,−1)

69. y = 6, P (3,−2) 70. x = 1, P (−5, 0)

71. We shall now prove that y = m1x + b1 is perpendicular to y = m2x + b2 if and only if
m1 ·m2 = −1. To make our lives easier we shall assume that m1 > 0 and m2 < 0. We can
also “move” the lines so that their point of intersection is the origin without messing things
up, so we’ll assume b1 = b2 = 0. (Take a moment with your classmates to discuss why this is
okay.) Graphing the lines and plotting the points O(0, 0) , P (1,m1) and Q(1,m2) gives us
the following set up.

P

O

Q

x

y

The line y = m1x will be perpendicular to the line y = m2x if and only if 4OPQ is a right
triangle. Let d1 be the distance from O to P , let d2 be the distance from O to Q and let d3

be the distance from P to Q. Use the Pythagorean Theorem to show that 4OPQ is a right
triangle if and only if m1 ·m2 = −1 by showing d2

1 + d2
2 = d2

3 if and only if m1 ·m2 = −1.
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72. Show that if a 6= b, the line containing the points (a, b) and (b, a) is perpendicular to the line
y = x. (Coupled with the result from Example 1.1.7 on page 13, we have now shown that the
line y = x is a perpendicular bisector of the line segment connecting (a, b) and (b, a). This
means the points (a, b) and (b, a) are symmetric about the line y = x. We will revisit this
symmetry in section 5.2.)

73. The function defined by I(x) = x is called the Identity Function.

(a) Discuss with your classmates why this name makes sense.

(b) Show that the point-slope form of a line (Equation 2.2) can be obtained from I using a
sequence of the transformations defined in Section 1.7.
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2.1.2 Answers

1. y + 1 = 3(x− 3)
y = 3x− 10

2. y − 8 = −2(x+ 5)
y = −2x− 2

3. y + 1 = −(x+ 7)
y = −x− 8

4. y − 1 = 2
3(x+ 2)

y = 2
3x+ 7

3

5. y − 4 = −1
5(x− 10)

y = −1
5x+ 6

6. y − 4 = 1
7(x+ 1)

y = 1
7x+ 29

7

7. y − 117 = 0
y = 117

8. y + 3 = −
√

2(x− 0)
y = −

√
2x− 3

9. y − 2
√

3 = −5(x−
√

3)
y = −5x+ 7

√
3

10. y + 12 = 678(x+ 1)
y = 678x+ 666

11. y = −5
3x 12. y = −2

13. y = 8
5x− 8 14. y = 9

4x−
47
4

15. y = 5 16. y = −8

17. y = −5
4x+ 11

8 18. y = 2x+ 13
6

19. y = −x 20. y =
√

3
3 x

21. f(x) = 2x− 1

slope: m = 2

y-intercept: (0,−1)

x-intercept:
(

1
2 , 0
)

x

y

−2 −1 1 2

−3

−2

−1

1

2

3

22. f(x) = 3− x
slope: m = −1

y-intercept: (0, 3)

x-intercept: (3, 0)

x

y

−1 1 2 3 4

−1

1

2

3

4
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23. f(x) = 3

slope: m = 0

y-intercept: (0, 3)

x-intercept: none

x

y

−2 −1 1 2

1

2

3

4

24. f(x) = 0

slope: m = 0

y-intercept: (0, 0)

x-intercept: {(x, 0) |x is a real number}

x

y

−2 −1 1 2

−1

1

25. f(x) = 2
3x+ 1

3

slope: m = 2
3

y-intercept:
(
0, 1

3

)
x-intercept:

(
−1

2 , 0
) x

y

−2 1 2

−1

1

2

26. f(x) =
1− x

2

slope: m = −1
2

y-intercept:
(
0, 1

2

)
x-intercept: (1, 0)

x

y

−2 −1 1 2

−1

1

2

27. (−1,−1) and
(

11
5 ,

27
5

)
28. d(t) = 3t, t ≥ 0.

29. E(t) = 360t, t ≥ 0. 30. C(x) = 45x+ 20, x ≥ 0.

31. C(t) = 80t+ 50, 0 ≤ t ≤ 8. 32. W (x) = 200+ .05x, x ≥ 0 She must make
$5500 in weekly sales.

33. C(p) = 0.035p+ 1.5 The slope 0.035 means it costs 3.5¢ per page. C(0) = 1.5 means there
is a fixed, or start-up, cost of $1.50 to make each book.

34. F (m) = 2.25m+ 2.05 The slope 2.25 means it costs an additional $2.25 for each mile beyond
the first 0.2 miles. F (0) = 2.05, so according to the model, it would cost $2.05 for a trip of 0
miles. Would this ever really happen? Depends on the driver and the passenger, we suppose.
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35. (a) F (C) = 9
5C + 32 (b) C(F ) = 5

9(F − 32) = 5
9F −

160
9

(c) F (−40) = −40 = C(−40).

36. N(T ) = − 2
15T + 43

3 and N(20) = 35
3 ≈ 12 howls per hour.

Having a negative number of howls makes no sense and since N(107.5) = 0 we can put an
upper bound of 107.5◦F on the domain. The lower bound is trickier because there’s nothing
other than common sense to go on. As it gets colder, he howls more often. At some point
it will either be so cold that he freezes to death or he’s howling non-stop. So we’re going to
say that he can withstand temperatures no lower than −60◦F so that the applied domain is
[−60, 107.5].

39. C(p) =

{
6p+ 1.5 if 1 ≤ p ≤ 5

5.5p if p ≥ 6

40. T (n) =

{
15n if 1 ≤ n ≤ 9

12.5n if n ≥ 10

41. C(m) =

{
10 if 0 ≤ m ≤ 500

10 + 0.15(m− 500) if m > 500

42. P (c) =

{
0.12c if 1 ≤ c ≤ 100

12 + 0.1(c− 100) if c > 100

43. (a)

D(d) =


8 if 0 ≤ d ≤ 15

−1
2 d+ 31

2 if 15 ≤ d ≤ 27

2 if 27 ≤ d ≤ 37

(b)

D(s) =


2 if 0 ≤ s ≤ 10

1
2 s− 3 if 10 ≤ s ≤ 22

8 if 22 ≤ s ≤ 37

(c)

15 27 37

2

8

y = D(d)

10 22 37

2

8

y = D(s)
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44.
23 − (−1)3

2− (−1)
= 3 45.

1
5 −

1
1

5− 1
= −1

5

46.

√
16−

√
0

16− 0
=

1

4
47.

32 − (−3)2

3− (−3)
= 0

48.
7+4
7−3 −

5+4
5−3

7− 5
= −7

8
49.

(3(2)2 + 2(2)− 7)− (3(−4)2 + 2(−4)− 7)

2− (−4)
= −4

50. 3x2 + 3xh+ h2 51.
−1

x(x+ h)

52.
−7

(x− 3)(x+ h− 3)
53. 6x+ 3h+ 2

54. The average rate of change is h(2)−h(0)
2−0 = −32. During the first two seconds after it is

dropped, the object has fallen at an average rate of 32 feet per second. (This is called the
average velocity of the object.)

55. The average rate of change is F (28)−F (0)
28−0 = 0.2372. During the years from 1980 to 2008, the

average fuel economy of passenger cars in the US increased, on average, at a rate of 0.2372
miles per gallon per year.

56. (a) T (4) = 56, so at 10 AM (4 hours after 6 AM), it is 56◦F. T (8) = 64, so at 2 PM (8 hours
after 6 AM), it is 64◦F. T (12) = 56, so at 6 PM (12 hours after 6 AM), it is 56◦F.

(b) The average rate of change is T (8)−T (4)
8−4 = 2. Between 10 AM and 2 PM, the temperature

increases, on average, at a rate of 2◦F per hour.

(c) The average rate of change is T (12)−T (8)
12−8 = −2. Between 2 PM and 6 PM, the temperature

decreases, on average, at a rate of 2◦F per hour.

(d) The average rate of change is T (12)−T (4)
12−4 = 0. Between 10 AM and 6 PM, the tempera-

ture, on average, remains constant.

57. The average rate of change is C(5)−C(3)
5−3 = −2. As production is increased from 3000 to 5000

pens, the cost decreases at an average rate of $200 per 1000 pens produced (20¢ per pen.)

59. y = 3x 60. y = −6x+ 20 61. y = 2
3x− 4

62. y = −1
3x−

2
3 63. y = −2 64. x = −5

65. y = −3x 66. y = 1
6x+ 3

2 67. y = −3
2x+ 9

68. y = 3x− 4 69. x = 3 70. y = 0
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2.2 Absolute Value Functions

There are a few ways to describe what is meant by the absolute value |x| of a real number x. You
may have been taught that |x| is the distance from the real number x to 0 on the number line. So,
for example, |5| = 5 and | − 5| = 5, since each is 5 units from 0 on the number line.

distance is 5 units distance is 5 units

−5 −4 −3 −2 −1 0 1 2 3 4 5

Another way to define absolute value is by the equation |x| =
√
x2. Using this definition, we have

|5| =
√

(5)2 =
√

25 = 5 and | − 5| =
√

(−5)2 =
√

25 = 5. The long and short of both of these
procedures is that |x| takes negative real numbers and assigns them to their positive counterparts
while it leaves positive numbers alone. This last description is the one we shall adopt, and is
summarized in the following definition.

Definition 2.4. The absolute value of a real number x, denoted |x|, is given by

|x| =

{
−x, if x < 0

x, if x ≥ 0

In Definition 2.4, we define |x| using a piecewise-defined function. (See page 62 in Section 1.4.) To
check that this definition agrees with what we previously understood as absolute value, note that
since 5 ≥ 0, to find |5| we use the rule |x| = x, so |5| = 5. Similarly, since −5 < 0, we use the
rule |x| = −x, so that | − 5| = −(−5) = 5. This is one of the times when it’s best to interpret the
expression ‘−x’ as ‘the opposite of x’ as opposed to ‘negative x’. Before we begin studying absolute
value functions, we remind ourselves of the properties of absolute value.

Theorem 2.1. Properties of Absolute Value: Let a, b and x be real numbers and let n be
an integer.a Then

� Product Rule: |ab| = |a||b|

� Power Rule: |an| = |a|n whenever an is defined

� Quotient Rule:
∣∣∣a
b

∣∣∣ =
|a|
|b|

, provided b 6= 0

Equality Properties:

� |x| = 0 if and only if x = 0.

� For c > 0, |x| = c if and only if x = c or −x = c.

� For c < 0, |x| = c has no solution.

aSee page 2 if you don’t remember what an integer is.
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The proofs of the Product and Quotient Rules in Theorem 2.1 boil down to checking four cases:
when both a and b are positive; when they are both negative; when one is positive and the other
is negative; and when one or both are zero.

For example, suppose we wish to show that |ab| = |a||b|. We need to show that this equation is
true for all real numbers a and b. If a and b are both positive, then so is ab. Hence, |a| = a, |b| = b
and |ab| = ab. Hence, the equation |ab| = |a||b| is the same as ab = ab which is true. If both a
and b are negative, then ab is positive. Hence, |a| = −a, |b| = −b and |ab| = ab. The equation
|ab| = |a||b| becomes ab = (−a)(−b), which is true. Suppose a is positive and b is negative. Then
ab is negative, and we have |ab| = −ab, |a| = a and |b| = −b. The equation |ab| = |a||b| reduces to
−ab = a(−b) which is true. A symmetric argument shows the equation |ab| = |a||b| holds when a is
negative and b is positive. Finally, if either a or b (or both) are zero, then both sides of |ab| = |a||b|
are zero, so the equation holds in this case, too. All of this rhetoric has shown that the equation
|ab| = |a||b| holds true in all cases.

The proof of the Quotient Rule is very similar, with the exception that b 6= 0. The Power Rule can
be shown by repeated application of the Product Rule. The ‘Equality Properties’ can be proved
using Definition 2.4 and by looking at the cases when x ≥ 0, in which case |x| = x, or when x < 0,
in which case |x| = −x. For example, if c > 0, and |x| = c, then if x ≥ 0, we have x = |x| = c.
If, on the other hand, x < 0, then −x = |x| = c, so x = −c. The remaining properties are proved
similarly and are left for the Exercises. Our first example reviews how to solve basic equations
involving absolute value using the properties listed in Theorem 2.1.

Example 2.2.1. Solve each of the following equations.

1. |3x− 1| = 6 2. 3− |x+ 5| = 1 3. 3|2x+ 1| − 5 = 0

4. 4− |5x+ 3| = 5 5. |x| = x2 − 6 6. |x− 2|+ 1 = x

Solution.

1. The equation |3x − 1| = 6 is of the form |x| = c for c > 0, so by the Equality Properties,
|3x−1| = 6 is equivalent to 3x−1 = 6 or 3x−1 = −6. Solving the former, we arrive at x = 7

3 ,
and solving the latter, we get x = −5

3 . We may check both of these solutions by substituting
them into the original equation and showing that the arithmetic works out.

2. To use the Equality Properties to solve 3− |x+ 5| = 1, we first isolate the absolute value.

3− |x+ 5| = 1

−|x+ 5| = −2 subtract 3

|x+ 5| = 2 divide by −1

From the Equality Properties, we have x+ 5 = 2 or x+ 5 = −2, and get our solutions to be
x = −3 or x = −7. We leave it to the reader to check both answers in the original equation.
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3. As in the previous example, we first isolate the absolute value in the equation 3|2x+1|−5 = 0
and get |2x + 1| = 5

3 . Using the Equality Properties, we have 2x + 1 = 5
3 or 2x + 1 = −5

3 .
Solving the former gives x = 1

3 and solving the latter gives x = −4
3 . As usual, we may

substitute both answers in the original equation to check.

4. Upon isolating the absolute value in the equation 4− |5x+ 3| = 5, we get |5x+ 3| = −1. At
this point, we know there cannot be any real solution, since, by definition, the absolute value
of anything is never negative. We are done.

5. The equation |x| = x2 − 6 presents us with some difficulty, since x appears both inside and
outside of the absolute value. Moreover, there are values of x for which x2 − 6 is positive,
negative and zero, so we cannot use the Equality Properties without the risk of introducing
extraneous solutions, or worse, losing solutions. For this reason, we break equations like this
into cases by rewriting the term in absolute values, |x|, using Definition 2.4. For x < 0,
|x| = −x, so for x < 0, the equation |x| = x2 − 6 is equivalent to −x = x2 − 6. Rearranging
this gives us x2 +x−6 = 0, or (x+3)(x−2) = 0. We get x = −3 or x = 2. Since only x = −3
satisfies x < 0, this is the answer we keep. For x ≥ 0, |x| = x, so the equation |x| = x2 − 6
becomes x = x2 − 6. From this, we get x2 − x − 6 = 0 or (x − 3)(x + 2) = 0. Our solutions
are x = 3 or x = −2, and since only x = 3 satisfies x ≥ 0, this is the one we keep. Hence, our
two solutions to |x| = x2 − 6 are x = −3 and x = 3.

6. To solve |x−2|+1 = x, we first isolate the absolute value and get |x−2| = x−1. Since we see
x both inside and outside of the absolute value, we break the equation into cases. The term
with absolute values here is |x− 2|, so we replace ‘x’ with the quantity ‘(x− 2)’ in Definition
2.4 to get

|x− 2| =

{
−(x− 2), if (x− 2) < 0

(x− 2), if (x− 2) ≥ 0

Simplifying yields

|x− 2| =

{
−x+ 2, if x < 2

x− 2, if x ≥ 2

So, for x < 2, |x−2| = −x+2 and our equation |x−2| = x−1 becomes −x+2 = x−1, which
gives x = 3

2 . Since this solution satisfies x < 2, we keep it. Next, for x ≥ 2, |x−2| = x−2, so
the equation |x− 2| = x− 1 becomes x− 2 = x− 1. Here, the equation reduces to −2 = −1,
which signifies we have no solutions here. Hence, our only solution is x = 3

2 .

Next, we turn our attention to graphing absolute value functions. Our strategy in the next example
is to make liberal use of Definition 2.4 along with what we know about graphing linear functions
(from Section 2.1) and piecewise-defined functions (from Section 1.4).

Example 2.2.2. Graph each of the following functions.

1. f(x) = |x| 2. g(x) = |x− 3| 3. h(x) = |x| − 3 4. i(x) = 4−2|3x+1|
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Find the zeros of each function and the x- and y-intercepts of each graph, if any exist. From the
graph, determine the domain and range of each function, list the intervals on which the function is
increasing, decreasing or constant, and find the relative and absolute extrema, if they exist.

Solution.

1. To find the zeros of f , we set f(x) = 0. We get |x| = 0, which, by Theorem 2.1 gives us x = 0.
Since the zeros of f are the x-coordinates of the x-intercepts of the graph of y = f(x), we get
(0, 0) as our only x-intercept. To find the y-intercept, we set x = 0, and find y = f(0) = 0,
so that (0, 0) is our y-intercept as well.1 Using Definition 2.4, we get

f(x) = |x| =

{
−x, if x < 0

x, if x ≥ 0

Hence, for x < 0, we are graphing the line y = −x; for x ≥ 0, we have the line y = x.
Proceeding as we did in Section 1.6, we get

x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|, x < 0

x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|, x ≥ 0

Notice that we have an ‘open circle’ at (0, 0) in the graph when x < 0. As we have seen before,
this is due to the fact that the points on y = −x approach (0, 0) as the x-values approach 0.
Since x is required to be strictly less than zero on this stretch, the open circle is drawn at the
origin. However, notice that when x ≥ 0, we get to fill in the point at (0, 0), which effectively
‘plugs’ the hole indicated by the open circle. Thus we get,

x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|
1Actually, since functions can have at most one y-intercept (Do you know why?), as soon as we found (0, 0) as the

x-intercept, we knew this was also the y-intercept.
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By projecting the graph to the x-axis, we see that the domain is (−∞,∞). Projecting to
the y-axis gives us the range [0,∞). The function is increasing on [0,∞) and decreasing on
(−∞, 0]. The relative minimum value of f is the same as the absolute minimum, namely 0
which occurs at (0, 0). There is no relative maximum value of f . There is also no absolute
maximum value of f , since the y values on the graph extend infinitely upwards.

2. To find the zeros of g, we set g(x) = |x − 3| = 0. By Theorem 2.1, we get x − 3 = 0 so
that x = 3. Hence, the x-intercept is (3, 0). To find our y-intercept, we set x = 0 so that
y = g(0) = |0− 3| = 3, which yields (0, 3) as our y-intercept. To graph g(x) = |x− 3|, we use
Definition 2.4 to rewrite g as

g(x) = |x− 3| =

{
−(x− 3), if (x− 3) < 0

(x− 3), if (x− 3) ≥ 0

Simplifying, we get

g(x) =

{
−x+ 3, if x < 3

x− 3, if x ≥ 3

As before, the open circle we introduce at (3, 0) from the graph of y = −x+ 3 is filled by the
point (3, 0) from the line y = x− 3. We determine the domain as (−∞,∞) and the range as
[0,∞). The function g is increasing on [3,∞) and decreasing on (−∞, 3]. The relative and
absolute minimum value of g is 0 which occurs at (3, 0). As before, there is no relative or
absolute maximum value of g.

3. Setting h(x) = 0 to look for zeros gives |x| − 3 = 0. As in Example 2.2.1, we isolate the
absolute value to get |x| = 3 so that x = 3 or x = −3. As a result, we have a pair of x-
intercepts: (−3, 0) and (3, 0). Setting x = 0 gives y = h(0) = |0| − 3 = −3, so our y-intercept
is (0,−3). As before, we rewrite the absolute value in h to get

h(x) =

{
−x− 3, if x < 0

x− 3, if x ≥ 0

Once again, the open circle at (0,−3) from one piece of the graph of h is filled by the point
(0,−3) from the other piece of h. From the graph, we determine the domain of h is (−∞,∞)
and the range is [−3,∞). On [0,∞), h is increasing; on (−∞, 0] it is decreasing. The relative
minimum occurs at the point (0,−3) on the graph, and we see −3 is both the relative and
absolute minimum value of h. Also, h has no relative or absolute maximum value.
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x

y

1 2 3 4 5

1

2

3

4

g(x) = |x− 3|

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

h(x) = |x| − 3

4. As before, we set i(x) = 0 to find the zeros of i and get 4−2|3x+1| = 0. Isolating the absolute
value term gives |3x+1| = 2, so either 3x+1 = 2 or 3x+1 = −2. We get x = 1

3 or x = −1, so
our x-intercepts are

(
1
3 , 0
)

and (−1, 0). Substituting x = 0 gives y = i(0) = 4−2|3(0)+1| = 2,
for a y-intercept of (0, 2). Rewriting the formula for i(x) without absolute values gives

i(x) =

{
4− 2(−(3x+ 1)), if (3x+ 1) < 0

4− 2(3x+ 1), if (3x+ 1) ≥ 0
=

{
6x+ 6, if x < −1

3

−6x+ 2, if x ≥ −1
3

The usual analysis near the trouble spot x = −1
3 gives the ‘corner’ of this graph is

(
−1

3 , 4
)
,

and we get the distinctive ‘∨’ shape:

x

y

−1 1

−1

1

2

3

5

i(x) = 4− 2|3x+ 1|

The domain of i is (−∞,∞) while the range is (−∞, 4]. The function i is increasing on(
−∞,−1

3

]
and decreasing on

[
−1

3 ,∞
)
. The relative maximum occurs at the point

(
−1

3 , 4
)

and the relative and absolute maximum value of i is 4. Since the graph of i extends downwards
forever more, there is no absolute minimum value. As we can see from the graph, there is no
relative minimum, either.

Note that all of the functions in the previous example bear the characteristic ‘∨’ shape of the graph
of y = |x|. We could have graphed the functions g, h and i in Example 2.2.2 starting with the
graph of f(x) = |x| and applying transformations as in Section 1.7 as our next example illustrates.
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Example 2.2.3. Graph the following functions starting with the graph of f(x) = |x| and using
transformations.

1. g(x) = |x− 3| 2. h(x) = |x| − 3 3. i(x) = 4− 2|3x+ 1|

Solution. We begin by graphing f(x) = |x| and labeling three points, (−1, 1), (0, 0) and (1, 1).

(−1, 1) (1, 1)

(0, 0) x

y

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|

1. Since g(x) = |x− 3| = f(x− 3), Theorem 1.7 tells us to add 3 to each of the x-values of the
points on the graph of y = f(x) to obtain the graph of y = g(x). This shifts the graph of
y = f(x) to the right 3 units and moves the point (−1, 1) to (2, 1), (0, 0) to (3, 0) and (1, 1)
to (4, 1). Connecting these points in the classic ‘∨’ fashion produces the graph of y = g(x).

x

y

(−1, 1)

(0, 0)

(1, 1)

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|
shift right 3 units
−−−−−−−−−−−−→

add 3 to each x-coordinate

x

y

(2, 1)

(3, 0)

(4, 1)

1 2 4 5 6

1

2

3

4

g(x) = f(x− 3) = |x− 3|

2. For h(x) = |x| − 3 = f(x)− 3, Theorem 1.7 tells us to subtract 3 from each of the y-values of
the points on the graph of y = f(x) to obtain the graph of y = h(x). This shifts the graph of
y = f(x) down 3 units and moves (−1, 1) to (−1,−2), (0, 0) to (0,−3) and (1, 1) to (1,−2).
Connecting these points with the ‘∨’ shape produces our graph of y = h(x).

x

y

(−1, 1)

(0, 0)

(1, 1)

−3 −2 −1 1 2 3

1

2

3

4

f(x) = |x|
shift down 3 units
−−−−−−−−−−−−→

subtract 3 from each y-coordinate

x

y

(−1,−2)

(0,−3)

(1,−2)

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

h(x) = f(x)− 3 = |x| − 3
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3. We re-write i(x) = 4 − 2|3x + 1| = 4 − 2f(3x + 1) = −2f(3x + 1) + 4 and apply Theorem
1.7. First, we take care of the changes on the ‘inside’ of the absolute value. Instead of |x|,
we have |3x + 1|, so, in accordance with Theorem 1.7, we first subtract 1 from each of the
x-values of points on the graph of y = f(x), then divide each of those new values by 3. This
effects a horizontal shift left 1 unit followed by a horizontal shrink by a factor of 3. These
transformations move (−1, 1) to

(
−2

3 , 1
)
, (0, 0) to

(
−1

3 , 0
)

and (1, 1) to (0, 1). Next, we take
care of what’s happening ‘outside of’ the absolute value. Theorem 1.7 instructs us to first
multiply each y-value of these new points by −2 then add 4. Geometrically, this corresponds
to a vertical stretch by a factor of 2, a reflection across the x-axis and finally, a vertical shift
up 4 units. These transformations move

(
−2

3 , 1
)

to
(
−2

3 , 2
)
,
(
−1

3 , 0
)

to
(
−1

3 , 4
)
, and (0, 1) to

(0, 2). Connecting these points with the usual ‘∨’ shape produces our graph of y = i(x).

x

y

(−1, 1)

(0, 0)

(1, 1)

−3 −2 −1 1 2 3

1

2

3

4

−−−−−−−−−−−−→

(
− 2

3
, 2
)

(0, 2)

(
− 1

3
, 4
)

x

y

−1 1

−1

1

2

3

f(x) = |x| i(x) = −2f(3x+ 1) + 4

= −2|3x+ 1|+ 4

While the methods in Section 1.7 can be used to graph an entire family of absolute value functions,
not all functions involving absolute values posses the characteristic ‘∨’ shape. As the next example
illustrates, often there is no substitute for appealing directly to the definition.

Example 2.2.4. Graph each of the following functions. Find the zeros of each function and the
x- and y-intercepts of each graph, if any exist. From the graph, determine the domain and range
of each function, list the intervals on which the function is increasing, decreasing or constant, and
find the relative and absolute extrema, if they exist.

1. f(x) =
|x|
x

2. g(x) = |x+ 2| − |x− 3|+ 1

Solution.

1. We first note that, due to the fraction in the formula of f(x), x 6= 0. Thus the domain is

(−∞, 0) ∪ (0,∞). To find the zeros of f , we set f(x) = |x|
x = 0. This last equation implies

|x| = 0, which, from Theorem 2.1, implies x = 0. However, x = 0 is not in the domain of f ,
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which means we have, in fact, no x-intercepts. We have no y-intercepts either, since f(0) is
undefined. Re-writing the absolute value in the function gives

f(x) =


−x
x
, if x < 0

x

x
, if x > 0

=

{
−1, if x < 0

1, if x > 0

To graph this function, we graph two horizontal lines: y = −1 for x < 0 and y = 1 for x > 0.
We have open circles at (0,−1) and (0, 1) (Can you explain why?) so we get

x

y

−3 −2 −1 1 2 3

f(x) =
|x|
x

As we found earlier, the domain is (−∞, 0)∪ (0,∞). The range consists of just two y-values:
{−1, 1}. The function f is constant on (−∞, 0) and (0,∞). The local minimum value of f
is the absolute minimum value of f , namely −1; the local maximum and absolute maximum
values for f also coincide − they both are 1. Every point on the graph of f is simultaneously
a relative maximum and a relative minimum. (Can you remember why in light of Definition
1.11? This was explored in the Exercises in Section 1.6.2.)

2. To find the zeros of g, we set g(x) = 0. The result is |x + 2| − |x − 3| + 1 = 0. Attempting
to isolate the absolute value term is complicated by the fact that there are two terms with
absolute values. In this case, it easier to proceed using cases by re-writing the function g with
two separate applications of Definition 2.4 to remove each instance of the absolute values, one
at a time. In the first round we get

g(x) =

{
−(x+ 2)− |x− 3|+ 1, if (x+ 2) < 0

(x+ 2)− |x− 3|+ 1, if (x+ 2) ≥ 0
=

{
−x− 1− |x− 3|, if x < −2

x+ 3− |x− 3|, if x ≥ −2

Given that

|x− 3| =

{
−(x− 3), if (x− 3) < 0

x− 3, if (x− 3) ≥ 0
=

{
−x+ 3, if x < 3

x− 3, if x ≥ 3
,

we need to break up the domain again at x = 3. Note that if x < −2, then x < 3, so we
replace |x − 3| with −x + 3 for that part of the domain, too. Our completed revision of the
form of g yields
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g(x) =


−x− 1− (−x+ 3), if x < −2

x+ 3− (−x+ 3), if x ≥ −2 and x < 3

x+ 3− (x− 3), if x ≥ 3

=


−4, if x < −2

2x, if −2 ≤ x < 3

6, if x ≥ 3

To solve g(x) = 0, we see that the only piece which contains a variable is g(x) = 2x for −2 ≤ x < 3.
Solving 2x = 0 gives x = 0. Since x = 0 is in the interval [−2, 3), we keep this solution and have
(0, 0) as our only x-intercept. Accordingly, the y-intercept is also (0, 0). To graph g, we start with
x < −2 and graph the horizontal line y = −4 with an open circle at (−2,−4). For −2 ≤ x < 3,
we graph the line y = 2x and the point (−2,−4) patches the hole left by the previous piece. An
open circle at (3, 6) completes the graph of this part. Finally, we graph the horizontal line y = 6
for x ≥ 3, and the point (3, 6) fills in the open circle left by the previous part of the graph. The
finished graph is

x

y

−4 −3 −2 −1 1 2 3 4

−4
−3
−2
−1

1
2
3
4
5
6

g(x) = |x+ 2| − |x− 3|+ 1

The domain of g is all real numbers, (−∞,∞), and the range of g is all real numbers between −4
and 6 inclusive, [−4, 6]. The function is increasing on [−2, 3] and constant on (−∞,−2] and [3,∞).
The relative minimum value of f is −4 which matches the absolute minimum. The relative and
absolute maximum values also coincide at 6. Every point on the graph of y = g(x) for x < −2 and
x > 3 yields both a relative minimum and relative maximum. The point (−2,−4), however, gives
only a relative minimum and the point (3, 6) yields only a relative maximum. (Recall the Exercises
in Section 1.6.2 which dealt with constant functions.)

Many of the applications that the authors are aware of involving absolute values also involve
absolute value inequalities. For that reason, we save our discussion of applications for Section 2.4.
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2.2.1 Exercises

In Exercises 1 - 15, solve the equation.

1. |x| = 6 2. |3x− 1| = 10 3. |4− x| = 7

4. 4− |x| = 3 5. 2|5x+ 1| − 3 = 0 6. |7x− 1|+ 2 = 0

7.
5− |x|

2
= 1 8. 2

3 |5− 2x| − 1
2 = 5 9. |x| = x+ 3

10. |2x− 1| = x+ 1 11. 4− |x| = 2x+ 1 12. |x− 4| = x− 5

13. |x| = x2 14. |x| = 12− x2 15. |x2 − 1| = 3

Prove that if |f(x)| = |g(x)| then either f(x) = g(x) or f(x) = −g(x). Use that result to solve the
equations in Exercises 16 - 21.

16. |3x− 2| = |2x+ 7| 17. |3x+ 1| = |4x| 18. |1− 2x| = |x+ 1|

19. |4− x| − |x+ 2| = 0 20. |2− 5x| = 5|x+ 1| 21. 3|x− 1| = 2|x+ 1|

In Exercises 22 - 33, graph the function. Find the zeros of each function and the x- and y-intercepts
of each graph, if any exist. From the graph, determine the domain and range of each function, list
the intervals on which the function is increasing, decreasing or constant, and find the relative and
absolute extrema, if they exist.

22. f(x) = |x+ 4| 23. f(x) = |x|+ 4 24. f(x) = |4x|

25. f(x) = −3|x| 26. f(x) = 3|x+ 4| − 4 27. f(x) =
1

3
|2x− 1|

28. f(x) =
|x+ 4|
x+ 4

29. f(x) =
|2− x|
2− x

30. f(x) = x+ |x| − 3

31. f(x) = |x+ 2| − x 32. f(x) = |x+ 2| − |x| 33. f(x) = |x+ 4|+ |x− 2|

34. With the help of your classmates, find an absolute value function whose graph is given below.

x

y

−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8

1

2
3

4

35. With help from your classmates, prove the second, third and fifth parts of Theorem 2.1.

36. Prove The Triangle Inequality: For all real numbers a and b, |a+ b| ≤ |a|+ |b|.
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2.2.2 Answers

1. x = −6 or x = 6 2. x = −3 or x = 11
3 3. x = −3 or x = 11

4. x = −1 or x = 1 5. x = −1
2 or x = 1

10 6. no solution

7. x = −3 or x = 3 8. x = −13
8 or x = 53

8 9. x = −3
2

10. x = 0 or x = 2 11. x = 1 12. no solution

13. x = −1, x = 0 or x = 1 14. x = −3 or x = 3 15. x = −2 or x = 2

16. x = −1 or x = 9 17. x = −1
7 or x = 1 18. x = 0 or x = 2

19. x = 1 20. x = − 3
10 21. x = 1

5 or x = 5

22. f(x) = |x+ 4|
f(−4) = 0
x-intercept (−4, 0)
y-intercept (0, 4)
Domain (−∞,∞)
Range [0,∞)
Decreasing on (−∞,−4]
Increasing on [−4,∞)
Relative and absolute min. at (−4, 0)
No relative or absolute maximum

x

y

−8 −7 −6 −5 −4 −3 −2 −1 1

1

2

3

4

23. f(x) = |x|+ 4
No zeros
No x-intercepts
y-intercept (0, 4)
Domain (−∞,∞)
Range [4,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Relative and absolute minimum at (0, 4)
No relative or absolute maximum

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

5

6

7

8



2.2 Absolute Value Functions 185

24. f(x) = |4x|
f(0) = 0
x-intercept (0, 0)
y-intercept (0, 0)
Domain (−∞,∞)
Range [0,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Relative and absolute minimum at (0, 0)
No relative or absolute maximum

x

y

−2 −1 1 2

1

2

3

4

5

6

7

8

25. f(x) = −3|x|
f(0) = 0
x-intercept (0, 0)
y-intercept (0, 0)
Domain (−∞,∞)
Range (−∞, 0]
Increasing on (−∞, 0]
Decreasing on [0,∞)
Relative and absolute maximum at (0, 0)
No relative or absolute minimum

x

y

−2 −1 1 2

−6

−5

−4

−3

−2

−1

26. f(x) = 3|x+ 4| − 4
f
(
−16

3

)
= 0, f

(
−8

3

)
= 0

x-intercepts
(
−16

3 , 0
)
,
(
−8

3 , 0
)

y-intercept (0, 8)
Domain (−∞,∞)
Range [−4,∞)
Decreasing on (−∞,−4]
Increasing on [−4,∞)
Relative and absolute min. at (−4,−4)
No relative or absolute maximum

x

y

−8−7−6−5−4−3−2−1 1

−4

−3

−2

−1

1

2

3

4

5

6

7

8

27. f(x) = 1
3 |2x− 1|

f
(

1
2

)
= 0

x-intercepts
(

1
2 , 0
)

y-intercept
(
0, 1

3

)
Domain (−∞,∞)
Range [0,∞)
Decreasing on

(
−∞, 1

2

]
Increasing on

[
1
2 ,∞

)

Relative and absolute min. at
(

1
2 , 0
)

No relative or absolute maximum

x

y

−3 −2 −1 1 2 3 4

1

2
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28. f(x) =
|x+ 4|
x+ 4

No zeros
No x-intercept
y-intercept (0, 1)
Domain (−∞,−4) ∪ (−4,∞)
Range {−1, 1}
Constant on (−∞,−4)
Constant on (−4,∞)
Absolute minimum at every point (x,−1)

where x < −4
Absolute maximum at every point (x, 1)
where x > −4
Relative maximum AND minimum at every
point on the graph

x

y

−8 −7 −6 −5 −4 −3 −2 −1 1
−1

1

29. f(x) =
|2− x|
2− x

No zeros
No x-intercept
y-intercept (0, 1)
Domain (−∞, 2) ∪ (2,∞)
Range {−1, 1}
Constant on (−∞, 2)
Constant on (2,∞)
Absolute minimum at every point (x,−1)

where x > 2
Absolute maximum at every point (x, 1)
where x < 2
Relative maximum AND minimum at every
point on the graph

x

y

−3 −2 −1 1 2 3 4 5
−1

1

30. Re-write f(x) = x+ |x| − 3 as

f(x) =

{
−3 if x < 0

2x− 3 if x ≥ 0

f
(

3
2

)
= 0

x-intercept
(

3
2 , 0
)

y-intercept (0,−3)
Domain (−∞,∞)
Range [−3,∞)
Increasing on [0,∞)
Constant on (−∞, 0]
Absolute minimum at every point (x,−3)
where x ≤ 0
No absolute maximum

Relative minimum at every point (x,−3)
where x ≤ 0
Relative maximum at every point (x,−3)
where x < 0

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2
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31. Re-write f(x) = |x+ 2| − x as

f(x) =

{
−2x− 2 if x < −2

2 if x ≥ −2
No zeros
No x-intercepts
y-intercept (0, 2)
Domain (−∞,∞)
Range [2,∞)
Decreasing on (−∞,−2]
Constant on [−2,∞)
Absolute minimum at every point (x, 2) where
x ≥ −2

No absolute maximum
Relative minimum at every point (x, 2) where
x ≥ −2
Relative maximum at every point (x, 2) where
x > −2

x

y

−3 −2 −1 1 2

1

2

3

32. Re-write f(x) = |x+ 2| − |x| as

f(x) =


−2 if x < −2

2x+ 2 if −2 ≤ x < 0

2 if x ≥ 0
f (−1) = 0
x-intercept (−1, 0)
y-intercept (0, 2)
Domain (−∞,∞)
Range [−2, 2]
Increasing on [−2, 0]
Constant on (−∞,−2]
Constant on [0,∞)
Absolute minimum at every point (x,−2) where
x ≤ −2

Absolute maximum at every point (x, 2) where
x ≥ 0
Relative minimum at every point (x,−2) where
x ≤ −2 and at every point (x, 2) where x > 0
Relative maximum at every point (x,−2) where
x < −2 and at every point (x, 2) where x ≥ 0

x

y

−3 −2 −1 1 2

−2

−1

1

2

33. Re-write f(x) = |x+ 4|+ |x− 2| as

f(x) =


−2x− 2 if x < −4

6 if −4 ≤ x < 2

2x+ 2 if x ≥ 2
No zeros
No x-intercept
y-intercept (0, 6)
Domain (−∞,∞)
Range [6,∞)
Decreasing on (−∞,−4]
Constant on [−4, 2]
Increasing on [2,∞)
Absolute minimum at every point (x, 6) where
−4 ≤ x ≤ 2
No absolute maximum
Relative minimum at every point (x, 6) where

−4 ≤ x ≤ 2
Relative maximum at every point (x, 6) where
−4 < x < 2

x

y

−5 −4 −3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

35. f(x) = ||x| − 4|
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2.3 Quadratic Functions

You may recall studying quadratic equations in Intermediate Algebra. In this section, we review
those equations in the context of our next family of functions: the quadratic functions.

Definition 2.5. A quadratic function is a function of the form

f(x) = ax2 + bx+ c,

where a, b and c are real numbers with a 6= 0. The domain of a quadratic function is (−∞,∞).

The most basic quadratic function is f(x) = x2, whose graph appears below. Its shape should look
familiar from Intermediate Algebra – it is called a parabola. The point (0, 0) is called the vertex
of the parabola. In this case, the vertex is a relative minimum and is also the where the absolute
minimum value of f can be found.

(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

x

y

−2 −1 1 2

1

2

3

4

f(x) = x2

Much like many of the absolute value functions in Section 2.2, knowing the graph of f(x) = x2

enables us to graph an entire family of quadratic functions using transformations.

Example 2.3.1. Graph the following functions starting with the graph of f(x) = x2 and using
transformations. Find the vertex, state the range and find the x- and y-intercepts, if any exist.

1. g(x) = (x+ 2)2 − 3 2. h(x) = −2(x− 3)2 + 1

Solution.

1. Since g(x) = (x + 2)2 − 3 = f(x + 2) − 3, Theorem 1.7 instructs us to first subtract 2 from
each of the x-values of the points on y = f(x). This shifts the graph of y = f(x) to the left
2 units and moves (−2, 4) to (−4, 4), (−1, 1) to (−3, 1), (0, 0) to (−2, 0), (1, 1) to (−1, 1) and
(2, 4) to (0, 4). Next, we subtract 3 from each of the y-values of these new points. This moves
the graph down 3 units and moves (−4, 4) to (−4, 1), (−3, 1) to (−3,−2), (−2, 0) to (−2, 3),
(−1, 1) to (−1,−2) and (0, 4) to (0, 1). We connect the dots in parabolic fashion to get
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(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

x

y

−2 −1 1 2

1

2

3

4

f(x) = x2 −−−−−−−−−−−−→

(−4, 1)

(−3,−2)

(−2,−3)

(−1,−2)

(0, 1)

x

y

−4 −3 −2 −1

−3

−1

1

g(x) = f(x+ 2)− 3 = (x+ 2)2 − 3

From the graph, we see that the vertex has moved from (0, 0) on the graph of y = f(x)
to (−2,−3) on the graph of y = g(x). This sets [−3,∞) as the range of g. We see that
the graph of y = g(x) crosses the x-axis twice, so we expect two x-intercepts. To find
these, we set y = g(x) = 0 and solve. Doing so yields the equation (x + 2)2 − 3 = 0, or
(x+ 2)2 = 3. Extracting square roots gives x+ 2 = ±

√
3, or x = −2±

√
3. Our x-intercepts

are (−2 −
√

3, 0) ≈ (−3.73, 0) and (−2 +
√

3, 0) ≈ (−0.27, 0). The y-intercept of the graph,
(0, 1) was one of the points we originally plotted, so we are done.

2. Following Theorem 1.7 once more, to graph h(x) = −2(x− 3)2 + 1 = −2f(x− 3) + 1, we first
start by adding 3 to each of the x-values of the points on the graph of y = f(x). This effects
a horizontal shift right 3 units and moves (−2, 4) to (1, 4), (−1, 1) to (2, 1), (0, 0) to (3, 0),
(1, 1) to (4, 1) and (2, 4) to (5, 4). Next, we multiply each of our y-values first by −2 and then
add 1 to that result. Geometrically, this is a vertical stretch by a factor of 2, followed by a
reflection about the x-axis, followed by a vertical shift up 1 unit. This moves (1, 4) to (1,−7),
(2, 1) to (2,−1), (3, 0) to (3, 1), (4, 1) to (4,−1) and (5, 4) to (5,−7).

(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

x

y

−2 −1 1 2

1

2

3

4

f(x) = x2 −−−−−−−−−−−−→

(1,−7)

(2,−1)

(3, 1)

(4,−1)

(5,−7)

x

y

1 2 3 4 5

−6

−5

−4

−3

−2

−1

1

h(x) = −2f(x− 3) + 1
= −2(x− 3)2 + 1

The vertex is (3, 1) which makes the range of h (−∞, 1]. From our graph, we know that
there are two x-intercepts, so we set y = h(x) = 0 and solve. We get −2(x − 3)2 + 1 = 0
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which gives (x − 3)2 = 1
2 . Extracting square roots1 gives x − 3 = ±

√
2

2 , so that when we

add 3 to each side,2 we get x = 6±
√

2
2 . Hence, our x-intercepts are

(
6−
√

2
2 , 0

)
≈ (2.29, 0) and(

6+
√

2
2 , 0

)
≈ (3.71, 0). Although our graph doesn’t show it, there is a y-intercept which can

be found by setting x = 0. With h(0) = −2(0− 3)2 + 1 = −17, we have that our y-intercept
is (0,−17).

A few remarks about Example 2.3.1 are in order. First note that neither the formula given for
g(x) nor the one given for h(x) match the form given in Definition 2.5. We could, of course,
convert both g(x) and h(x) into that form by expanding and collecting like terms. Doing so, we
find g(x) = (x + 2)2 − 3 = x2 + 4x + 1 and h(x) = −2(x − 3)2 + 1 = −2x2 + 12x − 17. While
these ‘simplified’ formulas for g(x) and h(x) satisfy Definition 2.5, they do not lend themselves to
graphing easily. For that reason, the form of g and h presented in Example 2.3.2 is given a special
name, which we list below, along with the form presented in Definition 2.5.

Definition 2.6. Standard and General Form of Quadratic Functions: Suppose f is a
quadratic function.

� The general form of the quadratic function f is f(x) = ax2 + bx + c, where a, b and c
are real numbers with a 6= 0.

� The standard form of the quadratic function f is f(x) = a(x− h)2 + k, where a, h and
k are real numbers with a 6= 0.

It is important to note at this stage that we have no guarantees that every quadratic function can
be written in standard form. This is actually true, and we prove this later in the exposition, but
for now we celebrate the advantages of the standard form, starting with the following theorem.

Theorem 2.2. Vertex Formula for Quadratics in Standard Form: For the quadratic
function f(x) = a(x− h)2 + k, where a, h and k are real numbers with a 6= 0, the vertex of the
graph of y = f(x) is (h, k).

We can readily verify the formula given Theorem 2.2 with the two functions given in Example
2.3.1. After a (slight) rewrite, g(x) = (x + 2)2 − 3 = (x − (−2))2 + (−3), and we identify h = −2
and k = −3. Sure enough, we found the vertex of the graph of y = g(x) to be (−2,−3). For
h(x) = −2(x − 3)2 + 1, no rewrite is needed. We can directly identify h = 3 and k = 1 and, sure
enough, we found the vertex of the graph of y = h(x) to be (3, 1).

To see why the formula in Theorem 2.2 produces the vertex, consider the graph of the equation
y = a(x−h)2 +k. When we substitute x = h, we get y = k, so (h, k) is on the graph. If x 6= h, then
x−h 6= 0 so (x−h)2 is a positive number. If a > 0, then a(x−h)2 is positive, thus y = a(x−h)2 +k
is always a number larger than k. This means that when a > 0, (h, k) is the lowest point on the
graph and thus the parabola must open upwards, making (h, k) the vertex. A similar argument

1and rationalizing denominators!
2and get common denominators!
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shows that if a < 0, (h, k) is the highest point on the graph, so the parabola opens downwards, and
(h, k) is also the vertex in this case.

Alternatively, we can apply the machinery in Section 1.7. Since the vertex of y = x2 is (0, 0), we can
determine the vertex of y = a(x−h)2 +k by determining the final destination of (0, 0) as it is moved
through each transformation. To obtain the formula f(x) = a(x− h)2 + k, we start with g(x) = x2

and first define g1(x) = ag(x) = ax2. This is results in a vertical scaling and/or reflection.3 Since
we multiply the output by a, we multiply the y-coordinates on the graph of g by a, so the point
(0, 0) remains (0, 0) and remains the vertex. Next, we define g2(x) = g1(x − h) = a(x − h)2. This
induces a horizontal shift right or left h units4 moves the vertex, in either case, to (h, 0). Finally,
f(x) = g2(x) + k = a(x− h)2 + k which effects a vertical shift up or down k units5 resulting in the
vertex moving from (h, 0) to (h, k).

In addition to verifying Theorem 2.2, the arguments in the two preceding paragraphs have also
shown us the role of the number a in the graphs of quadratic functions. The graph of y = a(x−h)2+k
is a parabola ‘opening upwards’ if a > 0, and ‘opening downwards’ if a < 0. Moreover, the symmetry
enjoyed by the graph of y = x2 about the y-axis is translated to a symmetry about the vertical line
x = h which is the vertical line through the vertex.6 This line is called the axis of symmetry of
the parabola and is dashed in the figures below.

vertex

a > 0

vertex

a < 0

Graphs of y = a(x− h)2 + k.

Without a doubt, the standard form of a quadratic function, coupled with the machinery in Section
1.7, allows us to list the attributes of the graphs of such functions quickly and elegantly. What
remains to be shown, however, is the fact that every quadratic function can be written in standard
form. To convert a quadratic function given in general form into standard form, we employ the
ancient rite of ‘Completing the Square’. We remind the reader how this is done in our next example.

Example 2.3.2. Convert the functions below from general form to standard form. Find the vertex,
axis of symmetry and any x- or y-intercepts. Graph each function and determine its range.

1. f(x) = x2 − 4x+ 3. 2. g(x) = 6− x− x2

3Just a scaling if a > 0. If a < 0, there is a reflection involved.
4Right if h > 0, left if h < 0.
5Up if k > 0, down if k < 0
6You should use transformations to verify this!
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Solution.

1. To convert from general form to standard form, we complete the square.7 First, we verify
that the coefficient of x2 is 1. Next, we find the coefficient of x, in this case −4, and take half
of it to get 1

2(−4) = −2. This tells us that our target perfect square quantity is (x− 2)2. To
get an expression equivalent to (x − 2)2, we need to add (−2)2 = 4 to the x2 − 4x to create
a perfect square trinomial, but to keep the balance, we must also subtract it. We collect the
terms which create the perfect square and gather the remaining constant terms. Putting it
all together, we get

f(x) = x2 − 4x+ 3 (Compute 1
2(−4) = −2.)

=
(
x2 − 4x+ 4− 4

)
+ 3 (Add and subtract (−2)2 = 4 to (x2 + 4x).)

=
(
x2 − 4x+ 4

)
− 4 + 3 (Group the perfect square trinomial.)

= (x− 2)2 − 1 (Factor the perfect square trinomial.)

Of course, we can always check our answer by multiplying out f(x) = (x − 2)2 − 1 to see
that it simplifies to f(x) = x2 − 4x− 1. In the form f(x) = (x− 2)2 − 1, we readily find the
vertex to be (2,−1) which makes the axis of symmetry x = 2. To find the x-intercepts, we
set y = f(x) = 0. We are spoiled for choice, since we have two formulas for f(x). Since we
recognize f(x) = x2 − 4x + 3 to be easily factorable,8 we proceed to solve x2 − 4x + 3 = 0.
Factoring gives (x−3)(x−1) = 0 so that x = 3 or x = 1. The x-intercepts are then (1, 0) and
(3, 0). To find the y-intercept, we set x = 0. Once again, the general form f(x) = x2− 4x+ 3
is easiest to work with here, and we find y = f(0) = 3. Hence, the y-intercept is (0, 3). With
the vertex, axis of symmetry and the intercepts, we get a pretty good graph without the need
to plot additional points. We see that the range of f is [−1,∞) and we are done.

2. To get started, we rewrite g(x) = 6 − x − x2 = −x2 − x + 6 and note that the coefficient of
x2 is −1, not 1. This means our first step is to factor out the (−1) from both the x2 and x
terms. We then follow the completing the square recipe as above.

g(x) = −x2 − x+ 6

= (−1)
(
x2 + x

)
+ 6 (Factor the coefficient of x2 from x2 and x.)

= (−1)
(
x2 + x+ 1

4 −
1
4

)
+ 6

= (−1)
(
x2 + x+ 1

4

)
+ (−1)

(
−1

4

)
+ 6 (Group the perfect square trinomial.)

= −
(
x+ 1

2

)2
+ 25

4

7If you forget why we do what we do to complete the square, start with a(x − h)2 + k, multiply it out, step by
step, and then reverse the process.

8Experience pays off, here!
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From g(x) = −
(
x+ 1

2

)2
+ 25

4 , we get the vertex to be
(
−1

2 ,
25
4

)
and the axis of symmetry to

be x = −1
2 . To get the x-intercepts, we opt to set the given formula g(x) = 6 − x − x2 = 0.

Solving, we get x = −3 and x = 2 , so the x-intercepts are (−3, 0) and (2, 0). Setting x = 0,
we find g(0) = 6, so the y-intercept is (0, 6). Plotting these points gives us the graph below.
We see that the range of g is

(
−∞, 25

4

]
.

(0, 3)

(1, 0)

(2,−1)

(3, 0)

x = 2

x

y

−1 1 2 3 4 5

−1

2

3

4

5

6

7

8

f(x) = x2 − 4x+ 3

(0, 6)

(2, 0)

(
− 1

2
, 25

4

)

(−3, 0)
x = 1

2

x

y

−3 −2 −1 1 2

2

3

4

5

6

g(x) = 6− x− x2

With Example 2.3.2 fresh in our minds, we are now in a position to show that every quadratic
function can be written in standard form. We begin with f(x) = ax2 + bx+ c, assume a 6= 0, and
complete the square in complete generality.

f(x) = ax2 + bx+ c

= a

(
x2 +

b

a
x

)
+ c (Factor out coefficient of x2 from x2 and x.)

= a

(
x2 +

b

a
x+

b2

4a2
− b2

4a2

)
+ c

= a

(
x2 +

b

a
x+

b2

4a2

)
− a

(
b2

4a2

)
+ c (Group the perfect square trinomial.)

= a

(
x+

b

2a

)2

+
4ac− b2

4a
(Factor and get a common denominator.)

Comparing this last expression with the standard form, we identify (x− h) with
(
x+ b

2a

)
so that

h = − b
2a . Instead of memorizing the value k = 4ac−b2

4a , we see that f
(
− b

2a

)
= 4ac−b2

4a . As such, we
have derived a vertex formula for the general form. We summarize both vertex formulas in the box
at the top of the next page.
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Equation 2.4. Vertex Formulas for Quadratic Functions: Suppose a, b, c, h and k are
real numbers with a 6= 0.

� If f(x) = a(x− h)2 + k, the vertex of the graph of y = f(x) is the point (h, k).

� If f(x) = ax2 + bx+ c, the vertex of the graph of y = f(x) is the point

(
− b

2a
, f

(
− b

2a

))
.

There are two more results which can be gleaned from the completed-square form of the general
form of a quadratic function,

f(x) = ax2 + bx+ c = a

(
x+

b

2a

)2

+
4ac− b2

4a

We have seen that the number a in the standard form of a quadratic function determines whether
the parabola opens upwards (if a > 0) or downwards (if a < 0). We see here that this number
a is none other than the coefficient of x2 in the general form of the quadratic function. In other
words, it is the coefficient of x2 alone which determines this behavior – a result that is generalized
in Section 3.1. The second treasure is a re-discovery of the quadratic formula.

Equation 2.5. The Quadratic Formula: If a, b and c are real numbers with a 6= 0, then the
solutions to ax2 + bx+ c = 0 are

x =
−b±

√
b2 − 4ac

2a
.

Assuming the conditions of Equation 2.5, the solutions to ax2 + bx+ c = 0 are precisely the zeros
of f(x) = ax2 + bx+ c. Since

f(x) = ax2 + bx+ c = a

(
x+

b

2a

)2

+
4ac− b2

4a

the equation ax2 + bx+ c = 0 is equivalent to

a

(
x+

b

2a

)2

+
4ac− b2

4a
= 0.

Solving gives
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a

(
x+

b

2a

)2

+
4ac− b2

4a
= 0

a

(
x+

b

2a

)2

= −4ac− b2

4a

1

a

[
a

(
x+

b

2a

)2
]

=
1

a

(
b2 − 4ac

4a

)
(
x+

b

2a

)2

=
b2 − 4ac

4a2

x+
b

2a
= ±

√
b2 − 4ac

4a2
extract square roots

x+
b

2a
= ±

√
b2 − 4ac

2a

x = − b

2a
±
√
b2 − 4ac

2a

x =
−b±

√
b2 − 4ac

2a

In our discussions of domain, we were warned against having negative numbers underneath the
square root. Given that

√
b2 − 4ac is part of the Quadratic Formula, we will need to pay special

attention to the radicand b2 − 4ac. It turns out that the quantity b2 − 4ac plays a critical role in
determining the nature of the solutions to a quadratic equation. It is given a special name.

Definition 2.7. If a, b and c are real numbers with a 6= 0, then the discriminant of the
quadratic equation ax2 + bx+ c = 0 is the quantity b2 − 4ac.

The discriminant ‘discriminates’ between the kinds of solutions we get from a quadratic equation.
These cases, and their relation to the discriminant, are summarized below.

Theorem 2.3. Discriminant Trichotomy: Let a, b and c be real numbers with a 6= 0.

� If b2 − 4ac < 0, the equation ax2 + bx+ c = 0 has no real solutions.

� If b2 − 4ac = 0, the equation ax2 + bx+ c = 0 has exactly one real solution.

� If b2 − 4ac > 0, the equation ax2 + bx+ c = 0 has exactly two real solutions.

The proof of Theorem 2.3 stems from the position of the discriminant in the quadratic equation,
and is left as a good mental exercise for the reader. The next example exploits the fruits of all of
our labor in this section thus far.
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Example 2.3.3. Recall that the profit (defined on page 82) for a product is defined by the equation
Profit = Revenue−Cost, or P (x) = R(x)−C(x). In Example 2.1.7 the weekly revenue, in dollars,
made by selling x PortaBoy Game Systems was found to be R(x) = −1.5x2 + 250x with the
restriction (carried over from the price-demand function) that 0 ≤ x ≤ 166. The cost, in dollars,
to produce x PortaBoy Game Systems is given in Example 2.1.5 as C(x) = 80x+ 150 for x ≥ 0.

1. Determine the weekly profit function P (x).

2. Graph y = P (x). Include the x- and y-intercepts as well as the vertex and axis of symmetry.

3. Interpret the zeros of P .

4. Interpret the vertex of the graph of y = P (x).

5. Recall that the weekly price-demand equation for PortaBoys is p(x) = −1.5x + 250, where
p(x) is the price per PortaBoy, in dollars, and x is the weekly sales. What should the price
per system be in order to maximize profit?

Solution.

1. To find the profit function P (x), we subtract

P (x) = R(x)− C(x) =
(
−1.5x2 + 250x

)
− (80x+ 150) = −1.5x2 + 170x− 150.

Since the revenue function is valid when 0 ≤ x ≤ 166, P is also restricted to these values.

2. To find the x-intercepts, we set P (x) = 0 and solve −1.5x2 + 170x − 150 = 0. The mere
thought of trying to factor the left hand side of this equation could do serious psychological
damage, so we resort to the quadratic formula, Equation 2.5. Identifying a = −1.5, b = 170,
and c = −150, we obtain

x =
−b±

√
b2 − 4ac

2a

=
−170±

√
1702 − 4(−1.5)(−150)

2(−1.5)

=
−170±

√
28000

−3

=
170± 20

√
70

3

We get two x-intercepts:
(

170−20
√

70
3 , 0

)
and

(
170+20

√
70

3 , 0
)

. To find the y-intercept, we set

x = 0 and find y = P (0) = −150 for a y-intercept of (0,−150). To find the vertex, we use
the fact that P (x) = −1.5x2 + 170x− 150 is in the general form of a quadratic function and
appeal to Equation 2.4. Substituting a = −1.5 and b = 170, we get x = − 170

2(−1.5) = 170
3 .
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To find the y-coordinate of the vertex, we compute P
(

170
3

)
= 14000

3 and find that our vertex
is
(

170
3 , 14000

3

)
. The axis of symmetry is the vertical line passing through the vertex so it is

the line x = 170
3 . To sketch a reasonable graph, we approximate the x-intercepts, (0.89, 0)

and (112.44, 0), and the vertex, (56.67, 4666.67). (Note that in order to get the x-intercepts
and the vertex to show up in the same picture, we had to scale the x-axis differently than
the y-axis. This results in the left-hand x-intercept and the y-intercept being uncomfortably
close to each other and to the origin in the picture.)

x

y

10 20 30 40 50 60 70 80 90 100 110 120

1000

2000

3000

4000

3. The zeros of P are the solutions to P (x) = 0, which we have found to be approximately
0.89 and 112.44. As we saw in Example 1.5.3, these are the ‘break-even’ points of the profit
function, where enough product is sold to recover the cost spent to make the product. More
importantly, we see from the graph that as long as x is between 0.89 and 112.44, the graph
y = P (x) is above the x-axis, meaning y = P (x) > 0 there. This means that for these values
of x, a profit is being made. Since x represents the weekly sales of PortaBoy Game Systems,
we round the zeros to positive integers and have that as long as 1, but no more than 112
game systems are sold weekly, the retailer will make a profit.

4. From the graph, we see that the maximum value of P occurs at the vertex, which is approx-
imately (56.67, 4666.67). As above, x represents the weekly sales of PortaBoy systems, so we
can’t sell 56.67 game systems. Comparing P (56) = 4666 and P (57) = 4666.5, we conclude
that we will make a maximum profit of $4666.50 if we sell 57 game systems.

5. In the previous part, we found that we need to sell 57 PortaBoys per week to maximize profit.
To find the price per PortaBoy, we substitute x = 57 into the price-demand function to get
p(57) = −1.5(57) + 250 = 164.5. The price should be set at $164.50.

Our next example is another classic application of quadratic functions.

Example 2.3.4. Much to Donnie’s surprise and delight, he inherits a large parcel of land in
Ashtabula County from one of his (e)strange(d) relatives. The time is finally right for him to
pursue his dream of farming alpaca. He wishes to build a rectangular pasture, and estimates that
he has enough money for 200 linear feet of fencing material. If he makes the pasture adjacent to
a stream (so no fencing is required on that side), what are the dimensions of the pasture which
maximize the area? What is the maximum area? If an average alpaca needs 25 square feet of
grazing area, how many alpaca can Donnie keep in his pasture?
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Solution. It is always helpful to sketch the problem situation, so we do so below.

w

l

wpasture

river

We are tasked to find the dimensions of the pasture which would give a maximum area. We let
w denote the width of the pasture and we let l denote the length of the pasture. Since the units
given to us in the statement of the problem are feet, we assume w and l are measured in feet. The
area of the pasture, which we’ll call A, is related to w and l by the equation A = wl. Since w and
l are both measured in feet, A has units of feet2, or square feet. We are given the total amount
of fencing available is 200 feet, which means w + l + w = 200, or, l + 2w = 200. We now have
two equations, A = wl and l + 2w = 200. In order to use the tools given to us in this section to
maximize A, we need to use the information given to write A as a function of just one variable,
either w or l. This is where we use the equation l+ 2w = 200. Solving for l, we find l = 200− 2w,
and we substitute this into our equation for A. We get A = wl = w(200− 2w) = 200w − 2w2. We
now have A as a function of w, A(w) = 200w − 2w2 = −2w2 + 200w.

Before we go any further, we need to find the applied domain of A so that we know what values
of w make sense in this problem situation.9 Since w represents the width of the pasture, w > 0.
Likewise, l represents the length of the pasture, so l = 200− 2w > 0. Solving this latter inequality,
we find w < 100. Hence, the function we wish to maximize is A(w) = −2w2+200w for 0 < w < 100.
Since A is a quadratic function (of w), we know that the graph of y = A(w) is a parabola. Since
the coefficient of w2 is −2, we know that this parabola opens downwards. This means that there
is a maximum value to be found, and we know it occurs at the vertex. Using the vertex formula,
we find w = − 200

2(−2) = 50, and A(50) = −2(50)2 + 200(50) = 5000. Since w = 50 lies in the applied
domain, 0 < w < 100, we have that the area of the pasture is maximized when the width is 50
feet. To find the length, we use l = 200− 2w and find l = 200− 2(50) = 100, so the length of the
pasture is 100 feet. The maximum area is A(50) = 5000, or 5000 square feet. If an average alpaca
requires 25 square feet of pasture, Donnie can raise 5000

25 = 200 average alpaca.

We conclude this section with the graph of a more complicated absolute value function.

Example 2.3.5. Graph f(x) = |x2 − x− 6|.
Solution. Using the definition of absolute value, Definition 2.4, we have

f(x) =

{
−
(
x2 − x− 6

)
, if x2 − x− 6 < 0

x2 − x− 6, if x2 − x− 6 ≥ 0

The trouble is that we have yet to develop any analytic techniques to solve nonlinear inequalities
such as x2 − x− 6 < 0. You won’t have to wait long; this is one of the main topics of Section 2.4.

9Donnie would be very upset if, for example, we told him the width of the pasture needs to be −50 feet.
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Nevertheless, we can attack this problem graphically. To that end, we graph y = g(x) = x2−x− 6
using the intercepts and the vertex. To find the x-intercepts, we solve x2 − x − 6 = 0. Factoring
gives (x − 3)(x + 2) = 0 so x = −2 or x = 3. Hence, (−2, 0) and (3, 0) are x-intercepts. The
y-intercept (0,−6) is found by setting x = 0. To plot the vertex, we find x = − b

2a = − −1
2(1) = 1

2 , and

y =
(

1
2

)2−(1
2

)
−6 = −25

4 = −6.25. Plotting, we get the parabola seen below on the left. To obtain
points on the graph of y = f(x) = |x2−x−6|, we can take points on the graph of g(x) = x2−x−6
and apply the absolute value to each of the y values on the parabola. We see from the graph of g
that for x ≤ −2 or x ≥ 3, the y values on the parabola are greater than or equal to zero (since the
graph is on or above the x-axis), so the absolute value leaves these portions of the graph alone. For
x between −2 and 3, however, the y values on the parabola are negative. For example, the point
(0,−6) on y = x2 − x− 6 would result in the point (0, | − 6|) = (0,−(−6)) = (0, 6) on the graph of
f(x) = |x2 − x − 6|. Proceeding in this manner for all points with x-coordinates between −2 and
3 results in the graph seen below on the right.
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y = g(x) = x2 − x− 6
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y = f(x) = |x2 − x− 6|

If we take a step back and look at the graphs of g and f in the last example, we notice that to
obtain the graph of f from the graph of g, we reflect a portion of the graph of g about the x-axis.
We can see this analytically by substituting g(x) = x2−x− 6 into the formula for f(x) and calling
to mind Theorem 1.4 from Section 1.7.

f(x) =

{
−g(x), if g(x) < 0
g(x), if g(x) ≥ 0

The function f is defined so that when g(x) is negative (i.e., when its graph is below the x-axis),
the graph of f is its refection across the x-axis. This is a general template to graph functions
of the form f(x) = |g(x)|. From this perspective, the graph of f(x) = |x| can be obtained by
reflecting the portion of the line g(x) = x which is below the x-axis back above the x-axis creating
the characteristic ‘∨’ shape.
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2.3.1 Exercises

In Exercises 1 - 9, graph the quadratic function. Find the x- and y-intercepts of each graph, if any
exist. If it is given in general form, convert it into standard form; if it is given in standard form,
convert it into general form. Find the domain and range of the function and list the intervals on
which the function is increasing or decreasing. Identify the vertex and the axis of symmetry and
determine whether the vertex yields a relative and absolute maximum or minimum.

1. f(x) = x2 + 2 2. f(x) = −(x+ 2)2 3. f(x) = x2 − 2x− 8

4. f(x) = −2(x+ 1)2 + 4 5. f(x) = 2x2 − 4x− 1 6. f(x) = −3x2 + 4x− 7

7. f(x) = x2 + x+ 1 8. f(x) = −3x2 + 5x+ 4 9.10 f(x) = x2 − 1

100
x− 1

In Exercises 10 - 14, the cost and price-demand functions are given for different scenarios. For each
scenario,

� Find the profit function P (x).

� Find the number of items which need to be sold in order to maximize profit.

� Find the maximum profit.

� Find the price to charge per item in order to maximize profit.

� Find and interpret break-even points.

10. The cost, in dollars, to produce x “I’d rather be a Sasquatch” T-Shirts is C(x) = 2x + 26,
x ≥ 0 and the price-demand function, in dollars per shirt, is p(x) = 30− 2x, 0 ≤ x ≤ 15.

11. The cost, in dollars, to produce x bottles of 100% All-Natural Certified Free-Trade Organic
Sasquatch Tonic is C(x) = 10x + 100, x ≥ 0 and the price-demand function, in dollars per
bottle, is p(x) = 35− x, 0 ≤ x ≤ 35.

12. The cost, in cents, to produce x cups of Mountain Thunder Lemonade at Junior’s Lemonade
Stand is C(x) = 18x + 240, x ≥ 0 and the price-demand function, in cents per cup, is
p(x) = 90− 3x, 0 ≤ x ≤ 30.

13. The daily cost, in dollars, to produce x Sasquatch Berry Pies is C(x) = 3x + 36, x ≥ 0 and
the price-demand function, in dollars per pie, is p(x) = 12− 0.5x, 0 ≤ x ≤ 24.

14. The monthly cost, in hundreds of dollars, to produce x custom built electric scooters is
C(x) = 20x+ 1000, x ≥ 0 and the price-demand function, in hundreds of dollars per scooter,
is p(x) = 140− 2x, 0 ≤ x ≤ 70.

10We have already seen the graph of this function. It was used as an example in Section 1.6 to show how the
graphing calculator can be misleading.
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15. The International Silver Strings Submarine Band holds a bake sale each year to fund their
trip to the National Sasquatch Convention. It has been determined that the cost in dollars
of baking x cookies is C(x) = 0.1x + 25 and that the demand function for their cookies is
p = 10− .01x. How many cookies should they bake in order to maximize their profit?

16. Using data from Bureau of Transportation Statistics, the average fuel economy F in miles
per gallon for passenger cars in the US can be modeled by F (t) = −0.0076t2 + 0.45t + 16,
0 ≤ t ≤ 28, where t is the number of years since 1980. Find and interpret the coordinates of
the vertex of the graph of y = F (t).

17. The temperature T , in degrees Fahrenheit, t hours after 6 AM is given by:

T (t) = −1

2
t2 + 8t+ 32, 0 ≤ t ≤ 12

What is the warmest temperature of the day? When does this happen?

18. Suppose C(x) = x2− 10x+ 27 represents the costs, in hundreds, to produce x thousand pens.
How many pens should be produced to minimize the cost? What is this minimum cost?

19. Skippy wishes to plant a vegetable garden along one side of his house. In his garage, he found
32 linear feet of fencing. Since one side of the garden will border the house, Skippy doesn’t
need fencing along that side. What are the dimensions of the garden which will maximize
the area of the garden? What is the maximum area of the garden?

20. In the situation of Example 2.3.4, Donnie has a nightmare that one of his alpaca herd fell into
the river and drowned. To avoid this, he wants to move his rectangular pasture away from
the river. This means that all four sides of the pasture require fencing. If the total amount
of fencing available is still 200 linear feet, what dimensions maximize the area of the pasture
now? What is the maximum area? Assuming an average alpaca requires 25 square feet of
pasture, how many alpaca can he raise now?

21. What is the largest rectangular area one can enclose with 14 inches of string?

22. The height of an object dropped from the roof of an eight story building is modeled by
h(t) = −16t2 + 64, 0 ≤ t ≤ 2. Here, h is the height of the object off the ground, in feet, t
seconds after the object is dropped. How long before the object hits the ground?

23. The height h in feet of a model rocket above the ground t seconds after lift-off is given by
h(t) = −5t2 + 100t, for 0 ≤ t ≤ 20. When does the rocket reach its maximum height above
the ground? What is its maximum height?

24. Carl’s friend Jason participates in the Highland Games. In one event, the hammer throw, the
height h in feet of the hammer above the ground t seconds after Jason lets it go is modeled by
h(t) = −16t2 + 22.08t + 6. What is the hammer’s maximum height? What is the hammer’s
total time in the air? Round your answers to two decimal places.

http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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25. Assuming no air resistance or forces other than the Earth’s gravity, the height above the
ground at time t of a falling object is given by s(t) = −4.9t2 + v0t+ s0 where s is in meters, t
is in seconds, v0 is the object’s initial velocity in meters per second and s0 is its initial position
in meters.

(a) What is the applied domain of this function?

(b) Discuss with your classmates what each of v0 > 0, v0 = 0 and v0 < 0 would mean.

(c) Come up with a scenario in which s0 < 0.

(d) Let’s say a slingshot is used to shoot a marble straight up from the ground (s0 = 0) with
an initial velocity of 15 meters per second. What is the marble’s maximum height above
the ground? At what time will it hit the ground?

(e) Now shoot the marble from the top of a tower which is 25 meters tall. When does it hit
the ground?

(f) What would the height function be if instead of shooting the marble up off of the tower,
you were to shoot it straight DOWN from the top of the tower?

26. The two towers of a suspension bridge are 400 feet apart. The parabolic cable11 attached to
the tops of the towers is 10 feet above the point on the bridge deck that is midway between
the towers. If the towers are 100 feet tall, find the height of the cable directly above a point
of the bridge deck that is 50 feet to the right of the left-hand tower.

27. Graph f(x) = |1− x2|

28. Find all of the points on the line y = 1− x which are 2 units from (1,−1).

29. Let L be the line y = 2x+1. Find a function D(x) which measures the distance squared from
a point on L to (0, 0). Use this to find the point on L closest to (0, 0).

30. With the help of your classmates, show that if a quadratic function f(x) = ax2 + bx+ c has
two real zeros then the x-coordinate of the vertex is the midpoint of the zeros.

In Exercises 31 - 36, solve the quadratic equation for the indicated variable.

31. x2 − 10y2 = 0 for x 32. y2 − 4y = x2 − 4 for x 33. x2 −mx = 1 for x

34. y2 − 3y = 4x for y 35. y2 − 4y = x2 − 4 for y 36. −gt2 + v0t + s0 = 0 for t
(Assume g 6= 0.)

11The weight of the bridge deck forces the bridge cable into a parabola and a free hanging cable such as a power
line does not form a parabola. We shall see in Exercise 35 in Section 6.5 what shape a free hanging cable makes.



2.3 Quadratic Functions 203

2.3.2 Answers

1. f(x) = x2 + 2 (this is both forms!)
No x-intercepts
y-intercept (0, 2)
Domain: (−∞,∞)
Range: [2,∞)
Decreasing on (−∞, 0]
Increasing on [0,∞)
Vertex (0, 2) is a minimum
Axis of symmetry x = 0 x

y

−2 −1 1 2

1

2

3

4

5

6

7

8

9

10

2. f(x) = −(x+ 2)2 = −x2 − 4x− 4
x-intercept (−2, 0)
y-intercept (0,−4)
Domain: (−∞,∞)
Range: (−∞, 0]
Increasing on (−∞,−2]
Decreasing on [−2,∞)
Vertex (−2, 0) is a maximum
Axis of symmetry x = −2

x

y

−4 −3 −2 −1

−8

−7

−6

−5

−4

−3

−2

−1

3. f(x) = x2 − 2x− 8 = (x− 1)2 − 9
x-intercepts (−2, 0) and (4, 0)
y-intercept (0,−8)
Domain: (−∞,∞)
Range: [−9,∞)
Decreasing on (−∞, 1]
Increasing on [1,∞)
Vertex (1,−9) is a minimum
Axis of symmetry x = 1

x

y

−2 −1 1 2 3 4

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

4. f(x) = −2(x+ 1)2 + 4 = −2x2 − 4x+ 2
x-intercepts (−1−

√
2, 0) and (−1 +

√
2, 0)

y-intercept (0, 2)
Domain: (−∞,∞)
Range: (−∞, 4]
Increasing on (−∞,−1]
Decreasing on [−1,∞)
Vertex (−1, 4) is a maximum
Axis of symmetry x = −1

x

y

−3 −2 −1 1

−4

−3

−2

−1

1

2

3

4



204 Linear and Quadratic Functions

5. f(x) = 2x2 − 4x− 1 = 2(x− 1)2 − 3

x-intercepts
(

2−
√
6

2 , 0
)

and
(

2+
√
6

2 , 0
)

y-intercept (0,−1)
Domain: (−∞,∞)
Range: [−3,∞)
Increasing on [1,∞)
Decreasing on (−∞, 1]
Vertex (1,−3) is a minimum
Axis of symmetry x = 1

x

y

−1 1 2 3

−3

−2

−1

1

2

3

4

6. f(x) = −3x2 + 4x− 7 = −3
(
x− 2

3

)2 − 17
3

No x-intercepts
y-intercept (0,−7)
Domain: (−∞,∞)
Range:

(
−∞,−17

3

]
Increasing on

(
−∞, 2

3

]
Decreasing on

[
2
3 ,∞

)
Vertex

(
2
3 ,−

17
3

)
is a maximum

Axis of symmetry x = 2
3

x

y

1 2

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

7. f(x) = x2 + x+ 1 =
(
x+ 1

2

)2
+ 3

4
No x-intercepts
y-intercept (0, 1)
Domain: (−∞,∞)
Range:

[
3
4 ,∞

)
Increasing on

[
−1

2 ,∞
)

Decreasing on
(
−∞,−1

2

]
Vertex

(
−1

2 ,
3
4

)
is a minimum

Axis of symmetry x = −1
2

x

y

−2 −1 1

1

2

3

4
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8. f(x) = −3x2 + 5x+ 4 = −3
(
x− 5

6

)2
+ 73

12

x-intercepts
(

5−
√
73

6 , 0
)

and
(

5+
√
73

6 , 0
)

y-intercept (0, 4)
Domain: (−∞,∞)
Range:

(
−∞, 73

12

]
Increasing on

(
−∞, 5

6

]
Decreasing on

[
5
6 ,∞

)
Vertex

(
5
6 ,

73
12

)
is a maximum

Axis of symmetry x = 5
6

x

y

−1 1 2 3

−3

−2

−1

1

2

3

4

5

6

9. f(x) = x2 − 1
100x− 1 =

(
x− 1

200

)2 − 40001
40000

x-intercepts
(

1+
√

40001
200

)
and

(
1−
√

40001
200

)
y-intercept (0,−1)
Domain: (−∞,∞)
Range:

[
−40001

40000 ,∞
)

Decreasing on
(
−∞, 1

200

]
Increasing on

[
1

200 ,∞
)

Vertex
(

1
200 ,−

40001
40000

)
is a minimum12

Axis of symmetry x = 1
200

x

y

−2 −1 1 2

1

2

3

4

5

6

7

8

10. � P (x) = −2x2 + 28x− 26, for 0 ≤ x ≤ 15.

� 7 T-shirts should be made and sold to maximize profit.

� The maximum profit is $72.

� The price per T-shirt should be set at $16 to maximize profit.

� The break even points are x = 1 and x = 13, so to make a profit, between 1 and 13
T-shirts need to be made and sold.

11. � P (x) = −x2 + 25x− 100, for 0 ≤ x ≤ 35

� Since the vertex occurs at x = 12.5, and it is impossible to make or sell 12.5 bottles of
tonic, maximum profit occurs when either 12 or 13 bottles of tonic are made and sold.

� The maximum profit is $56.

� The price per bottle can be either $23 (to sell 12 bottles) or $22 (to sell 13 bottles.)
Both will result in the maximum profit.

� The break even points are x = 5 and x = 20, so to make a profit, between 5 and 20
bottles of tonic need to be made and sold.

12You’ll need to use your calculator to zoom in far enough to see that the vertex is not the y-intercept.
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12. � P (x) = −3x2 + 72x− 240, for 0 ≤ x ≤ 30

� 12 cups of lemonade need to be made and sold to maximize profit.

� The maximum profit is 192¢ or $1.92.

� The price per cup should be set at 54¢ per cup to maximize profit.

� The break even points are x = 4 and x = 20, so to make a profit, between 4 and 20 cups
of lemonade need to be made and sold.

13. � P (x) = −0.5x2 + 9x− 36, for 0 ≤ x ≤ 24

� 9 pies should be made and sold to maximize the daily profit.

� The maximum daily profit is $4.50.

� The price per pie should be set at $7.50 to maximize profit.

� The break even points are x = 6 and x = 12, so to make a profit, between 6 and 12 pies
need to be made and sold daily.

14. � P (x) = −2x2 + 120x− 1000, for 0 ≤ x ≤ 70

� 30 scooters need to be made and sold to maximize profit.

� The maximum monthly profit is 800 hundred dollars, or $80,000.

� The price per scooter should be set at 80 hundred dollars, or $8000 per scooter.

� The break even points are x = 10 and x = 50, so to make a profit, between 10 and 50
scooters need to be made and sold monthly.

15. 495 cookies

16. The vertex is (approximately) (29.60, 22.66), which corresponds to a maximum fuel economy
of 22.66 miles per gallon, reached sometime between 2009 and 2010 (29 – 30 years after 1980.)
Unfortunately, the model is only valid up until 2008 (28 years after 1908.) So, at this point,
we are using the model to predict the maximum fuel economy.

17. 64◦ at 2 PM (8 hours after 6 AM.)

18. 5000 pens should be produced for a cost of $200.

19. 8 feet by 16 feet; maximum area is 128 square feet.

20. 50 feet by 50 feet; maximum area is 2500 feet; he can raise 100 average alpacas.

21. The largest rectangle has area 12.25 square inches.

22. 2 seconds.

23. The rocket reaches its maximum height of 500 feet 10 seconds after lift-off.

24. The hammer reaches a maximum height of approximately 13.62 feet. The hammer is in the
air approximately 1.61 seconds.
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25. (a) The applied domain is [0,∞).

(d) The height function is this case is s(t) = −4.9t2 + 15t. The vertex of this parabola
is approximately (1.53, 11.48) so the maximum height reached by the marble is 11.48
meters. It hits the ground again when t ≈ 3.06 seconds.

(e) The revised height function is s(t) = −4.9t2 + 15t+ 25 which has zeros at t ≈ −1.20 and
t ≈ 4.26. We ignore the negative value and claim that the marble will hit the ground
after 4.26 seconds.

(f) Shooting down means the initial velocity is negative so the height functions becomes
s(t) = −4.9t2 − 15t+ 25.

26. Make the vertex of the parabola (0, 10) so that the point on the top of the left-hand tower
where the cable connects is (−200, 100) and the point on the top of the right-hand tower is
(200, 100). Then the parabola is given by p(x) = 9

4000x
2 + 10. Standing 50 feet to the right of

the left-hand tower means you’re standing at x = −150 and p(−150) = 60.625. So the cable
is 60.625 feet above the bridge deck there.

27. y = |1− x2|

x

y

−2 −1 1 2

1

2

3

4
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6

7

28.

(
3−
√

7

2
,
−1 +

√
7

2

)
,

(
3 +
√

7

2
,
−1−

√
7

2

)

29. D(x) = x2 +(2x+1)2 = 5x2 +4x+1, D is minimized when x = −2
5 , so the point on y = 2x+1

closest to (0, 0) is
(
−2

5 ,
1
5

)
31. x = ±y

√
10 32. x = ±(y − 2) 33. x =

m±
√
m2 + 4

2

34. y =
3±
√

16x+ 9

2
35. y = 2± x 36. t =

v0 ±
√
v2

0 + 4gs0

2g



208 Linear and Quadratic Functions

2.4 Inequalities with Absolute Value and Quadratic Functions

In this section, not only do we develop techniques for solving various classes of inequalities analyt-
ically, we also look at them graphically. The first example motivates the core ideas.

Example 2.4.1. Let f(x) = 2x− 1 and g(x) = 5.

1. Solve f(x) = g(x).

2. Solve f(x) < g(x).

3. Solve f(x) > g(x).

4. Graph y = f(x) and y = g(x) on the same set of axes and interpret your solutions to parts 1
through 3 above.

Solution.

1. To solve f(x) = g(x), we replace f(x) with 2x− 1 and g(x) with 5 to get 2x− 1 = 5. Solving
for x, we get x = 3.

2. The inequality f(x) < g(x) is equivalent to 2x− 1 < 5. Solving gives x < 3 or (−∞, 3).

3. To find where f(x) > g(x), we solve 2x− 1 > 5. We get x > 3, or (3,∞).

4. To graph y = f(x), we graph y = 2x − 1, which is a line with a y-intercept of (0,−1) and a
slope of 2. The graph of y = g(x) is y = 5 which is a horizontal line through (0, 5).

x

y

y = f(x)

y = g(x)

1 2 3 4

−1

1

2

3

4

5

6

7

8

To see the connection between the graph and the Algebra, we recall the Fundamental Graph-
ing Principle for Functions in Section 1.6: the point (a, b) is on the graph of f if and only if
f(a) = b. In other words, a generic point on the graph of y = f(x) is (x, f(x)), and a generic
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point on the graph of y = g(x) is (x, g(x)). When we seek solutions to f(x) = g(x), we are
looking for x values whose y values on the graphs of f and g are the same. In part 1, we
found x = 3 is the solution to f(x) = g(x). Sure enough, f(3) = 5 and g(3) = 5 so that the
point (3, 5) is on both graphs. In other words, the graphs of f and g intersect at (3, 5). In
part 2, we set f(x) < g(x) and solved to find x < 3. For x < 3, the point (x, f(x)) is below
(x, g(x)) since the y values on the graph of f are less than the y values on the graph of g
there. Analogously, in part 3, we solved f(x) > g(x) and found x > 3. For x > 3, note that
the graph of f is above the graph of g, since the y values on the graph of f are greater than
the y values on the graph of g for those values of x.

y = f(x)

y = g(x)

x

y

1 2 3 4
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1

2

3

4

5

6

7

8

f(x) < g(x) on (−∞, 3)

y = f(x)

y = g(x)

x

y

1 2 3 4
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1

2

3

4

5

6

7

8

f(x) > g(x) on (3,∞)

The preceding example demonstrates the following, which is a consequence of the Fundamental
Graphing Principle for Functions.

Graphical Interpretation of Equations and Inequalities

Suppose f and g are functions.

� The solutions to f(x) = g(x) are the x values where the graphs of y = f(x) and y = g(x)
intersect.

� The solution to f(x) < g(x) is the set of x values where the graph of y = f(x) is below the
graph of y = g(x).

� The solution to f(x) > g(x) is the set of x values where the graph of y = f(x) above the
graph of y = g(x).

The next example turns the tables and furnishes the graphs of two functions and asks for solutions
to equations and inequalities.
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Example 2.4.2. The graphs of f and g are below. (The graph of y = g(x) is bolded.) Use these
graphs to answer the following questions.

x

y

y = f(x)

y = g(x)

(1, 2)(−1, 2)

−2 −1 1 2

−1

1

2

3

4

1. Solve f(x) = g(x). 2. Solve f(x) < g(x). 3. Solve f(x) ≥ g(x).

Solution.

1. To solve f(x) = g(x), we look for where the graphs of f and g intersect. These appear to be
at the points (−1, 2) and (1, 2), so our solutions to f(x) = g(x) are x = −1 and x = 1.

2. To solve f(x) < g(x), we look for where the graph of f is below the graph of g. This appears
to happen for the x values less than −1 and greater than 1. Our solution is (−∞,−1)∪(1,∞).

3. To solve f(x) ≥ g(x), we look for solutions to f(x) = g(x) as well as f(x) > g(x). We solved
the former equation and found x = ±1. To solve f(x) > g(x), we look for where the graph
of f is above the graph of g. This appears to happen between x = −1 and x = 1, on the
interval (−1, 1). Hence, our solution to f(x) ≥ g(x) is [−1, 1].

x

y

y = f(x)

y = g(x)

(1, 2)(−1, 2)

−2 −1 1 2

−1

1

2

3

4

f(x) < g(x)

x

y

y = f(x)

y = g(x)

(1, 2)(−1, 2)

−2 −1 1 2

−1

1

2

3

4

f(x) ≥ g(x)
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We now turn our attention to solving inequalities involving the absolute value. We have the
following theorem from Intermediate Algebra to help us.

Theorem 2.4. Inequalities Involving the Absolute Value: Let c be a real number.

� For c > 0, |x| < c is equivalent to −c < x < c.

� For c > 0, |x| ≤ c is equivalent to −c ≤ x ≤ c.

� For c ≤ 0, |x| < c has no solution, and for c < 0, |x| ≤ c has no solution.

� For c ≥ 0, |x| > c is equivalent to x < −c or x > c.

� For c ≥ 0, |x| ≥ c is equivalent to x ≤ −c or x ≥ c.

� For c < 0, |x| > c and |x| ≥ c are true for all real numbers.

As with Theorem 2.1 in Section 2.2, we could argue Theorem 2.4 using cases. However, in light
of what we have developed in this section, we can understand these statements graphically. For
instance, if c > 0, the graph of y = c is a horizontal line which lies above the x-axis through (0, c).
To solve |x| < c, we are looking for the x values where the graph of y = |x| is below the graph of
y = c. We know that the graphs intersect when |x| = c, which, from Section 2.2, we know happens
when x = c or x = −c. Graphing, we get

(c, c)(−c, c)

x

y

−c c

We see that the graph of y = |x| is below y = c for x between −c and c, and hence we get |x| < c
is equivalent to −c < x < c. The other properties in Theorem 2.4 can be shown similarly.

Example 2.4.3. Solve the following inequalities analytically; check your answers graphically.

1. |x− 1| ≥ 3 2. 4− 3|2x+ 1| > −2

3. 2 < |x− 1| ≤ 5 4. |x+ 1| ≥ x+ 4

2

Solution.

1. From Theorem 2.4, |x − 1| ≥ 3 is equivalent to x − 1 ≤ −3 or x − 1 ≥ 3. Solving, we get
x ≤ −2 or x ≥ 4, which, in interval notation is (−∞,−2] ∪ [4,∞). Graphically, we have



212 Linear and Quadratic Functions

x

y

y = 3

y = |x− 1|

−4 −3 −2 −1 1 2 3 4 5

2

3

4

We see that the graph of y = |x− 1| is above the horizontal line y = 3 for x < −2 and x > 4
hence this is where |x− 1| > 3. The two graphs intersect when x = −2 and x = 4, so we have
graphical confirmation of our analytic solution.

2. To solve 4 − 3|2x + 1| > −2 analytically, we first isolate the absolute value before applying
Theorem 2.4. To that end, we get −3|2x+ 1| > −6 or |2x+ 1| < 2. Rewriting, we now have
−2 < 2x+ 1 < 2 so that −3

2 < x < 1
2 . In interval notation, we write

(
−3

2 ,
1
2

)
. Graphically we

see that the graph of y = 4− 3|2x+ 1| is above y = −2 for x values between −3
2 and 1

2 .

y = 4− 3|2x+ 1|

y = −2

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

3

4

3. Rewriting the compound inequality 2 < |x− 1| ≤ 5 as ‘2 < |x− 1| and |x− 1| ≤ 5’ allows us
to solve each piece using Theorem 2.4. The first inequality, 2 < |x − 1| can be re-written as
|x − 1| > 2 so x − 1 < −2 or x − 1 > 2. We get x < −1 or x > 3. Our solution to the first
inequality is then (−∞,−1)∪(3,∞). For |x−1| ≤ 5, we combine results in Theorems 2.1 and
2.4 to get −5 ≤ x− 1 ≤ 5 so that −4 ≤ x ≤ 6, or [−4, 6]. Our solution to 2 < |x− 1| ≤ 5 is
comprised of values of x which satisfy both parts of the inequality, so we take the intersection1

of (−∞,−1) ∪ (3,∞) and [−4, 6] to get [−4,−1) ∪ (3, 6]. Graphically, we see that the graph
of y = |x− 1| is ‘between’ the horizontal lines y = 2 and y = 5 for x values between −4 and
−1 as well as those between 3 and 6. Including the x values where y = |x − 1| and y = 5
intersect, we get

1See Definition 1.2 in Section 1.1.1.
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x

y

y = 2

y = 5

y = |x− 1|

−8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

2

3

4

5

6

7

8

4. We need to exercise some special caution when solving |x+ 1| ≥ x+4
2 . As we saw in Example

2.2.1 in Section 2.2, when variables are both inside and outside of the absolute value, it’s
usually best to refer to the definition of absolute value, Definition 2.4, to remove the absolute
values and proceed from there. To that end, we have |x + 1| = −(x + 1) if x < −1 and
|x + 1| = x + 1 if x ≥ −1. We break the inequality into cases, the first case being when
x < −1. For these values of x, our inequality becomes −(x + 1) ≥ x+4

2 . Solving, we get
−2x − 2 ≥ x + 4, so that −3x ≥ 6, which means x ≤ −2. Since all of these solutions fall
into the category x < −1, we keep them all. For the second case, we assume x ≥ −1. Our
inequality becomes x+ 1 ≥ x+4

2 , which gives 2x+ 2 ≥ x+ 4 or x ≥ 2. Since all of these values
of x are greater than or equal to −1, we accept all of these solutions as well. Our final answer
is (−∞,−2] ∪ [2,∞).

x

y

y = |x+ 1| y = x+4
2

−4 −3 −2 −1 1 2 3 4

2

3

4

We now turn our attention to quadratic inequalities. In the last example of Section 2.3, we needed
to determine the solution to x2 − x − 6 < 0. We will now re-visit this problem using some of the
techniques developed in this section not only to reinforce our solution in Section 2.3, but to also
help formulate a general analytic procedure for solving all quadratic inequalities. If we consider
f(x) = x2 − x − 6 and g(x) = 0, then solving x2 − x − 6 < 0 corresponds graphically to finding
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the values of x for which the graph of y = f(x) = x2 − x− 6 (the parabola) is below the graph of
y = g(x) = 0 (the x-axis). We’ve provided the graph again for reference.

x

y

−3−2−1 1 2 3

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

y = x2 − x− 6

We can see that the graph of f does dip below the x-axis between its two x-intercepts. The zeros
of f are x = −2 and x = 3 in this case and they divide the domain (the x-axis) into three intervals:
(−∞,−2), (−2, 3) and (3,∞). For every number in (−∞,−2), the graph of f is above the x-axis;
in other words, f(x) > 0 for all x in (−∞,−2). Similarly, f(x) < 0 for all x in (−2, 3), and f(x) > 0
for all x in (3,∞). We can schematically represent this with the sign diagram below.

−2 3

(+) 0 (−) 0 (+)

Here, the (+) above a portion of the number line indicates f(x) > 0 for those values of x; the (−)
indicates f(x) < 0 there. The numbers labeled on the number line are the zeros of f , so we place
0 above them. We see at once that the solution to f(x) < 0 is (−2, 3).

Our next goal is to establish a procedure by which we can generate the sign diagram without
graphing the function. An important property2 of quadratic functions is that if the function is
positive at one point and negative at another, the function must have at least one zero in between.
Graphically, this means that a parabola can’t be above the x-axis at one point and below the x-axis
at another point without crossing the x-axis. This allows us to determine the sign of all of the
function values on a given interval by testing the function at just one value in the interval. This
gives us the following.

2We will give this property a name in Chapter 3 and revisit this concept then.
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Steps for Solving a Quadratic Inequality

1. Rewrite the inequality, if necessary, as a quadratic function f(x) on one side of the in-
equality and 0 on the other.

2. Find the zeros of f and place them on the number line with the number 0 above them.

3. Choose a real number, called a test value, in each of the intervals determined in step 2.

4. Determine the sign of f(x) for each test value in step 3, and write that sign above the
corresponding interval.

5. Choose the intervals which correspond to the correct sign to solve the inequality.

Example 2.4.4. Solve the following inequalities analytically using sign diagrams. Verify your
answer graphically.

1. 2x2 ≤ 3− x 2. x2 − 2x > 1

3. x2 + 1 ≤ 2x 4. 2x− x2 ≥ |x− 1| − 1

Solution.

1. To solve 2x2 ≤ 3−x, we first get 0 on one side of the inequality which yields 2x2 +x− 3 ≤ 0.
We find the zeros of f(x) = 2x2 + x − 3 by solving 2x2 + x − 3 = 0 for x. Factoring gives
(2x + 3)(x − 1) = 0, so x = −3

2 or x = 1. We place these values on the number line with 0
above them and choose test values in the intervals

(
−∞,−3

2

)
,
(
−3

2 , 1
)

and (1,∞). For the
interval

(
−∞,−3

2

)
, we choose3 x = −2; for

(
−3

2 , 1
)
, we pick x = 0; and for (1,∞), x = 2.

Evaluating the function at the three test values gives us f(−2) = 3 > 0, so we place (+)
above

(
−∞,−3

2

)
; f(0) = −3 < 0, so (−) goes above the interval

(
−3

2 , 1
)
; and, f(2) = 7,

which means (+) is placed above (1,∞). Since we are solving 2x2 + x − 3 ≤ 0, we look for
solutions to 2x2 + x− 3 < 0 as well as solutions for 2x2 + x− 3 = 0. For 2x2 + x− 3 < 0, we
need the intervals which we have a (−). Checking the sign diagram, we see this is

(
−3

2 , 1
)
.

We know 2x2 + x− 3 = 0 when x = −3
2 and x = 1, so our final answer is

[
−3

2 , 1
]
.

To verify our solution graphically, we refer to the original inequality, 2x2 ≤ 3 − x. We let
g(x) = 2x2 and h(x) = 3− x. We are looking for the x values where the graph of g is below
that of h (the solution to g(x) < h(x)) as well as the points of intersection (the solutions to
g(x) = h(x)). The graphs of g and h are given on the right with the sign chart on the left.

3We have to choose something in each interval. If you don’t like our choices, please feel free to choose different
numbers. You’ll get the same sign chart.
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−3
2

1

(+) 0 (−) 0 (+)

−2 0 2

x
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y = 2x2

y = 3− x

−2 −1 1 2
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2. Once again, we re-write x2 − 2x > 1 as x2 − 2x− 1 > 0 and we identify f(x) = x2 − 2x− 1.
When we go to find the zeros of f , we find, to our chagrin, that the quadratic x2 − 2x − 1
doesn’t factor nicely. Hence, we resort to the quadratic formula to solve x2− 2x− 1 = 0, and
arrive at x = 1 ±

√
2. As before, these zeros divide the number line into three pieces. To

help us decide on test values, we approximate 1−
√

2 ≈ −0.4 and 1 +
√

2 ≈ 2.4. We choose
x = −1, x = 0 and x = 3 as our test values and find f(−1) = 2, which is (+); f(0) = −1
which is (−); and f(3) = 2 which is (+) again. Our solution to x2 − 2x − 1 > 0 is where
we have (+), so, in interval notation

(
−∞, 1−

√
2
)
∪
(
1 +
√

2,∞
)
. To check the inequality

x2− 2x > 1 graphically, we set g(x) = x2− 2x and h(x) = 1. We are looking for the x values
where the graph of g is above the graph of h. As before we present the graphs on the right
and the sign chart on the left.

1−
√

2 1 +
√

2

(+) 0 (−) 0 (+)

−1 0 3
x

y

y = 1

y = x2 − 2x

−3 −2 −1 1 2 3

1

2

3

3. To solve x2 + 1 ≤ 2x, as before, we solve x2 − 2x + 1 ≤ 0. Setting f(x) = x2 − 2x + 1 = 0,
we find the only one zero of f , x = 1. This one x value divides the number line into two
intervals, from which we choose x = 0 and x = 2 as test values. We find f(0) = 1 > 0 and
f(2) = 1 > 0. Since we are looking for solutions to x2 − 2x + 1 ≤ 0, we are looking for x
values where x2 − 2x+ 1 < 0 as well as where x2 − 2x+ 1 = 0. Looking at our sign diagram,
there are no places where x2 − 2x + 1 < 0 (there are no (−)), so our solution is only x = 1
(where x2− 2x+ 1 = 0). We write this as {1}. Graphically, we solve x2 + 1 ≤ 2x by graphing
g(x) = x2 + 1 and h(x) = 2x. We are looking for the x values where the graph of g is below
the graph of h (for x2 +1 < 2x) and where the two graphs intersect (x2 +1 = 2x). Notice that
the line and the parabola touch at (1, 2), but the parabola is always above the line otherwise.4

4In this case, we say the line y = 2x is tangent to y = x2 +1 at (1, 2). Finding tangent lines to arbitrary functions
is a fundamental problem solved, in general, with Calculus.
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1

(+) 0 (+)

0 2

x

y

y = 2x

y = x2 + 1

−1 1

1

2

3

4

4. To solve our last inequality, 2x− x2 ≥ |x− 1| − 1, we re-write the absolute value using cases.
For x < 1, |x− 1| = −(x− 1) = 1− x, so we get 2x− x2 ≥ 1− x− 1, or x2− 3x ≤ 0. Finding
the zeros of f(x) = x2 − 3x, we get x = 0 and x = 3. However, we are only concerned with
the portion of the number line where x < 1, so the only zero that we concern ourselves with
is x = 0. This divides the interval x < 1 into two intervals: (−∞, 0) and (0, 1). We choose
x = −1 and x = 1

2 as our test values. We find f(−1) = 4 and f
(

1
2

)
= −5

4 . Hence, our
solution to x2 − 3x ≤ 0 for x < 1 is [0, 1). Next, we turn our attention to the case x ≥ 1.
Here, |x−1| = x−1, so our original inequality becomes 2x−x2 ≥ x−1−1, or x2−x−2 ≤ 0.
Setting g(x) = x2−x−2, we find the zeros of g to be x = −1 and x = 2. Of these, only x = 2
lies in the region x ≥ 1, so we ignore x = −1. Our test intervals are now [1, 2) and (2,∞).
We choose x = 1 and x = 3 as our test values and find g(1) = −2 and g(3) = 4. Hence, our
solution to g(x) = x2 − x− 2 ≤ 0, in this region is [1, 2).

0

(+) 0 (−)

−1 1
2

1 2

(−) 0 (+)

31

Combining these into one sign diagram, we have that our solution is [0, 2]. Graphically, to
check 2x − x2 ≥ |x − 1| − 1, we set h(x) = 2x − x2 and i(x) = |x − 1| − 1 and look for the
x values where the graph of h is above the the graph of i (the solution of h(x) > i(x)) as
well as the x-coordinates of the intersection points of both graphs (where h(x) = i(x)). The
combined sign chart is given on the left and the graphs are on the right.

0 2

(+) 0 (−) 0 (+)

−1 0 3 x

y

y = 2x− x2

y = |x− 1| − 1

−1 1 2 3

1
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One of the classic applications of inequalities is the notion of tolerances.5 Recall that for real
numbers x and c, the quantity |x − c| may be interpreted as the distance from x to c. Solving
inequalities of the form |x− c| ≤ d for d ≥ 0 can then be interpreted as finding all numbers x which
lie within d units of c. We can think of the number d as a ‘tolerance’ and our solutions x as being
within an accepted tolerance of c. We use this principle in the next example.

Example 2.4.5. The area A (in square inches) of a square piece of particle board which measures
x inches on each side is A(x) = x2. Suppose a manufacturer needs to produce a 24 inch by 24 inch
square piece of particle board as part of a home office desk kit. How close does the side of the piece
of particle board need to be cut to 24 inches to guarantee that the area of the piece is within a
tolerance of 0.25 square inches of the target area of 576 square inches?

Solution. Mathematically, we express the desire for the area A(x) to be within 0.25 square inches
of 576 as |A − 576| ≤ 0.25. Since A(x) = x2, we get |x2 − 576| ≤ 0.25, which is equivalent
to −0.25 ≤ x2 − 576 ≤ 0.25. One way to proceed at this point is to solve the two inequalities
−0.25 ≤ x2 − 576 and x2 − 576 ≤ 0.25 individually using sign diagrams and then taking the
intersection of the solution sets. While this way will (eventually) lead to the correct answer, we
take this opportunity to showcase the increasing property of the square root: if 0 ≤ a ≤ b, then√
a ≤
√
b. To use this property, we proceed as follows

−0.25 ≤ x2 − 576 ≤ 0.25
575.75 ≤ x2 ≤ 576.25 (add 576 across the inequalities.)√
575.75 ≤

√
x2 ≤

√
576.25 (take square roots.)√

575.75 ≤ |x| ≤
√

576.25 (
√
x2 = |x|)

By Theorem 2.4, we find the solution to
√

575.75 ≤ |x| to be
(
−∞,−

√
575.75

]
∪
[√

575.75,∞
)

and

the solution to |x| ≤
√

576.25 to be
[
−
√

576.25,
√

576.25
]
. To solve

√
575.75 ≤ |x| ≤

√
576.25, we

intersect these two sets to get [−
√

576.25,−
√

575.75] ∪ [
√

575.75,
√

576.25]. Since x represents a
length, we discard the negative answers and get [

√
575.75,

√
576.25]. This means that the side of

the piece of particle board must be cut between
√

575.75 ≈ 23.995 and
√

576.25 ≈ 24.005 inches, a
tolerance of (approximately) 0.005 inches of the target length of 24 inches.

Our last example in the section demonstrates how inequalities can be used to describe regions in
the plane, as we saw earlier in Section 1.2.

Example 2.4.6. Sketch the following relations.

1. R = {(x, y) : y > |x|}

2. S = {(x, y) : y ≤ 2− x2}

3. T = {(x, y) : |x| < y ≤ 2− x2}

5The underlying concept of Calculus can be phrased in terms of tolerances, so this is well worth your attention.
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Solution.

1. The relation R consists of all points (x, y) whose y-coordinate is greater than |x|. If we graph
y = |x|, then we want all of the points in the plane above the points on the graph. Dotting
the graph of y = |x| as we have done before to indicate that the points on the graph itself are
not in the relation, we get the shaded region below on the left.

2. For a point to be in S, its y-coordinate must be less than or equal to the y-coordinate on the
parabola y = 2− x2. This is the set of all points below or on the parabola y = 2− x2.

x

y

−2 −1 1 2

−1

1

2

The graph of R

x

y

−2 −1 1 2

−1

1

2

The graph of S

3. Finally, the relation T takes the points whose y-coordinates satisfy both the conditions given
in R and those of S. Thus we shade the region between y = |x| and y = 2−x2, keeping those
points on the parabola, but not the points on y = |x|. To get an accurate graph, we need to
find where these two graphs intersect, so we set |x| = 2− x2. Proceeding as before, breaking
this equation into cases, we get x = −1, 1. Graphing yields

x

y

−2 −1 1 2

−1

1

2

The graph of T
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2.4.1 Exercises

In Exercises 1 - 32, solve the inequality. Write your answer using interval notation.

1. |3x− 5| ≤ 4 2. |7x+ 2| > 10

3. |2x+ 1| − 5 < 0 4. |2− x| − 4 ≥ −3

5. |3x+ 5|+ 2 < 1 6. 2|7− x|+ 4 > 1

7. 2 ≤ |4− x| < 7 8. 1 < |2x− 9| ≤ 3

9. |x+ 3| ≥ |6x+ 9| 10. |x− 3| − |2x+ 1| < 0

11. |1− 2x| ≥ x+ 5 12. x+ 5 < |x+ 5|

13. x ≥ |x+ 1| 14. |2x+ 1| ≤ 6− x

15. x+ |2x− 3| < 2 16. |3− x| ≥ x− 5

17. x2 + 2x− 3 ≥ 0 18. 16x2 + 8x+ 1 > 0

19. x2 + 9 < 6x 20. 9x2 + 16 ≥ 24x

21. x2 + 4 ≤ 4x 22. x2 + 1 < 0

23. 3x2 ≤ 11x+ 4 24. x > x2

25. 2x2 − 4x− 1 > 0 26. 5x+ 4 ≤ 3x2

27. 2 ≤ |x2 − 9| < 9 28. x2 ≤ |4x− 3|

29. x2 + x+ 1 ≥ 0 30. x2 ≥ |x|

31. x|x+ 5| ≥ −6 32. x|x− 3| < 2

33. The profit, in dollars, made by selling x bottles of 100% All-Natural Certified Free-Trade
Organic Sasquatch Tonic is given by P (x) = −x2 + 25x − 100, for 0 ≤ x ≤ 35. How many
bottles of tonic must be sold to make at least $50 in profit?

34. Suppose C(x) = x2 − 10x+ 27, x ≥ 0 represents the costs, in hundreds of dollars, to produce
x thousand pens. Find the number of pens which can be produced for no more than $1100.

35. The temperature T , in degrees Fahrenheit, t hours after 6 AM is given by T (t) = −1
2 t

2+8t+32,
for 0 ≤ t ≤ 12. When is it warmer than 42◦ Fahrenheit?
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36. The height h in feet of a model rocket above the ground t seconds after lift-off is given by
h(t) = −5t2 + 100t, for 0 ≤ t ≤ 20. When is the rocket at least 250 feet off the ground?
Round your answer to two decimal places.

37. If a slingshot is used to shoot a marble straight up into the air from 2 meters above the
ground with an initial velocity of 30 meters per second, for what values of time t will the
marble be over 35 meters above the ground? (Refer to Exercise 25 in Section 2.3 for assistance
if needed.) Round your answers to two decimal places.

38. What temperature values in degrees Celsius are equivalent to the temperature range 50◦F to
95◦F? (Refer to Exercise 35 in Section 2.1 for assistance if needed.)

In Exercises 39 - 42, write and solve an inequality involving absolute values for the given statement.

39. Find all real numbers x so that x is within 4 units of 2.

40. Find all real numbers x so that 3x is within 2 units of −1.

41. Find all real numbers x so that x2 is within 1 unit of 3.

42. Find all real numbers x so that x2 is at least 7 units away from 4.

43. The surface area S of a cube with edge length x is given by S(x) = 6x2 for x > 0. Suppose the
cubes your company manufactures are supposed to have a surface area of exactly 42 square
centimeters, but the machines you own are old and cannot always make a cube with the
precise surface area desired. Write an inequality using absolute value that says the surface
area of a given cube is no more than 3 square centimeters away (high or low) from the target
of 42 square centimeters. Solve the inequality and write your answer using interval notation.

44. Suppose f is a function, L is a real number and ε is a positive number. Discuss with your
classmates what the inequality |f(x)− L| < ε means algebraically and graphically.6

In Exercises 45 - 50, sketch the graph of the relation.

45. R = {(x, y) : y ≤ x− 1} 46. R =
{

(x, y) : y > x2 + 1
}

47. R = {(x, y) : −1 < y ≤ 2x+ 1} 48. R =
{

(x, y) : x2 ≤ y < x+ 2
}

49. R = {(x, y) : |x| − 4 < y < 2− x} 50. R =
{

(x, y) : x2 < y ≤ |4x− 3|
}

51. Prove the second, third and fourth parts of Theorem 2.4.

6Understanding this type of inequality is really important in Calculus.
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2.4.2 Answers

1.
[

1
3 , 3
]

2.
(
−∞,−12

7

)
∪
(

8
7 ,∞

)
3. (−3, 2) 4. (−∞, 1] ∪ [3,∞)

5. No solution 6. (−∞,∞)

7. (−3, 2] ∪ [6, 11) 8. [3, 4) ∪ (5, 6]

9.
[
−12

7 ,−
6
5

]
10. (−∞,−4) ∪

(
2
3 ,∞

)
11.

(
−∞,−4

3

]
∪ [6,∞) 12. (−∞,−5)

13. No Solution. 14.
[
−7, 5

3

]
15.

(
1, 5

3

)
16. (−∞,∞)

17. (−∞,−3] ∪ [1,∞) 18.
(
−∞,−1

4

)
∪
(
−1

4 ,∞
)

19. No solution 20. (−∞,∞)

21. {2} 22. No solution

23.
[
−1

3 , 4
]

24. (0, 1)

25.
(
−∞, 1−

√
6

2

)
∪
(

1 +
√

6
2 ,∞

)
26.

(
−∞, 5−

√
73

6

]
∪
[

5+
√

73
6 ,∞

)
27.

(
−3
√

2,−
√

11
]
∪
[
−
√

7, 0
)
∪
(

0,
√

7
]
∪
[√

11, 3
√

2
)

28.
[
−2−

√
7,−2 +

√
7
]
∪ [1, 3]

29. (−∞,∞) 30. (−∞,−1] ∪ {0} ∪ [1,∞)

31. [−6,−3] ∪ [−2,∞) 32. (−∞, 1) ∪
(

2, 3+
√

17
2

)
33. P (x) ≥ 50 on [10, 15]. This means anywhere between 10 and 15 bottles of tonic need to be

sold to earn at least $50 in profit.

34. C(x) ≤ 11 on [2, 8]. This means anywhere between 2000 and 8000 pens can be produced and
the cost will not exceed $1100.

35. T (t) > 42 on (8 − 2
√

11, 8 + 2
√

11) ≈ (1.37, 14.63), which corresponds to between 7:22 AM
(1.37 hours after 6 AM) to 8:38 PM (14.63 hours after 6 AM.) However, since the model is
valid only for t, 0 ≤ t ≤ 12, we restrict our answer and find it is warmer than 42◦ Fahrenheit
from 7:22 AM to 6 PM.
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36. h(t) ≥ 250 on [10− 5
√

2, 10 + 5
√

2] ≈ [2.93, 17.07]. This means the rocket is at least 250 feet
off the ground between 2.93 and 17.07 seconds after lift off.

37. s(t) = −4.9t2 + 30t+ 2. s(t) > 35 on (approximately) (1.44, 4.68). This means between 1.44
and 4.68 seconds after it is launched into the air, the marble is more than 35 feet off the
ground.

38. From our previous work C(F ) = 5
9(F − 32) so 50 ≤ F ≤ 95 becomes 10 ≤ C ≤ 35.

39. |x− 2| ≤ 4, [−2, 6]

40. |3x+ 1| ≤ 2,
[
−1, 1

3

]
41. |x2 − 3| ≤ 1, [−2,−

√
2 ] ∪ [

√
2, 2]

42. |x2 − 4| ≥ 7, (−∞,−
√

11 ] ∪ [
√

11,∞)

43. Solving |S(x) − 42| ≤ 3, and disregarding the negative solutions yields
[√

13
2 ,
√

15
2

]
≈

[2.550, 2.739]. The edge length must be within 2.550 and 2.739 centimeters.

45.

x

y

−2 −1 1 2 3

−3

−2

−1

1

2

3

46.

x

y

−2 −1 1 2

1

2

3

4

47.

x

y

−2 −1 1 2

1

2

3

4

5

48.

x

y

−1 1 2

1

2

3

4
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49.

x

y

−2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

50.

x

y

−4 −3 −2 −1 1 2 3

5

10

15

20
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2.5 Regression

We have seen examples already in the text where linear and quadratic functions are used to model
a wide variety of real world phenomena ranging from production costs to the height of a projectile
above the ground. In this section, we use some basic tools from statistical analysis to quantify
linear and quadratic trends that we may see in real world data in order to generate linear and
quadratic models. Our goal is to give the reader an understanding of the basic processes involved,
but we are quick to refer the reader to a more advanced course1 for a complete exposition of this
material. Suppose we collected three data points: {(1, 2), (3, 1), (4, 3)}. By plotting these points,
we can clearly see that they do not lie along the same line. If we pick any two of the points, we can
find a line containing both which completely misses the third, but our aim is to find a line which
is in some sense ‘close’ to all the points, even though it may go through none of them. The way
we measure ‘closeness’ in this case is to find the total squared error between the data points
and the line. Consider our three data points and the line y = 1

2x+ 1
2 . For each of our data points,

we find the vertical distance between the point and the line. To accomplish this, we need to find
a point on the line directly above or below each data point - in other words, a point on the line
with the same x-coordinate as our data point. For example, to find the point on the line directly
below (1, 2), we plug x = 1 into y = 1

2x+ 1
2 and we get the point (1, 1). Similarly, we get (3, 1) to

correspond to (3, 2) and
(
4, 5

2

)
for (4, 3).

1 2 3 4

1

2

3

4

We find the total squared error E by taking the sum of the squares of the differences of the y-
coordinates of each data point and its corresponding point on the line. For the data and line above
E = (2− 1)2 + (1− 2)2 +

(
3− 5

2

)2
= 9

4 . Using advanced mathematical machinery,2 it is possible to
find the line which results in the lowest value of E. This line is called the least squares regression
line, or sometimes the ‘line of best fit’. The formula for the line of best fit requires notation we
won’t present until Chapter 9.1, so we will revisit it then. The graphing calculator can come to our
assistance here, since it has a built-in feature to compute the regression line. We enter the data
and perform the Linear Regression feature and we get

1and authors with more expertise in this area,
2Like Calculus and Linear Algebra
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The calculator tells us that the line of best fit is y = ax + b where the slope is a ≈ 0.214 and the
y-coordinate of the y-intercept is b ≈ 1.428. (We will stick to using three decimal places for our
approximations.) Using this line, we compute the total squared error for our data to be E ≈ 1.786.
The value r is the correlation coefficient and is a measure of how close the data is to being on
the same line. The closer |r| is to 1, the better the linear fit. Since r ≈ 0.327, this tells us that the
line of best fit doesn’t fit all that well - in other words, our data points aren’t close to being linear.
The value r2 is called the coefficient of determination and is also a measure of the goodness of
fit.3 Plotting the data with its regression line results in the picture below.

Our first example looks at energy consumption in the US over the past 50 years.4

Year Energy Usage,
in Quads5

1950 34.6

1960 45.1

1970 67.8

1980 78.3

1990 84.6

2000 98.9

Example 2.5.1. Using the energy consumption data given above,

1. Plot the data using a graphing calculator.

3We refer the interested reader to a course in Statistics to explore the significance of r and r2.
4See this Department of Energy activity
5The unit 1 Quad is 1 Quadrillion = 1015 BTUs, which is enough heat to raise Lake Erie roughly 1◦F

http://www.eia.doe.gov/kids/classactivities/EnergyAnalysisEIA.pdf
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2. Find the least squares regression line and comment on the goodness of fit.

3. Interpret the slope of the line of best fit.

4. Use the regression line to predict the annual US energy consumption in the year 2013.

5. Use the regression line to predict when the annual consumption will reach 120 Quads.

Solution.

1. Entering the data into the calculator gives

The data certainly appears to be linear in nature.

2. Performing a linear regression produces

We can tell both from the correlation coefficient as well as the graph that the regression line
is a good fit to the data.

3. The slope of the regression line is a ≈ 1.287. To interpret this, recall that the slope is the
rate of change of the y-coordinates with respect to the x-coordinates. Since the y-coordinates
represent the energy usage in Quads, and the x-coordinates represent years, a slope of positive
1.287 indicates an increase in annual energy usage at the rate of 1.287 Quads per year.

4. To predict the energy needs in 2013, we substitute x = 2013 into the equation of the line of
best fit to get y = 1.287(2013) − 2473.890 ≈ 116.841. The predicted annual energy usage of
the US in 2013 is approximately 116.841 Quads.
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5. To predict when the annual US energy usage will reach 120 Quads, we substitute y = 120
into the equation of the line of best fit to get 120 = 1.287x − 2473.908. Solving for x yields
x ≈ 2015.454. Since the regression line is increasing, we interpret this result as saying the
annual usage in 2015 won’t yet be 120 Quads, but that in 2016, the demand will be more
than 120 Quads.

Our next example gives us an opportunity to find a nonlinear model to fit the data. According to
the National Weather Service, the predicted hourly temperatures for Painesville on March 3, 2009
were given as summarized below.

Time Temperature, ◦F

10AM 17

11AM 19

12PM 21

1PM 23

2PM 24

3PM 24

4PM 23

To enter this data into the calculator, we need to adjust the x values, since just entering the
numbers could cause confusion. (Do you see why?) We have a few options available to us. Perhaps
the easiest is to convert the times into the 24 hour clock time so that 1 PM is 13, 2 PM is 14, etc..
If we enter these data into the graphing calculator and plot the points we get

While the beginning of the data looks linear, the temperature begins to fall in the afternoon hours.
This sort of behavior reminds us of parabolas, and, sure enough, it is possible to find a parabola of
best fit in the same way we found a line of best fit. The process is called quadratic regression
and its goal is to minimize the least square error of the data with their corresponding points on
the parabola. The calculator has a built in feature for this as well which yields
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The coefficient of determination R2 seems reasonably close to 1, and the graph visually seems to
be a decent fit. We use this model in our next example.

Example 2.5.2. Using the quadratic model for the temperature data above, predict the warmest
temperature of the day. When will this occur?

Solution. The maximum temperature will occur at the vertex of the parabola. Recalling the
Vertex Formula, Equation 2.4, x = − b

2a ≈ −
9.464

2(−0.321) ≈ 14.741. This corresponds to roughly 2 : 45

PM. To find the temperature, we substitute x = 14.741 into y = −0.321x2 + 9.464x− 45.857 to get
y ≈ 23.899, or 23.899◦F.

The results of the last example should remind you that regression models are just that, models. Our
predicted warmest temperature was found to be 23.899◦F, but our data says it will warm to 24◦F.
It’s all well and good to observe trends and guess at a model, but a more thorough investigation
into why certain data should be linear or quadratic in nature is usually in order - and that, most
often, is the business of scientists.
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2.5.1 Exercises

1. According to this website6, the census data for Lake County, Ohio is:

Year 1970 1980 1990 2000

Population 197200 212801 215499 227511

(a) Find the least squares regression line for these data and comment on the goodness of
fit.7 Interpret the slope of the line of best fit.

(b) Use the regression line to predict the population of Lake County in 2010. (The recorded
figure from the 2010 census is 230,041)

(c) Use the regression line to predict when the population of Lake County will reach 250,000.

2. According to this website8, the census data for Lorain County, Ohio is:

Year 1970 1980 1990 2000

Population 256843 274909 271126 284664

(a) Find the least squares regression line for these data and comment on the goodness of fit.
Interpret the slope of the line of best fit.

(b) Use the regression line to predict the population of Lorain County in 2010. (The recorded
figure from the 2010 census is 301,356)

(c) Use the regression line to predict when the population of Lake County will reach 325,000.

3. Using the energy production data given below

Year 1950 1960 1970 1980 1990 2000

Production
(in Quads) 35.6 42.8 63.5 67.2 70.7 71.2

(a) Plot the data using a graphing calculator and explain why it does not appear to be
linear.

(b) Discuss with your classmates why ignoring the first two data points may be justified
from a historical perspective.

(c) Find the least squares regression line for the last four data points and comment on the
goodness of fit. Interpret the slope of the line of best fit.

(d) Use the regression line to predict the annual US energy production in the year 2010.

(e) Use the regression line to predict when the annual US energy production will reach 100
Quads.

6http://www.ohiobiz.com/census/Lake.pdf
7We’ll develop more sophisticated models for the growth of populations in Chapter 6. For the moment, we use a

theorem from Calculus to approximate those functions with lines.
8http://www.ohiobiz.com/census/Lorain.pdf

http://www.ohiobiz.com/census/Lake.pdf
http://www.ohiobiz.com/census/Lorain.pdf
http://www.ohiobiz.com/census/Lake.pdf
http://www.ohiobiz.com/census/Lorain.pdf
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4. The chart below contains a portion of the fuel consumption information for a 2002 Toyota
Echo that I (Jeff) used to own. The first row is the cumulative number of gallons of gasoline
that I had used and the second row is the odometer reading when I refilled the gas tank. So,
for example, the fourth entry is the point (28.25, 1051) which says that I had used a total of
28.25 gallons of gasoline when the odometer read 1051 miles.

Gasoline Used
(Gallons) 0 9.26 19.03 28.25 36.45 44.64 53.57 62.62 71.93 81.69 90.43
Odometer
(Miles) 41 356 731 1051 1347 1631 1966 2310 2670 3030 3371

Find the least squares line for this data. Is it a good fit? What does the slope of the line
represent? Do you and your classmates believe this model would have held for ten years had
I not crashed the car on the Turnpike a few years ago? (I’m keeping a fuel log for my 2006
Scion xA for future College Algebra books so I hope not to crash it, too.)

5. On New Year’s Day, I (Jeff, again) started weighing myself every morning in order to have an
interesting data set for this section of the book. (Discuss with your classmates if that makes
me a nerd or a geek. Also, the professionals in the field of weight management strongly
discourage weighing yourself every day. When you focus on the number and not your overall
health, you tend to lose sight of your objectives. I was making a noble sacrifice for science,
but you should not try this at home.) The whole chart would be too big to put into the book
neatly, so I’ve decided to give only a small portion of the data to you. This then becomes a
Civics lesson in honesty, as you shall soon see. There are two charts given below. One has my
weight for the first eight Thursdays of the year (January 1, 2009 was a Thursday and we’ll
count it as Day 1.) and the other has my weight for the first 10 Saturdays of the year.

Day #
(Thursday) 1 8 15 22 29 36 43 50
My weight
in pounds 238.2 237.0 235.6 234.4 233.0 233.8 232.8 232.0

Day #
(Saturday) 3 10 17 24 31 38 45 52 59 66
My weight
in pounds 238.4 235.8 235.0 234.2 236.2 236.2 235.2 233.2 236.8 238.2

(a) Find the least squares line for the Thursday data and comment on its goodness of fit.

(b) Find the least squares line for the Saturday data and comment on its goodness of fit.

(c) Use Quadratic Regression to find a parabola which models the Saturday data and com-
ment on its goodness of fit.

(d) Compare and contrast the predictions the three models make for my weight on January
1, 2010 (Day #366). Can any of these models be used to make a prediction of my weight
20 years from now? Explain your answer.
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(e) Why is this a Civics lesson in honesty? Well, compare the two linear models you obtained
above. One was a good fit and the other was not, yet both came from careful selections
of real data. In presenting the tables to you, I have not lied about my weight, nor
have you used any bad math to falsify the predictions. The word we’re looking for
here is ‘disingenuous’. Look it up and then discuss the implications this type of data
manipulation could have in a larger, more complex, politically motivated setting. (Even
Obi-Wan presented the truth to Luke only “from a certain point of view.”)

6. (Data that is neither linear nor quadratic.) We’ll close this exercise set with two data sets that,
for reasons presented later in the book, cannot be modeled correctly by lines or parabolas. It
is a good exercise, though, to see what happens when you attempt to use a linear or quadratic
model when it’s not appropriate.

(a) This first data set came from a Summer 2003 publication of the Portage County Animal
Protective League called “Tattle Tails”. They make the following statement and then
have a chart of data that supports it. “It doesn’t take long for two cats to turn into 80
million. If two cats and their surviving offspring reproduced for ten years, you’d end up
with 80,399,780 cats.” We assume N(0) = 2.

Year x 1 2 3 4 5 6 7 8 9 10
Number of
Cats N(x) 12 66 382 2201 12680 73041 420715 2423316 13968290 80399780

Use Quadratic Regression to find a parabola which models this data and comment on its
goodness of fit. (Spoiler Alert: Does anyone know what type of function we need here?)

(b) This next data set comes from the U.S. Naval Observatory. That site has loads of
awesome stuff on it, but for this exercise I used the sunrise/sunset times in Fairbanks,
Alaska for 2009 to give you a chart of the number of hours of daylight they get on the
21st of each month. We’ll let x = 1 represent January 21, 2009, x = 2 represent February
21, 2009, and so on.

Month
Number 1 2 3 4 5 6 7 8 9 10 11 12
Hours of
Daylight 5.8 9.3 12.4 15.9 19.4 21.8 19.4 15.6 12.4 9.1 5.6 3.3

Use Quadratic Regression to find a parabola which models this data and comment on its
goodness of fit. (Spoiler Alert: Does anyone know what type of function we need here?)

http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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2.5.2 Answers

1. (a) y = 936.31x − 1645322.6 with r = 0.9696 which indicates a good fit. The slope 936.31
indicates Lake County’s population is increasing at a rate of (approximately) 936 people
per year.

(b) According to the model, the population in 2010 will be 236,660.

(c) According to the model, the population of Lake County will reach 250,000 sometime
between 2024 and 2025.

2. (a) y = 796.8x − 1309762.5 with r = 0.8916 which indicates a reasonable fit. The slope
796.8 indicates Lorain County’s population is increasing at a rate of (approximately)
797 people per year.

(b) According to the model, the population in 2010 will be 291,805.

(c) According to the model, the population of Lake County will reach 325,000 sometime
between 2051 and 2052.

3. (c) y = 0.266x−459.86 with r = 0.9607 which indicates a good fit. The slope 0.266 indicates
the country’s energy production is increasing at a rate of 0.266 Quad per year.

(d) According to the model, the production in 2010 will be 74.8 Quad.

(e) According to the model, the production will reach 100 Quad in the year 2105.

4. The line is y = 36.8x + 16.39. We have r = .99987 and r2 = .9997 so this is an excellent fit
to the data. The slope 36.8 represents miles per gallon.

5. (a) The line for the Thursday data is y = −.12x + 237.69. We have r = −.9568 and
r2 = .9155 so this is a really good fit.

(b) The line for the Saturday data is y = −0.000693x+235.94. We have r = −0.008986 and
r2 = 0.0000807 which is horrible. This data is not even close to linear.

(c) The parabola for the Saturday data is y = 0.003x2−0.21x+238.30. We have R2 = .47497
which isn’t good. Thus the data isn’t modeled well by a quadratic function, either.

(d) The Thursday linear model had my weight on January 1, 2010 at 193.77 pounds. The
Saturday models give 235.69 and 563.31 pounds, respectively. The Thursday line has
my weight going below 0 pounds in about five and a half years, so that’s no good. The
quadratic has a positive leading coefficient which would mean unbounded weight gain
for the rest of my life. The Saturday line, which mathematically does not fit the data at
all, yields a plausible weight prediction in the end. I think this is why grown-ups talk
about “Lies, Damned Lies and Statistics.”

6. (a) The quadratic model for the cats in Portage county is y = 1917803.54x2−16036408.29x+
24094857.7. Although R2 = .70888 this is not a good model because it’s so far off for
small values of x. Case in point, the model gives us 24,094,858 cats when x = 0 but we
know N(0) = 2.
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(b) The quadratic model for the hours of daylight in Fairbanks, Alaska is y = .51x2 +6.23x−
.36. Even with R2 = .92295 we should be wary of making predictions beyond the data.
Case in point, the model gives −4.84 hours of daylight when x = 13. So January 21,
2010 will be “extra dark”? Obviously a parabola pointing down isn’t telling us the whole
story.



Chapter 3

Polynomial Functions

3.1 Graphs of Polynomials

Three of the families of functions studied thus far – constant, linear and quadratic – belong to
a much larger group of functions called polynomials. We begin our formal study of general
polynomials with a definition and some examples.

Definition 3.1. A polynomial function is a function of the form

f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0,

where a0, a1, . . . , an are real numbers and n ≥ 1 is a natural number. The domain of a
polynomial function is (−∞,∞).

There are several things about Definition 3.1 that may be off-putting or downright frightening. The
best thing to do is look at an example. Consider f(x) = 4x5 − 3x2 + 2x− 5. Is this a polynomial
function? We can re-write the formula for f as f(x) = 4x5 + 0x4 + 0x3 + (−3)x2 + 2x + (−5).
Comparing this with Definition 3.1, we identify n = 5, a5 = 4, a4 = 0, a3 = 0, a2 = −3, a1 = 2
and a0 = −5. In other words, a5 is the coefficient of x5, a4 is the coefficient of x4, and so forth; the
subscript on the a’s merely indicates to which power of x the coefficient belongs. The business of
restricting n to be a natural number lets us focus on well-behaved algebraic animals.1

Example 3.1.1. Determine if the following functions are polynomials. Explain your reasoning.

1. g(x) =
4 + x3

x
2. p(x) =

4x+ x3

x
3. q(x) =

4x+ x3

x2 + 4

4. f(x) = 3
√
x 5. h(x) = |x| 6. z(x) = 0

1Enjoy this while it lasts. Before we’re through with the book, you’ll have been exposed to the most terrible of
algebraic beasts. We will tame them all, in time.
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Solution.

1. We note directly that the domain of g(x) = x3+4
x is x 6= 0. By definition, a polynomial has

all real numbers as its domain. Hence, g can’t be a polynomial.

2. Even though p(x) = x3+4x
x simplifies to p(x) = x2 + 4, which certainly looks like the form

given in Definition 3.1, the domain of p, which, as you may recall, we determine before we
simplify, excludes 0. Alas, p is not a polynomial function for the same reason g isn’t.

3. After what happened with p in the previous part, you may be a little shy about simplifying
q(x) = x3+4x

x2+4
to q(x) = x, which certainly fits Definition 3.1. If we look at the domain of

q before we simplified, we see that it is, indeed, all real numbers. A function which can be
written in the form of Definition 3.1 whose domain is all real numbers is, in fact, a polynomial.

4. We can rewrite f(x) = 3
√
x as f(x) = x

1
3 . Since 1

3 is not a natural number, f is not a
polynomial.

5. The function h(x) = |x| isn’t a polynomial, since it can’t be written as a combination of
powers of x even though it can be written as a piecewise function involving polynomials. As
we shall see in this section, graphs of polynomials possess a quality2 that the graph of h does
not.

6. There’s nothing in Definition 3.1 which prevents all the coefficients an, etc., from being 0.
Hence, z(x) = 0, is an honest-to-goodness polynomial.

Definition 3.2. Suppose f is a polynomial function.

� Given f(x) = anx
n + an−1x

n−1 + . . .+ a2x
2 + a1x+ a0 with an 6= 0, we say

– The natural number n is called the degree of the polynomial f .

– The term anx
n is called the leading term of the polynomial f .

– The real number an is called the leading coefficient of the polynomial f .

– The real number a0 is called the constant term of the polynomial f .

� If f(x) = a0, and a0 6= 0, we say f has degree 0.

� If f(x) = 0, we say f has no degree.a

aSome authors say f(x) = 0 has degree −∞ for reasons not even we will go into.

The reader may well wonder why we have chosen to separate off constant functions from the other
polynomials in Definition 3.2. Why not just lump them all together and, instead of forcing n to be
a natural number, n = 1, 2, . . ., allow n to be a whole number, n = 0, 1, 2, . . .. We could unify all

2One which really relies on Calculus to verify.
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of the cases, since, after all, isn’t a0x
0 = a0? The answer is ‘yes, as long as x 6= 0.’ The function

f(x) = 3 and g(x) = 3x0 are different, because their domains are different. The number f(0) = 3 is
defined, whereas g(0) = 3(0)0 is not.3 Indeed, much of the theory we will develop in this chapter
doesn’t include the constant functions, so we might as well treat them as outsiders from the start.
One good thing that comes from Definition 3.2 is that we can now think of linear functions as
degree 1 (or ‘first degree’) polynomial functions and quadratic functions as degree 2 (or ‘second
degree’) polynomial functions.

Example 3.1.2. Find the degree, leading term, leading coefficient and constant term of the fol-
lowing polynomial functions.

1. f(x) = 4x5 − 3x2 + 2x− 5 2. g(x) = 12x+ x3

3. h(x) =
4− x

5
4. p(x) = (2x− 1)3(x− 2)(3x+ 2)

Solution.

1. There are no surprises with f(x) = 4x5− 3x2 + 2x− 5. It is written in the form of Definition
3.2, and we see that the degree is 5, the leading term is 4x5, the leading coefficient is 4 and
the constant term is −5.

2. The form given in Definition 3.2 has the highest power of x first. To that end, we re-write
g(x) = 12x + x3 = x3 + 12x, and see that the degree of g is 3, the leading term is x3, the
leading coefficient is 1 and the constant term is 0.

3. We need to rewrite the formula for h so that it resembles the form given in Definition 3.2:
h(x) = 4−x

5 = 4
5 −

x
5 = −1

5x + 4
5 . The degree of h is 1, the leading term is −1

5x, the leading
coefficient is −1

5 and the constant term is 4
5 .

4. It may seem that we have some work ahead of us to get p in the form of Definition 3.2.
However, it is possible to glean the information requested about p without multiplying out
the entire expression (2x− 1)3(x− 2)(3x+ 2). The leading term of p will be the term which
has the highest power of x. The way to get this term is to multiply the terms with the
highest power of x from each factor together - in other words, the leading term of p(x) is
the product of the leading terms of the factors of p(x). Hence, the leading term of p is
(2x)3(x)(3x) = 24x5. This means that the degree of p is 5 and the leading coefficient is 24.
As for the constant term, we can perform a similar trick. The constant term is obtained by
multiplying the constant terms from each of the factors (−1)3(−2)(2) = 4.

Our next example shows how polynomials of higher degree arise ‘naturally’4 in even the most basic
geometric applications.

3Technically, 00 is an indeterminant form, which is a special case of being undefined. The authors realize this is
beyond pedantry, but we wouldn’t mention it if we didn’t feel it was neccessary.

4this is a dangerous word...
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Example 3.1.3. A box with no top is to be fashioned from a 10 inch × 12 inch piece of cardboard
by cutting out congruent squares from each corner of the cardboard and then folding the resulting
tabs. Let x denote the length of the side of the square which is removed from each corner.

x

x

x

x

x

x

x

x

10 in

12 in

width

height
depth

1. Find the volume V of the box as a function of x. Include an appropriate applied domain.

2. Use a graphing calculator to graph y = V (x) on the domain you found in part 1 and approx-
imate the dimensions of the box with maximum volume to two decimal places. What is the
maximum volume?

Solution.

1. From Geometry, we know that Volume = width× height× depth. The key is to find each of
these quantities in terms of x. From the figure, we see that the height of the box is x itself.
The cardboard piece is initially 10 inches wide. Removing squares with a side length of x
inches from each corner leaves 10− 2x inches for the width.5 As for the depth, the cardboard
is initially 12 inches long, so after cutting out x inches from each side, we would have 12− 2x
inches remaining. As a function6 of x, the volume is

V (x) = x(10− 2x)(12− 2x) = 4x3 − 44x2 + 120x

To find a suitable applied domain, we note that to make a box at all we need x > 0. Also the
shorter of the two dimensions of the cardboard is 10 inches, and since we are removing 2x
inches from this dimension, we also require 10− 2x > 0 or x < 5. Hence, our applied domain
is 0 < x < 5.

2. Using a graphing calculator, we see that the graph of y = V (x) has a relative maximum. For
0 < x < 5, this is also the absolute maximum. Using the ‘Maximum’ feature of the calculator,
we get x ≈ 1.81, y ≈ 96.77. This yields a height of x ≈ 1.81 inches, a width of 10− 2x ≈ 6.38
inches, and a depth of 12 − 2x ≈ 8.38 inches. The y-coordinate is the maximum volume,
which is approximately 96.77 cubic inches (also written in3).

5There’s no harm in taking an extra step here and making sure this makes sense. If we chopped out a 1 inch
square from each side, then the width would be 8 inches, so chopping out x inches would leave 10− 2x inches.

6When we write V (x), it is in the context of function notation, not the volume V times the quantity x.
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In order to solve Example 3.1.3, we made good use of the graph of the polynomial y = V (x), so we
ought to turn our attention to graphs of polynomials in general. Below are the graphs of y = x2,
y = x4 and y = x6, side-by-side. We have omitted the axes to allow you to see that as the exponent
increases, the ‘bottom’ becomes ‘flatter’ and the ‘sides’ become ‘steeper.’ If you take the the time
to graph these functions by hand,7 you will see why.

y = x2 y = x4 y = x6

All of these functions are even, (Do you remember how to show this?) and it is exactly because
the exponent is even.8 This symmetry is important, but we want to explore a different yet equally
important feature of these functions which we can be seen graphically – their end behavior.

The end behavior of a function is a way to describe what is happening to the function values
(the y-values) as the x-values approach the ‘ends’ of the x-axis.9 That is, what happens to y as
x becomes small without bound10 (written x → −∞) and, on the flip side, as x becomes large
without bound11 (written x→∞).

For example, given f(x) = x2, as x → −∞, we imagine substituting x = −100, x = −1000, etc.,
into f to get f(−100) = 10000, f(−1000) = 1000000, and so on. Thus the function values are
becoming larger and larger positive numbers (without bound). To describe this behavior, we write:
as x → −∞, f(x) → ∞. If we study the behavior of f as x → ∞, we see that in this case,
too, f(x) → ∞. (We told you that the symmetry was important!) The same can be said for any
function of the form f(x) = xn where n is an even natural number. If we generalize just a bit to
include vertical scalings and reflections across the x-axis,12 we have

7Make sure you choose some x-values between −1 and 1.
8Herein lies one of the possible origins of the term ‘even’ when applied to functions.
9Of course, there are no ends to the x-axis.

10We think of x as becoming a very large (in the sense of its absolute value) negative number far to the left of zero.
11We think of x as moving far to the right of zero and becoming a very large positive number.
12See Theorems 1.4 and 1.5 in Section 1.7.
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End Behavior of functions f(x) = axn, n even.

Suppose f(x) = axn where a 6= 0 is a real number and n is an even natural number. The end
behavior of the graph of y = f(x) matches one of the following:

� for a > 0, as x→ −∞, f(x)→∞ and as x→∞, f(x)→∞

� for a < 0, as x→ −∞, f(x)→ −∞ and as x→∞, f(x)→ −∞

Graphically:

a > 0 a < 0

We now turn our attention to functions of the form f(x) = xn where n ≥ 3 is an odd natural
number. (We ignore the case when n = 1, since the graph of f(x) = x is a line and doesn’t fit the
general pattern of higher-degree odd polynomials.) Below we have graphed y = x3, y = x5, and
y = x7. The ‘flattening’ and ‘steepening’ that we saw with the even powers presents itself here as
well, and, it should come as no surprise that all of these functions are odd.13 The end behavior of
these functions is all the same, with f(x)→ −∞ as x→ −∞ and f(x)→∞ as x→∞.

y = x3 y = x5 y = x7

As with the even degreed functions we studied earlier, we can generalize their end behavior.

End Behavior of functions f(x) = axn, n odd.

Suppose f(x) = axn where a 6= 0 is a real number and n ≥ 3 is an odd natural number. The
end behavior of the graph of y = f(x) matches one of the following:

� for a > 0, as x→ −∞, f(x)→ −∞ and as x→∞, f(x)→∞

� for a < 0, as x→ −∞, f(x)→∞ and as x→∞, f(x)→ −∞

Graphically:

a > 0 a < 0

13And are, perhaps, the inspiration for the moniker ‘odd function’.
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Despite having different end behavior, all functions of the form f(x) = axn for natural numbers n
share two properties which help distinguish them from other animals in the algebra zoo: they are
continuous and smooth. While these concepts are formally defined using Calculus,14 informally,
graphs of continuous functions have no ‘breaks’ or ‘holes’ in them, and the graphs of smooth
functions have no ‘sharp turns’. It turns out that these traits are preserved when functions are
added together, so general polynomial functions inherit these qualities. Below we find the graph of a
function which is neither smooth nor continuous, and to its right we have a graph of a polynomial,
for comparison. The function whose graph appears on the left fails to be continuous where it
has a ‘break’ or ‘hole’ in the graph; everywhere else, the function is continuous. The function is
continuous at the ‘corner’ and the ‘cusp’, but we consider these ‘sharp turns’, so these are places
where the function fails to be smooth. Apart from these four places, the function is smooth and
continuous. Polynomial functions are smooth and continuous everywhere, as exhibited in the graph
on the right.

‘corner’

‘break’

‘cusp’

‘hole’

Pathologies not found on graphs of polynomials The graph of a polynomial

The notion of smoothness is what tells us graphically that, for example, f(x) = |x|, whose graph is
the characteristic ‘∨’ shape, cannot be a polynomial. The notion of continuity is what allowed us
to construct the sign diagram for quadratic inequalities as we did in Section 2.4. This last result is
formalized in the following theorem.

Theorem 3.1. The Intermediate Value Theorem (Zero Version): Suppose f is a con-
tinuous function on an interval containing x = a and x = b with a < b. If f(a) and f(b) have
different signs, then f has at least one zero between x = a and x = b; that is, for at least one
real number c such that a < c < b, we have f(c) = 0.

The Intermediate Value Theorem is extremely profound; it gets to the heart of what it means to be
a real number, and is one of the most often used and under appreciated theorems in Mathematics.
With that being said, most students see the result as common sense since it says, geometrically,
that the graph of a polynomial function cannot be above the x-axis at one point and below the
x-axis at another point without crossing the x-axis somewhere in between. The following example
uses the Intermediate Value Theorem to establish a fact that that most students take for granted.
Many students, and sadly some instructors, will find it silly.

14In fact, if you take Calculus, you’ll find that smooth functions are automatically continuous, so that saying
‘polynomials are continuous and smooth’ is redundant.
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Example 3.1.4. Use the Intermediate Value Theorem to establish that
√

2 is a real number.

Solution. Consider the polynomial function f(x) = x2 − 2. Then f(1) = −1 and f(3) = 7. Since
f(1) and f(3) have different signs, the Intermediate Value Theorem guarantees us a real number
c between 1 and 3 with f(c) = 0. If c2 − 2 = 0 then c = ±

√
2. Since c is between 1 and 3, c is

positive, so c =
√

2.

Our primary use of the Intermediate Value Theorem is in the construction of sign diagrams, as in
Section 2.4, since it guarantees us that polynomial functions are always positive (+) or always neg-
ative (−) on intervals which do not contain any of its zeros. The general algorithm for polynomials
is given below.

Steps for Constructing a Sign Diagram for a Polynomial Function

Suppose f is a polynomial function.

1. Find the zeros of f and place them on the number line with the number 0 above them.

2. Choose a real number, called a test value, in each of the intervals determined in step 1.

3. Determine the sign of f(x) for each test value in step 2, and write that sign above the
corresponding interval.

Example 3.1.5. Construct a sign diagram for f(x) = x3(x− 3)2(x+ 2)
(
x2 + 1

)
. Use it to give a

rough sketch of the graph of y = f(x).

Solution. First, we find the zeros of f by solving x3(x − 3)2(x + 2)
(
x2 + 1

)
= 0. We get x = 0,

x = 3 and x = −2. (The equation x2 +1 = 0 produces no real solutions.) These three points divide
the real number line into four intervals: (−∞,−2), (−2, 0), (0, 3) and (3,∞). We select the test
values x = −3, x = −1, x = 1 and x = 4. We find f(−3) is (+), f(−1) is (−) and f(1) is (+) as
is f(4). Wherever f is (+), its graph is above the x-axis; wherever f is (−), its graph is below the
x-axis. The x-intercepts of the graph of f are (−2, 0), (0, 0) and (3, 0). Knowing f is smooth and
continuous allows us to sketch its graph.

−2 0 3

(+)

−3

0 (−)

−1

0 (+)

1

0 (+)

4
x

y

A sketch of y = f(x)

A couple of notes about the Example 3.1.5 are in order. First, note that we purposefully did not
label the y-axis in the sketch of the graph of y = f(x). This is because the sign diagram gives us the
zeros and the relative position of the graph - it doesn’t give us any information as to how high or low
the graph strays from the x-axis. Furthermore, as we have mentioned earlier in the text, without
Calculus, the values of the relative maximum and minimum can only be found approximately using
a calculator. If we took the time to find the leading term of f , we would find it to be x8. Looking
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at the end behavior of f , we notice that it matches the end behavior of y = x8. This is no accident,
as we find out in the next theorem.

Theorem 3.2. End Behavior for Polynomial Functions: The end behavior of a polynomial
f(x) = anx

n+an−1x
n−1 +. . .+a2x

2 +a1x+a0 with an 6= 0 matches the end behavior of y = anx
n.

To see why Theorem 3.2 is true, let’s first look at a specific example. Consider f(x) = 4x3− x+ 5.
If we wish to examine end behavior, we look to see the behavior of f as x → ±∞. Since we’re
concerned with x’s far down the x-axis, we are far away from x = 0 so can rewrite f(x) for these
values of x as

f(x) = 4x3

(
1− 1

4x2
+

5

4x3

)
As x becomes unbounded (in either direction), the terms 1

4x2 and 5
4x3 become closer and closer to

0, as the table below indicates.

x 1
4x2

5
4x3

−1000 0.00000025 −0.00000000125

−100 0.000025 −0.00000125

−10 0.0025 −0.00125

10 0.0025 0.00125

100 0.000025 0.00000125

1000 0.00000025 0.00000000125

In other words, as x → ±∞, f(x) ≈ 4x3 (1− 0 + 0) = 4x3, which is the leading term of f . The
formal proof of Theorem 3.2 works in much the same way. Factoring out the leading term leaves

f(x) = anx
n

(
1 +

an−1

anx
+ . . .+

a2

anxn−2
+

a1

anxn−1
+

a0

anxn

)
As x → ±∞, any term with an x in the denominator becomes closer and closer to 0, and we
have f(x) ≈ anx

n. Geometrically, Theorem 3.2 says that if we graph y = f(x) using a graphing
calculator, and continue to ‘zoom out’, the graph of it and its leading term become indistinguishable.
Below are the graphs of y = 4x3 − x + 5 (the thicker line) and y = 4x3 (the thinner line) in two
different windows.

A view ‘close’ to the origin. A ‘zoomed out’ view.



244 Polynomial Functions

Let’s return to the function in Example 3.1.5, f(x) = x3(x−3)2(x+2)
(
x2 + 1

)
, whose sign diagram

and graph are reproduced below for reference. Theorem 3.2 tells us that the end behavior is the
same as that of its leading term x8. This tells us that the graph of y = f(x) starts and ends above
the x-axis. In other words, f(x) is (+) as x→ ±∞, and as a result, we no longer need to evaluate
f at the test values x = −3 and x = 4. Is there a way to eliminate the need to evaluate f at the
other test values? What we would really need to know is how the function behaves near its zeros -
does it cross through the x-axis at these points, as it does at x = −2 and x = 0, or does it simply
touch and rebound like it does at x = 3. From the sign diagram, the graph of f will cross the
x-axis whenever the signs on either side of the zero switch (like they do at x = −2 and x = 0); it
will touch when the signs are the same on either side of the zero (as is the case with x = 3). What
we need to determine is the reason behind whether or not the sign change occurs.

−2 0 3

(+)

−3

0 (−)

−1

0 (+)

1

0 (+)

4
x

y

A sketch of y = f(x)

Fortunately, f was given to us in factored form: f(x) = x3(x − 3)2(x + 2). When we attempt to
determine the sign of f(−4), we are attempting to find the sign of the number (−4)3(−7)2(−2),
which works out to be (−)(+)(−) which is (+). If we move to the other side of x = −2, and find
the sign of f(−1), we are determining the sign of (−1)3(−4)2(+1), which is (−)(+)(+) which gives
us the (−). Notice that signs of the first two factors in both expressions are the same in f(−4) and
f(−1). The only factor which switches sign is the third factor, (x + 2), precisely the factor which
gave us the zero x = −2. If we move to the other side of 0 and look closely at f(1), we get the sign
pattern (+1)3(−2)2(+3) or (+)(+)(+) and we note that, once again, going from f(−1) to f(1),
the only factor which changed sign was the first factor, x3, which corresponds to the zero x = 0.
Finally, to find f(4), we substitute to get (+4)3(+2)2(+5) which is (+)(+)(+) or (+). The sign
didn’t change for the middle factor (x − 3)2. Even though this is the factor which corresponds to
the zero x = 3, the fact that the quantity is squared kept the sign of the middle factor the same on
either side of 3. If we look back at the exponents on the factors (x + 2) and x3, we see that they
are both odd, so as we substitute values to the left and right of the corresponding zeros, the signs
of the corresponding factors change which results in the sign of the function value changing. This
is the key to the behavior of the function near the zeros. We need a definition and then a theorem.

Definition 3.3. Suppose f is a polynomial function and m is a natural number. If (x− c)m is
a factor of f(x) but (x− c)m+1 is not, then we say x = c is a zero of multiplicity m.

Hence, rewriting f(x) = x3(x− 3)2(x+ 2) as f(x) = (x− 0)3(x− 3)2(x− (−2))1, we see that x = 0
is a zero of multiplicity 3, x = 3 is a zero of multiplicity 2 and x = −2 is a zero of multiplicity 1.
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Theorem 3.3. The Role of Multiplicity: Suppose f is a polynomial function and x = c is
a zero of multiplicity m.

� If m is even, the graph of y = f(x) touches and rebounds from the x-axis at (c, 0).

� If m is odd, the graph of y = f(x) crosses through the x-axis at (c, 0).

Our last example shows how end behavior and multiplicity allow us to sketch a decent graph without
appealing to a sign diagram.

Example 3.1.6. Sketch the graph of f(x) = −3(2x − 1)(x + 1)2 using end behavior and the
multiplicity of its zeros.

Solution. The end behavior of the graph of f will match that of its leading term. To find the
leading term, we multiply by the leading terms of each factor to get (−3)(2x)(x)2 = −6x3. This
tells us that the graph will start above the x-axis, in Quadrant II, and finish below the x-axis, in
Quadrant IV. Next, we find the zeros of f . Fortunately for us, f is factored.15 Setting each factor
equal to zero gives is x = 1

2 and x = −1 as zeros. To find the multiplicity of x = 1
2 we note that it

corresponds to the factor (2x− 1). This isn’t strictly in the form required in Definition 3.3. If we
factor out the 2, however, we get (2x − 1) = 2

(
x− 1

2

)
, and we see that the multiplicity of x = 1

2
is 1. Since 1 is an odd number, we know from Theorem 3.3 that the graph of f will cross through
the x-axis at

(
1
2 , 0
)
. Since the zero x = −1 corresponds to the factor (x + 1)2 = (x − (−1))2,

we find its multiplicity to be 2 which is an even number. As such, the graph of f will touch and
rebound from the x-axis at (−1, 0). Though we’re not asked to, we can find the y-intercept by
finding f(0) = −3(2(0)− 1)(0 + 1)2 = 3. Thus (0, 3) is an additional point on the graph. Putting
this together gives us the graph below.

x

y

15Obtaining the factored form of a polynomial is the main focus of the next few sections.
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3.1.1 Exercises

In Exercises 1 - 10, find the degree, the leading term, the leading coefficient, the constant term and
the end behavior of the given polynomial.

1. f(x) = 4− x− 3x2 2. g(x) = 3x5 − 2x2 + x+ 1

3. q(r) = 1− 16r4 4. Z(b) = 42b− b3

5. f(x) =
√

3x17 + 22.5x10 − πx7 + 1
3 6. s(t) = −4.9t2 + v0t+ s0

7. P (x) = (x− 1)(x− 2)(x− 3)(x− 4) 8. p(t) = −t2(3− 5t)(t2 + t+ 4)

9. f(x) = −2x3(x+ 1)(x+ 2)2 10. G(t) = 4(t− 2)2
(
t+ 1

2

)
In Exercises 11 - 20, find the real zeros of the given polynomial and their corresponding multiplic-
ities. Use this information along with a sign chart to provide a rough sketch of the graph of the
polynomial. Compare your answer with the result from a graphing utility.

11. a(x) = x(x+ 2)2 12. g(x) = x(x+ 2)3

13. f(x) = −2(x− 2)2(x+ 1) 14. g(x) = (2x+ 1)2(x− 3)

15. F (x) = x3(x+ 2)2 16. P (x) = (x− 1)(x− 2)(x− 3)(x− 4)

17. Q(x) = (x+ 5)2(x− 3)4 18. h(x) = x2(x− 2)2(x+ 2)2

19. H(t) = (3− t)(t2 + 1) 20. Z(b) = b(42− b2)

In Exercises 21 - 26, given the pair of functions f and g, sketch the graph of y = g(x) by starting
with the graph of y = f(x) and using transformations. Track at least three points of your choice
through the transformations. State the domain and range of g.

21. f(x) = x3, g(x) = (x+ 2)3 + 1 22. f(x) = x4, g(x) = (x+ 2)4 + 1

23. f(x) = x4, g(x) = 2− 3(x− 1)4 24. f(x) = x5, g(x) = −x5 − 3

25. f(x) = x5, g(x) = (x+ 1)5 + 10 26. f(x) = x6, g(x) = 8− x6

27. Use the Intermediate Value Theorem to prove that f(x) = x3− 9x+ 5 has a real zero in each
of the following intervals: [−4,−3], [0, 1] and [2, 3].

28. Rework Example 3.1.3 assuming the box is to be made from an 8.5 inch by 11 inch sheet of
paper. Using scissors and tape, construct the box. Are you surprised?16

16Consider decorating the box and presenting it to your instructor. If done well enough, maybe your instructor
will issue you some bonus points. Or maybe not.
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In Exercises 29 - 31, suppose the revenue R, in thousands of dollars, from producing and selling x
hundred LCD TVs is given by R(x) = −5x3 + 35x2 + 155x for 0 ≤ x ≤ 10.07.

29. Use a graphing utility to graph y = R(x) and determine the number of TVs which should be
sold to maximize revenue. What is the maximum revenue?

30. Assume that the cost, in thousands of dollars, to produce x hundred LCD TVs is given by
C(x) = 200x + 25 for x ≥ 0. Find and simplify an expression for the profit function P (x).
(Remember: Profit = Revenue - Cost.)

31. Use a graphing utility to graph y = P (x) and determine the number of TVs which should be
sold to maximize profit. What is the maximum profit?

32. While developing their newest game, Sasquatch Attack!, the makers of the PortaBoy (from
Example 2.1.5) revised their cost function and now use C(x) = .03x3 − 4.5x2 + 225x + 250,
for x ≥ 0. As before, C(x) is the cost to make x PortaBoy Game Systems. Market research
indicates that the demand function p(x) = −1.5x+ 250 remains unchanged. Use a graphing
utility to find the production level x that maximizes the profit made by producing and selling
x PortaBoy game systems.

33. According to US Postal regulations, a rectangular shipping box must satisfy the inequality
“Length + Girth ≤ 130 inches” for Parcel Post and “Length + Girth ≤ 108 inches” for other
services. Let’s assume we have a closed rectangular box with a square face of side length x as
drawn below. The length is the longest side and is clearly labeled. The girth is the distance
around the box in the other two dimensions so in our case it is the sum of the four sides of
the square, 4x.

(a) Assuming that we’ll be mailing a box via Parcel Post where Length + Girth = 130
inches, express the length of the box in terms of x and then express the volume V of the
box in terms of x.

(b) Find the dimensions of the box of maximum volume that can be shipped via Parcel Post.

(c) Repeat parts 33a and 33b if the box is shipped using “other services”.

length

x

x
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34. We now revisit the data set from Exercise 6b in Section 2.5. In that exercise, you were given
a chart of the number of hours of daylight they get on the 21st of each month in Fairbanks,
Alaska based on the 2009 sunrise and sunset data found on the U.S. Naval Observatory web-
site. We let x = 1 represent January 21, 2009, x = 2 represent February 21, 2009, and so on.
The chart is given again for reference.

Month
Number 1 2 3 4 5 6 7 8 9 10 11 12
Hours of
Daylight 5.8 9.3 12.4 15.9 19.4 21.8 19.4 15.6 12.4 9.1 5.6 3.3

Find cubic (third degree) and quartic (fourth degree) polynomials which model this data and
comment on the goodness of fit for each. What can we say about using either model to make
predictions about the year 2020? (Hint: Think about the end behavior of polynomials.) Use
the models to see how many hours of daylight they got on your birthday and then check the
website to see how accurate the models are. Knowing that Sasquatch are largely nocturnal,
what days of the year according to your models are going to allow for at least 14 hours of
darkness for field research on the elusive creatures?

35. An electric circuit is built with a variable resistor installed. For each of the following resis-
tance values (measured in kilo-ohms, kΩ), the corresponding power to the load (measured in
milliwatts, mW ) is given in the table below. 17

Resistance: (kΩ) 1.012 2.199 3.275 4.676 6.805 9.975

Power: (mW ) 1.063 1.496 1.610 1.613 1.505 1.314

(a) Make a scatter diagram of the data using the Resistance as the independent variable
and Power as the dependent variable.

(b) Use your calculator to find quadratic (2nd degree), cubic (3rd degree) and quartic (4th
degree) regression models for the data and judge the reasonableness of each.

(c) For each of the models found above, find the predicted maximum power that can be
delivered to the load. What is the corresponding resistance value?

(d) Discuss with your classmates the limitations of these models - in particular, discuss the
end behavior of each.

36. Show that the end behavior of a linear function f(x) = mx+ b is as it should be according to
the results we’ve established in the section for polynomials of odd degree.18 (That is, show
that the graph of a linear function is “up on one side and down on the other” just like the
graph of y = anx

n for odd numbers n.)

17The authors wish to thank Don Anthan and Ken White of Lakeland Community College for devising this problem
and generating the accompanying data set.

18Remember, to be a linear function, m 6= 0.

http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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37. There is one subtlety about the role of multiplicity that we need to discuss further; specifically
we need to see ‘how’ the graph crosses the x-axis at a zero of odd multiplicity. In the section,
we deliberately excluded the function f(x) = x from the discussion of the end behavior of
f(x) = xn for odd numbers n and we said at the time that it was due to the fact that f(x) = x
didn’t fit the pattern we were trying to establish. You just showed in the previous exercise
that the end behavior of a linear function behaves like every other polynomial of odd degree,
so what doesn’t f(x) = x do that g(x) = x3 does? It’s the ‘flattening’ for values of x near zero.
It is this local behavior that will distinguish between a zero of multiplicity 1 and one of higher
odd multiplicity. Look again closely at the graphs of a(x) = x(x+ 2)2 and F (x) = x3(x+ 2)2

from Exercise 3.1.1. Discuss with your classmates how the graphs are fundamentally different
at the origin. It might help to use a graphing calculator to zoom in on the origin to see
the different crossing behavior. Also compare the behavior of a(x) = x(x + 2)2 to that of
g(x) = x(x + 2)3 near the point (−2, 0). What do you predict will happen at the zeros of
f(x) = (x− 1)(x− 2)2(x− 3)3(x− 4)4(x− 5)5?

38. Here are a few other questions for you to discuss with your classmates.

(a) How many local extrema could a polynomial of degree n have? How few local extrema
can it have?

(b) Could a polynomial have two local maxima but no local minima?

(c) If a polynomial has two local maxima and two local minima, can it be of odd degree?
Can it be of even degree?

(d) Can a polynomial have local extrema without having any real zeros?

(e) Why must every polynomial of odd degree have at least one real zero?

(f) Can a polynomial have two distinct real zeros and no local extrema?

(g) Can an x-intercept yield a local extrema? Can it yield an absolute extrema?

(h) If the y-intercept yields an absolute minimum, what can we say about the degree of the
polynomial and the sign of the leading coefficient?
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3.1.2 Answers

1. f(x) = 4− x− 3x2

Degree 2
Leading term −3x2

Leading coefficient −3
Constant term 4
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→ −∞

2. g(x) = 3x5 − 2x2 + x+ 1
Degree 5
Leading term 3x5

Leading coefficient 3
Constant term 1
As x→ −∞, g(x)→ −∞
As x→∞, g(x)→∞

3. q(r) = 1− 16r4

Degree 4
Leading term −16r4

Leading coefficient −16
Constant term 1
As r → −∞, q(r)→ −∞
As r →∞, q(r)→ −∞

4. Z(b) = 42b− b3
Degree 3
Leading term −b3
Leading coefficient −1
Constant term 0
As b→ −∞, Z(b)→∞
As b→∞, Z(b)→ −∞

5. f(x) =
√

3x17 + 22.5x10 − πx7 + 1
3

Degree 17
Leading term

√
3x17

Leading coefficient
√

3
Constant term 1

3
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→∞

6. s(t) = −4.9t2 + v0t+ s0

Degree 2
Leading term −4.9t2

Leading coefficient −4.9
Constant term s0

As t→ −∞, s(t)→ −∞
As t→∞, s(t)→ −∞

7. P (x) = (x− 1)(x− 2)(x− 3)(x− 4)
Degree 4
Leading term x4

Leading coefficient 1
Constant term 24
As x→ −∞, P (x)→∞
As x→∞, P (x)→∞

8. p(t) = −t2(3− 5t)(t2 + t+ 4)
Degree 5
Leading term 5t5

Leading coefficient 5
Constant term 0
As t→ −∞, p(t)→ −∞
As t→∞, p(t)→∞
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9. f(x) = −2x3(x+ 1)(x+ 2)2

Degree 6
Leading term −2x6

Leading coefficient −2
Constant term 0
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→ −∞

10. G(t) = 4(t− 2)2
(
t+ 1

2

)
Degree 3
Leading term 4t3

Leading coefficient 4
Constant term 8
As t→ −∞, G(t)→ −∞
As t→∞, G(t)→∞

11. a(x) = x(x+ 2)2

x = 0 multiplicity 1
x = −2 multiplicity 2

x

y

−2 −1

12. g(x) = x(x+ 2)3

x = 0 multiplicity 1
x = −2 multiplicity 3

x

y

−2 −1

13. f(x) = −2(x− 2)2(x+ 1)
x = 2 multiplicity 2
x = −1 multiplicity 1

x

y

−2 −1 1 2

14. g(x) = (2x+ 1)2(x− 3)
x = −1

2 multiplicity 2
x = 3 multiplicity 1

x

y

−1 1 2 3
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15. F (x) = x3(x+ 2)2

x = 0 multiplicity 3
x = −2 multiplicity 2

x

y

−2 −1

16. P (x) = (x− 1)(x− 2)(x− 3)(x− 4)
x = 1 multiplicity 1
x = 2 multiplicity 1
x = 3 multiplicity 1
x = 4 multiplicity 1

x

y

1 2 3 4

17. Q(x) = (x+ 5)2(x− 3)4

x = −5 multiplicity 2
x = 3 multiplicity 4

x

y

−5−4−3−2−1 1 2 3 4 5

18. f(x) = x2(x− 2)2(x+ 2)2

x = −2 multiplicity 2
x = 0 multiplicity 2
x = 2 multiplicity 2

x

y

−2 −1 1 2

19. H(t) = (3− t)
(
t2 + 1

)
x = 3 multiplicity 1

t

y

1 2 3

20. Z(b) = b(42− b2)
b = −

√
42 multiplicity 1

b = 0 multiplicity 1
b =
√

42 multiplicity 1

b

y

−6−5−4−3−2−1 1 2 3 4 5 6
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21. g(x) = (x+ 2)3 + 1
domain: (−∞,∞)
range: (−∞,∞)

x

y

−4 −3 −2 −1

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

10

11

12

22. g(x) = (x+ 2)4 + 1
domain: (−∞,∞)
range: [1,∞)

x

y

−4 −3 −2 −1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23. g(x) = 2− 3(x− 1)4

domain: (−∞,∞)
range: (−∞, 2]

x

y

1 2

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

24. g(x) = −x5 − 3
domain: (−∞,∞)
range: (−∞,∞)

x

y

−1 1

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

10



254 Polynomial Functions

25. g(x) = (x+ 1)5 + 10
domain: (−∞,∞)
range: (−∞,∞)

x

y

−4 −3 −2 −1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

26. g(x) = 8− x6

domain: (−∞,∞)
range: (−∞, 8]

x

y

−1 1

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

10

27. We have f(−4) = −23, f(−3) = 5, f(0) = 5, f(1) = −3, f(2) = −5 and f(3) = 5 so the
Intermediate Value Theorem tells us that f(x) = x3 − 9x + 5 has real zeros in the intervals
[−4,−3], [0, 1] and [2, 3].

28. V (x) = x(8.5− 2x)(11− 2x) = 4x3− 39x2 + 93.5x, 0 < x < 4.25. Volume is maximized when
x ≈ 1.58, so the dimensions of the box with maximum volume are: height ≈ 1.58 inches,
width ≈ 5.34 inches, and depth ≈ 7.84 inches. The maximum volume is ≈ 66.15 cubic inches.

29. The calculator gives the location of the absolute maximum (rounded to three decimal places)
as x ≈ 6.305 and y ≈ 1115.417. Since x represents the number of TVs sold in hundreds,
x = 6.305 corresponds to 630.5 TVs. Since we can’t sell half of a TV, we compare R(6.30) ≈
1115.415 and R(6.31) ≈ 1115.416, so selling 631 TVs results in a (slightly) higher revenue.
Since y represents the revenue in thousands of dollars, the maximum revenue is $1,115,416.

30. P (x) = R(x)− C(x) = −5x3 + 35x2 − 45x− 25, 0 ≤ x ≤ 10.07.

31. The calculator gives the location of the absolute maximum (rounded to three decimal places)
as x ≈ 3.897 and y ≈ 35.255. Since x represents the number of TVs sold in hundreds,
x = 3.897 corresponds to 389.7 TVs. Since we can’t sell 0.7 of a TV, we compare P (3.89) ≈
35.254 and P (3.90) ≈ 35.255, so selling 390 TVs results in a (slightly) higher revenue. Since
y represents the revenue in thousands of dollars, the maximum revenue is $35,255.

32. Making and selling 71 PortaBoys yields a maximized profit of $5910.67.
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33. (a) Our ultimate goal is to maximize the volume, so we’ll start with the maximum Length
+ Girth of 130. This means the length is 130− 4x. The volume of a rectangular box is
always length × width × height so we get V (x) = x2(130− 4x) = −4x3 + 130x2.

(b) Graphing y = V (x) on [0, 33]× [0, 21000] shows a maximum at (21.67, 20342.59) so the
dimensions of the box with maximum volume are 21.67in. × 21.67in. × 43.32in. for a
volume of 20342.59in.3.

(c) If we start with Length + Girth = 108 then the length is 108 − 4x and the volume
is V (x) = −4x3 + 108x2. Graphing y = V (x) on [0, 27] × [0, 11700] shows a max-
imum at (18.00, 11664.00) so the dimensions of the box with maximum volume are
18.00in.× 18.00in.× 36in. for a volume of 11664.00in.3. (Calculus will confirm that the
measurements which maximize the volume are exactly 18in. by 18in. by 36in., however,
as I’m sure you are aware by now, we treat all calculator results as approximations and
list them as such.)

34. The cubic regression model is p3(x) = 0.0226x3 − 0.9508x2 + 8.615x − 3.446. It has R2 =
0.93765 which isn’t bad. The graph of y = p3(x) in the viewing window [−1, 13] × [0, 24]
along with the scatter plot is shown below on the left. Notice that p3 hits the x-axis at about
x = 12.45 making this a bad model for future predictions. To use the model to approximate
the number of hours of sunlight on your birthday, you’ll have to figure out what decimal value
of x is close enough to your birthday and then plug it into the model. My (Jeff’s) birthday
is July 31 which is 10 days after July 21 (x = 7). Assuming 30 days in a month, I think
x = 7.33 should work for my birthday and p3(7.33) ≈ 17.5. The website says there will be
about 18.25 hours of daylight that day. To have 14 hours of darkness we need 10 hours of
daylight. We see that p3(1.96) ≈ 10 and p3(10.05) ≈ 10 so it seems reasonable to say that
we’ll have at least 14 hours of darkness from December 21, 2008 (x = 0) to February 21, 2009
(x = 2) and then again from October 21,2009 (x = 10) to December 21, 2009 (x = 12).

The quartic regression model is p4(x) = 0.0144x4−0.3507x3 +2.259x2−1.571x+5.513. It has
R2 = 0.98594 which is good. The graph of y = p4(x) in the viewing window [−1, 15]× [0, 35]
along with the scatter plot is shown below on the right. Notice that p4(15) is above 24 making
this a bad model as well for future predictions. However, p4(7.33) ≈ 18.71 making it much
better at predicting the hours of daylight on July 31 (my birthday). This model says we’ll
have at least 14 hours of darkness from December 21, 2008 (x = 0) to about March 1, 2009
(x = 2.30) and then again from October 10, 2009 (x = 9.667) to December 21, 2009 (x = 12).

y = p3(x) y = p4(x)
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35. (a) The scatter plot is shown below with each of the three regression models.

(b) The quadratic model is P2(x) = −0.02x2 + 0.241x+ 0.956 with R2 = 0.77708.
The cubic model is P3(x) = 0.005x3 − 0.103x2 + 0.602x+ 0.573 with R2 = 0.98153.
The quartic model is P4(x) = −0.000969x4 + 0.0253x3 − 0.240x2 + 0.944x+ 0.330 with
R2 = 0.99929.

(c) The maximums predicted by the three models are P2(5.737) ≈ 1.648, P3(4.232) ≈ 1.657
and P4(3.784) ≈ 1.630, respectively.

y = P2(x) y = P3(x) y = P4(x)
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3.2 The Factor Theorem and the Remainder Theorem

Suppose we wish to find the zeros of f(x) = x3 + 4x2 − 5x − 14. Setting f(x) = 0 results in the
polynomial equation x3 + 4x2 − 5x − 14 = 0. Despite all of the factoring techniques we learned1

in Intermediate Algebra, this equation foils2 us at every turn. If we graph f using the graphing
calculator, we get

The graph suggests that the function has three zeros, one of which is x = 2. It’s easy to show
that f(2) = 0, but the other two zeros seem to be less friendly. Even though we could use the
‘Zero’ command to find decimal approximations for these, we seek a method to find the remaining
zeros exactly. Based on our experience, if x = 2 is a zero, it seems that there should be a factor
of (x − 2) lurking around in the factorization of f(x). In other words, we should expect that
x3 + 4x2 − 5x − 14 = (x − 2) q(x), where q(x) is some other polynomial. How could we find such
a q(x), if it even exists? The answer comes from our old friend, polynomial division. Dividing
x3 + 4x2 − 5x− 14 by x− 2 gives

x2 + 6x + 7

x−2 x3 + 4x2 − 5x − 14

−
(
x3−2x2

)
6x2 − 5x

−
(
6x2−12x)

7x − 14

− (7x −14)

0

As you may recall, this means x3 + 4x2− 5x− 14 = (x− 2)
(
x2 + 6x+ 7

)
, so to find the zeros of f ,

we now solve (x− 2)
(
x2 + 6x+ 7

)
= 0. We get x− 2 = 0 (which gives us our known zero, x = 2)

as well as x2 + 6x+ 7 = 0. The latter doesn’t factor nicely, so we apply the Quadratic Formula to
get x = −3±

√
2. The point of this section is to generalize the technique applied here. First up is

a friendly reminder of what we can expect when we divide polynomials.

1and probably forgot
2pun intended
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Theorem 3.4. Polynomial Division: Suppose d(x) and p(x) are nonzero polynomials where
the degree of p is greater than or equal to the degree of d. There exist two unique polynomials,
q(x) and r(x), such that p(x) = d(x) q(x) + r(x), where either r(x) = 0 or the degree of r is
strictly less than the degree of d.

As you may recall, all of the polynomials in Theorem 3.4 have special names. The polynomial p
is called the dividend; d is the divisor; q is the quotient; r is the remainder. If r(x) = 0 then
d is called a factor of p. The proof of Theorem 3.4 is usually relegated to a course in Abstract
Algebra,3 but we can still use the result to establish two important facts which are the basis of the
rest of the chapter.

Theorem 3.5. The Remainder Theorem: Suppose p is a polynomial of degree at least 1
and c is a real number. When p(x) is divided by x− c the remainder is p(c).

The proof of Theorem 3.5 is a direct consequence of Theorem 3.4. When a polynomial is divided
by x− c, the remainder is either 0 or has degree less than the degree of x− c. Since x− c is degree
1, the degree of the remainder must be 0, which means the remainder is a constant. Hence, in
either case, p(x) = (x− c) q(x) + r, where r, the remainder, is a real number, possibly 0. It follows
that p(c) = (c− c) q(c) + r = 0 · q(c) + r = r, so we get r = p(c) as required. There is one last ‘low
hanging fruit’4 to collect which we present below.

Theorem 3.6. The Factor Theorem: Suppose p is a nonzero polynomial. The real number
c is a zero of p if and only if (x− c) is a factor of p(x).

The proof of The Factor Theorem is a consequence of what we already know. If (x− c) is a factor
of p(x), this means p(x) = (x− c) q(x) for some polynomial q. Hence, p(c) = (c− c) q(c) = 0, so c
is a zero of p. Conversely, if c is a zero of p, then p(c) = 0. In this case, The Remainder Theorem
tells us the remainder when p(x) is divided by (x− c), namely p(c), is 0, which means (x− c) is a
factor of p. What we have established is the fundamental connection between zeros of polynomials
and factors of polynomials.

Of the things The Factor Theorem tells us, the most pragmatic is that we had better find a more
efficient way to divide polynomials by quantities of the form x− c. Fortunately, people like Ruffini
and Horner have already blazed this trail. Let’s take a closer look at the long division we performed
at the beginning of the section and try to streamline it. First off, let’s change all of the subtractions
into additions by distributing through the −1s.

3Yes, Virginia, there are Algebra courses more abstract than this one.
4Jeff hates this expression and Carl included it just to annoy him.

http://en.wikipedia.org/wiki/Synthetic_division
http://en.wikipedia.org/wiki/Horner_scheme
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x2 + 6x + 7

x−2 x3 + 4x2 − 5x −14

−x3+ 2x2

6x2 − 5x

−6x2+ 12x

7x −14

−7x+14

0

Next, observe that the terms −x3, −6x2 and −7x are the exact opposite of the terms above them.
The algorithm we use ensures this is always the case, so we can omit them without losing any
information. Also note that the terms we ‘bring down’ (namely the −5x and −14) aren’t really
necessary to recopy, so we omit them, too.

x2 + 6x + 7

x−2 x3+4x2− 5x −14

2x2

6x2

12x

7x

14

0

Now, let’s move things up a bit and, for reasons which will become clear in a moment, copy the x3

into the last row.

x2 + 6x + 7

x−2 x3+4x2− 5x −14

2x2 12x 14

x3 6x2 7x 0

Note that by arranging things in this manner, each term in the last row is obtained by adding the
two terms above it. Notice also that the quotient polynomial can be obtained by dividing each of
the first three terms in the last row by x and adding the results. If you take the time to work back
through the original division problem, you will find that this is exactly the way we determined the
quotient polynomial. This means that we no longer need to write the quotient polynomial down,
nor the x in the divisor, to determine our answer.

−2 x3+4x2− 5x −14

2x2 12x 14

x3 6x2 7x 0
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We’ve streamlined things quite a bit so far, but we can still do more. Let’s take a moment to
remind ourselves where the 2x2, 12x and 14 came from in the second row. Each of these terms was
obtained by multiplying the terms in the quotient, x2, 6x and 7, respectively, by the −2 in x− 2,
then by −1 when we changed the subtraction to addition. Multiplying by −2 then by −1 is the
same as multiplying by 2, so we replace the −2 in the divisor by 2. Furthermore, the coefficients of
the quotient polynomial match the coefficients of the first three terms in the last row, so we now
take the plunge and write only the coefficients of the terms to get

2 1 4 −5 −14
2 12 14

1 6 7 0

We have constructed a synthetic division tableau for this polynomial division problem. Let’s re-
work our division problem using this tableau to see how it greatly streamlines the division process.
To divide x3 + 4x2 − 5x− 14 by x− 2, we write 2 in the place of the divisor and the coefficients of
x3 + 4x2 − 5x− 14 in for the dividend. Then ‘bring down’ the first coefficient of the dividend.

2 1 4 −5 −14 2 1 4 −5 −14
↓
1

Next, take the 2 from the divisor and multiply by the 1 that was ‘brought down’ to get 2. Write
this underneath the 4, then add to get 6.

2 1 4 −5 −14
↓ 2

1

2 1 4 −5 −14
↓ 2

1 6

Now take the 2 from the divisor times the 6 to get 12, and add it to the −5 to get 7.

2 1 4 −5 −14
↓ 2 12

1 6

2 1 4 −5 −14
↓ 2 12

1 6 7

Finally, take the 2 in the divisor times the 7 to get 14, and add it to the −14 to get 0.

2 1 4 −5 −14
↓ 2 12 14

1 6 7

2 1 4 −5 −14
↓ 2 12 14

1 6 7 0
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The first three numbers in the last row of our tableau are the coefficients of the quotient polynomial.
Remember, we started with a third degree polynomial and divided by a first degree polynomial, so
the quotient is a second degree polynomial. Hence the quotient is x2 + 6x+ 7. The number in the
box is the remainder. Synthetic division is our tool of choice for dividing polynomials by divisors
of the form x − c. It is important to note that it works only for these kinds of divisors.5 Also
take note that when a polynomial (of degree at least 1) is divided by x − c, the result will be a
polynomial of exactly one less degree. Finally, it is worth the time to trace each step in synthetic
division back to its corresponding step in long division. While the authors have done their best to
indicate where the algorithm comes from, there is no substitute for working through it yourself.

Example 3.2.1. Use synthetic division to perform the following polynomial divisions. Find the
quotient and the remainder polynomials, then write the dividend, quotient and remainder in the
form given in Theorem 3.4.

1.
(
5x3 − 2x2 + 1

)
÷ (x− 3) 2.

(
x3 + 8

)
÷ (x+ 2) 3.

4− 8x− 12x2

2x− 3

Solution.

1. When setting up the synthetic division tableau, we need to enter 0 for the coefficient of x in
the dividend. Doing so gives

3 5 −2 0 1
↓ 15 39 117

5 13 39 118

Since the dividend was a third degree polynomial, the quotient is a quadratic polynomial
with coefficients 5, 13 and 39. Our quotient is q(x) = 5x2 + 13x + 39 and the remainder is
r(x) = 118. According to Theorem 3.4, we have 5x3−2x2+1 = (x−3)

(
5x2 + 13x+ 39

)
+118.

2. For this division, we rewrite x+ 2 as x− (−2) and proceed as before

−2 1 0 0 8
↓ −2 4 −8

1 −2 4 0

We get the quotient q(x) = x2 − 2x+ 4 and the remainder r(x) = 0. Relating the dividend,
quotient and remainder gives x3 + 8 = (x+ 2)

(
x2 − 2x+ 4

)
.

3. To divide 4 − 8x − 12x2 by 2x − 3, two things must be done. First, we write the dividend
in descending powers of x as −12x2 − 8x + 4. Second, since synthetic division works only
for factors of the form x − c, we factor 2x − 3 as 2

(
x− 3

2

)
. Our strategy is to first divide

−12x2−8x+ 4 by 2, to get −6x2−4x+ 2. Next, we divide by
(
x− 3

2

)
. The tableau becomes

5You’ll need to use good old-fashioned polynomial long division for divisors of degree larger than 1.
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3
2 −6 −4 2

↓ −9 −39
2

−6 −13 −35
2

From this, we get −6x2 − 4x + 2 =
(
x− 3

2

)
(−6x − 13) − 35

2 . Multiplying both sides by 2 and
distributing gives −12x2 − 8x + 4 = (2x− 3) (−6x − 13) − 35. At this stage, we have written
−12x2−8x+ 4 in the form (2x−3)q(x) + r(x), but how can we be sure the quotient polynomial is
−6x−13 and the remainder is −35? The answer is the word ‘unique’ in Theorem 3.4. The theorem
states that there is only one way to decompose −12x2 − 8x + 4 into a multiple of (2x − 3) plus a
constant term. Since we have found such a way, we can be sure it is the only way.

The next example pulls together all of the concepts discussed in this section.

Example 3.2.2. Let p(x) = 2x3 − 5x+ 3.

1. Find p(−2) using The Remainder Theorem. Check your answer by substitution.

2. Use the fact that x = 1 is a zero of p to factor p(x) and then find all of the real zeros of p.

Solution.

1. The Remainder Theorem states p(−2) is the remainder when p(x) is divided by x − (−2).
We set up our synthetic division tableau below. We are careful to record the coefficient of x2

as 0, and proceed as above.

−2 2 0 −5 3
↓ −4 8 −6

2 −4 3 −3

According to the Remainder Theorem, p(−2) = −3. We can check this by direct substitution
into the formula for p(x): p(−2) = 2(−2)3 − 5(−2) + 3 = −16 + 10 + 3 = −3.

2. The Factor Theorem tells us that since x = 1 is a zero of p, x−1 is a factor of p(x). To factor
p(x), we divide

1 2 0 −5 3
↓ 2 2 −3

2 2 −3 0

We get a remainder of 0 which verifies that, indeed, p(1) = 0. Our quotient polynomial is a
second degree polynomial with coefficients 2, 2, and −3. So q(x) = 2x2 + 2x − 3. Theorem
3.4 tells us p(x) = (x − 1)

(
2x2 + 2x− 3

)
. To find the remaining real zeros of p, we need to

solve 2x2 + 2x− 3 = 0 for x. Since this doesn’t factor nicely, we use the quadratic formula to

find that the remaining zeros are x = −1±
√

7
2 .
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In Section 3.1, we discussed the notion of the multiplicity of a zero. Roughly speaking, a zero with
multiplicity 2 can be divided twice into a polynomial; multiplicity 3, three times and so on. This
is illustrated in the next example.

Example 3.2.3. Let p(x) = 4x4− 4x3− 11x2 + 12x− 3. Given that x = 1
2 is a zero of multiplicity

2, find all of the real zeros of p.

Solution. We set up for synthetic division. Since we are told the multiplicity of 1
2 is two, we

continue our tableau and divide 1
2 into the quotient polynomial

1
2 4 −4 −11 12 −3
↓ 2 −1 −6 3

1
2 4 −2 −12 6 0
↓ 2 0 −6

4 0 −12 0

From the first division, we get 4x4 − 4x3 − 11x2 + 12x − 3 =
(
x− 1

2

) (
4x3 − 2x2 − 12x+ 6

)
. The

second division tells us 4x3 − 2x2 − 12x + 6 =
(
x− 1

2

) (
4x2 − 12

)
. Combining these results, we

have 4x4 − 4x3 − 11x2 + 12x − 3 =
(
x− 1

2

)2 (
4x2 − 12

)
. To find the remaining zeros of p, we set

4x2 − 12 = 0 and get x = ±
√

3.

A couple of things about the last example are worth mentioning. First, the extension of the
synthetic division tableau for repeated divisions will be a common site in the sections to come.
Typically, we will start with a higher order polynomial and peel off one zero at a time until we are
left with a quadratic, whose roots can always be found using the Quadratic Formula. Secondly, we
found x = ±

√
3 are zeros of p. The Factor Theorem guarantees

(
x−
√

3
)

and
(
x−

(
−
√

3
))

are
both factors of p. We can certainly put the Factor Theorem to the test and continue the synthetic
division tableau from above to see what happens.

1
2 4 −4 −11 12 −3
↓ 2 −1 −6 3

1
2 4 −2 −12 6 0
↓ 2 0 −6√

3 4 0 −12 0

↓ 4
√

3 12

−
√

3 4 4
√

3 0

↓ −4
√

3

4 0

This gives us 4x4 − 4x3 − 11x2 + 12x − 3 =
(
x− 1

2

)2 (
x−
√

3
) (
x−

(
−
√

3
))

(4), or, when written
with the constant in front

p(x) = 4

(
x− 1

2

)2 (
x−
√

3
)(

x−
(
−
√

3
))
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We have shown that p is a product of its leading coefficient times linear factors of the form (x− c)
where c are zeros of p. It may surprise and delight the reader that, in theory, all polynomials can
be reduced to this kind of factorization. We leave that discussion to Section 3.4, because the zeros
may not be real numbers. Our final theorem in the section gives us an upper bound on the number
of real zeros.

Theorem 3.7. Suppose f is a polynomial of degree n ≥ 1. Then f has at most n real zeros,
counting multiplicities.

Theorem 3.7 is a consequence of the Factor Theorem and polynomial multiplication. Every zero c
of f gives us a factor of the form (x− c) for f(x). Since f has degree n, there can be at most n of
these factors. The next section provides us some tools which not only help us determine where the
real zeros are to be found, but which real numbers they may be.

We close this section with a summary of several concepts previously presented. You should take
the time to look back through the text to see where each concept was first introduced and where
each connection to the other concepts was made.

Connections Between Zeros, Factors and Graphs of Polynomial Functions

Suppose p is a polynomial function of degree n ≥ 1. The following statements are equivalent:

� The real number c is a zero of p

� p(c) = 0

� x = c is a solution to the polynomial equation p(x) = 0

� (x− c) is a factor of p(x)

� The point (c, 0) is an x-intercept of the graph of y = p(x)
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3.2.1 Exercises

In Exercises 1 - 6, use polynomial long division to perform the indicated division. Write the
polynomial in the form p(x) = d(x)q(x) + r(x).

1.
(
4x2 + 3x− 1

)
÷ (x− 3) 2.

(
2x3 − x+ 1

)
÷
(
x2 + x+ 1

)
3.
(
5x4 − 3x3 + 2x2 − 1

)
÷
(
x2 + 4

)
4.
(
−x5 + 7x3 − x

)
÷
(
x3 − x2 + 1

)
5.
(
9x3 + 5

)
÷ (2x− 3) 6.

(
4x2 − x− 23

)
÷
(
x2 − 1

)
In Exercises 7 - 20 use synthetic division to perform the indicated division. Write the polynomial
in the form p(x) = d(x)q(x) + r(x).

7.
(
3x2 − 2x+ 1

)
÷ (x− 1) 8.

(
x2 − 5

)
÷ (x− 5)

9.
(
3− 4x− 2x2

)
÷ (x+ 1) 10.

(
4x2 − 5x+ 3

)
÷ (x+ 3)

11.
(
x3 + 8

)
÷ (x+ 2) 12.

(
4x3 + 2x− 3

)
÷ (x− 3)

13.
(
18x2 − 15x− 25

)
÷
(
x− 5

3

)
14.

(
4x2 − 1

)
÷
(
x− 1

2

)
15.

(
2x3 + x2 + 2x+ 1

)
÷
(
x+ 1

2

)
16.

(
3x3 − x+ 4

)
÷
(
x− 2

3

)
17.

(
2x3 − 3x+ 1

)
÷
(
x− 1

2

)
18.

(
4x4 − 12x3 + 13x2 − 12x+ 9

)
÷
(
x− 3

2

)
19.

(
x4 − 6x2 + 9

)
÷
(
x−
√

3
)

20.
(
x6 − 6x4 + 12x2 − 8

)
÷
(
x+
√

2
)

In Exercises 21 - 30, determine p(c) using the Remainder Theorem for the given polynomial func-
tions and value of c. If p(c) = 0, factor p(x) = (x− c)q(x).

21. p(x) = 2x2 − x+ 1, c = 4 22. p(x) = 4x2 − 33x− 180, c = 12

23. p(x) = 2x3 − x+ 6, c = −3 24. p(x) = x3 + 2x2 + 3x+ 4, c = −1

25. p(x) = 3x3 − 6x2 + 4x− 8, c = 2 26. p(x) = 8x3 + 12x2 + 6x+ 1, c = −1
2

27. p(x) = x4 − 2x2 + 4, c = 3
2 28. p(x) = 6x4 − x2 + 2, c = −2

3

29. p(x) = x4 + x3 − 6x2 − 7x− 7, c = −
√

7 30. p(x) = x2 − 4x+ 1, c = 2−
√

3
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In Exercises 31 - 40, you are given a polynomial and one of its zeros. Use the techniques in this
section to find the rest of the real zeros and factor the polynomial.

31. x3 − 6x2 + 11x− 6, c = 1 32. x3 − 24x2 + 192x− 512, c = 8

33. 3x3 + 4x2 − x− 2, c = 2
3 34. 2x3 − 3x2 − 11x+ 6, c = 1

2

35. x3 + 2x2 − 3x− 6, c = −2 36. 2x3 − x2 − 10x+ 5, c = 1
2

37. 4x4 − 28x3 + 61x2 − 42x+ 9, c = 1
2 is a zero of multiplicity 2

38. x5 + 2x4 − 12x3 − 38x2 − 37x− 12, c = −1 is a zero of multiplicity 3

39. 125x5 − 275x4 − 2265x3 − 3213x2 − 1728x− 324, c = −3
5 is a zero of multiplicity 3

40. x2 − 2x− 2, c = 1−
√

3

In Exercises 41 - 45, create a polynomial p which has the desired characteristics. You may leave
the polynomial in factored form.

41. � The zeros of p are c = ±2 and c = ±1

� The leading term of p(x) is 117x4.

42. � The zeros of p are c = 1 and c = 3

� c = 3 is a zero of multiplicity 2.

� The leading term of p(x) is −5x3

43. � The solutions to p(x) = 0 are x = ±3 and x = 6

� The leading term of p(x) is 7x4

� The point (−3, 0) is a local minimum on the graph of y = p(x).

44. � The solutions to p(x) = 0 are x = ±3, x = −2, and x = 4.

� The leading term of p(x) is −x5.

� The point (−2, 0) is a local maximum on the graph of y = p(x).

45. � p is degree 4.

� as x→∞, p(x)→ −∞
� p has exactly three x-intercepts: (−6, 0), (1, 0) and (117, 0)

� The graph of y = p(x) crosses through the x-axis at (1, 0).

46. Find a quadratic polynomial with integer coefficients which has x =
3

5
±
√

29

5
as its real zeros.
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3.2.2 Answers

1. 4x2 + 3x− 1 = (x− 3)(4x+ 15) + 44

2. 2x3 − x+ 1 =
(
x2 + x+ 1

)
(2x− 2) + (−x+ 3)

3. 5x4 − 3x3 + 2x2 − 1 =
(
x2 + 4

) (
5x2 − 3x− 18

)
+ (12x+ 71)

4. −x5 + 7x3 − x =
(
x3 − x2 + 1

) (
−x2 − x+ 6

)
+
(
7x2 − 6

)
5. 9x3 + 5 = (2x− 3)

(
9
2x

2 + 27
4 x+ 81

8

)
+ 283

8

6. 4x2 − x− 23 =
(
x2 − 1

)
(4) + (−x− 19)

7.
(
3x2 − 2x+ 1

)
= (x− 1) (3x+ 1) + 2

8.
(
x2 − 5

)
= (x− 5) (x+ 5) + 20

9.
(
3− 4x− 2x2

)
= (x+ 1) (−2x− 2) + 5

10.
(
4x2 − 5x+ 3

)
= (x+ 3) (4x− 17) + 54

11.
(
x3 + 8

)
= (x+ 2)

(
x2 − 2x+ 4

)
+ 0

12.
(
4x3 + 2x− 3

)
= (x− 3)

(
4x2 + 12x+ 38

)
+ 111

13.
(
18x2 − 15x− 25

)
=
(
x− 5

3

)
(18x+ 15) + 0

14.
(
4x2 − 1

)
=
(
x− 1

2

)
(4x+ 2) + 0

15.
(
2x3 + x2 + 2x+ 1

)
=
(
x+ 1

2

) (
2x2 + 2

)
+ 0

16.
(
3x3 − x+ 4

)
=
(
x− 2

3

) (
3x2 + 2x+ 1

3

)
+ 38

9

17.
(
2x3 − 3x+ 1

)
=
(
x− 1

2

) (
2x2 + x− 5

2

)
− 1

4

18.
(
4x4 − 12x3 + 13x2 − 12x+ 9

)
=
(
x− 3

2

) (
4x3 − 6x2 + 4x− 6

)
+ 0

19.
(
x4 − 6x2 + 9

)
=
(
x−
√

3
) (
x3 +

√
3x2 − 3x− 3

√
3
)

+ 0

20.
(
x6 − 6x4 + 12x2 − 8

)
=
(
x+
√

2
) (
x5 −

√
2x4 − 4x3 + 4

√
2x2 + 4x− 4

√
2
)

+ 0

21. p(4) = 29 22. p(12) = 0, p(x) = (x− 12)(4x+ 15)

23. p(−3) = −45 24. p(−1) = 2

25. p(2) = 0, p(x) = (x− 2)
(
3x2 + 4

)
26. p

(
−1

2

)
= 0, p(x) =

(
x+ 1

2

) (
8x2 + 8x+ 2

)
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27. p
(

3
2

)
= 73

16 28. p
(
−2

3

)
= 74

27

29. p(−
√

7) = 0, p(x) = (x+
√

7)
(
x3 + (1−

√
7)x2 + (1−

√
7)x−

√
7
)

30. p(2−
√

3) = 0, p(x) = (x− (2−
√

3))(x− (2 +
√

3))

31. x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

32. x3 − 24x2 + 192x− 512 = (x− 8)3

33. 3x3 + 4x2 − x− 2 = 3
(
x− 2

3

)
(x+ 1)2

34. 2x3 − 3x2 − 11x+ 6 = 2
(
x− 1

2

)
(x+ 2)(x− 3)

35. x3 + 2x2 − 3x− 6 = (x+ 2)(x+
√

3)(x−
√

3)

36. 2x3 − x2 − 10x+ 5 = 2
(
x− 1

2

)
(x+

√
5)(x−

√
5)

37. 4x4 − 28x3 + 61x2 − 42x+ 9 = 4
(
x− 1

2

)2
(x− 3)2

38. x5 + 2x4 − 12x3 − 38x2 − 37x− 12 = (x+ 1)3(x+ 3)(x− 4)

39. 125x5 − 275x4 − 2265x3 − 3213x2 − 1728x− 324 = 125
(
x+ 3

5

)3
(x+ 2)(x− 6)

40. x2 − 2x− 2 = (x− (1−
√

3))(x− (1 +
√

3))

41. p(x) = 117(x+ 2)(x− 2)(x+ 1)(x− 1)

42. p(x) = −5(x− 1)(x− 3)2

43. p(x) = 7(x+ 3)2(x− 3)(x− 6)

44. p(x) = −(x+ 2)2(x− 3)(x+ 3)(x− 4)

45. p(x) = a(x + 6)2(x − 1)(x − 117) or p(x) = a(x + 6)(x − 1)(x − 117)2 where a can be any
negative real number

46. p(x) = 5x2 − 6x− 4
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3.3 Real Zeros of Polynomials

In Section 3.2, we found that we can use synthetic division to determine if a given real number is
a zero of a polynomial function. This section presents results which will help us determine good
candidates to test using synthetic division. There are two approaches to the topic of finding the
real zeros of a polynomial. The first approach (which is gaining popularity) is to use a little bit of
Mathematics followed by a good use of technology like graphing calculators. The second approach
(for purists) makes good use of mathematical machinery (theorems) only. For completeness, we
include the two approaches but in separate subsections.1 Both approaches benefit from the following
two theorems, the first of which is due to the famous mathematician Augustin Cauchy. It gives us
an interval on which all of the real zeros of a polynomial can be found.

Theorem 3.8. Cauchy’s Bound: Suppose f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0 is a

polynomial of degree n with n ≥ 1. Let M be the largest of the numbers: |a0|
|an| ,

|a1|
|an| , . . . , |an−1|

|an| .

Then all the real zeros of f lie in in the interval [−(M + 1),M + 1].

The proof of this fact is not easily explained within the confines of this text. This paper contains
the result and gives references to its proof. Like many of the results in this section, Cauchy’s Bound
is best understood with an example.

Example 3.3.1. Let f(x) = 2x4 + 4x3 − x2 − 6x− 3. Determine an interval which contains all of
the real zeros of f .

Solution. To find the M stated in Cauchy’s Bound, we take the absolute value of the leading
coefficient, in this case |2| = 2 and divide it into the largest (in absolute value) of the remaining
coefficients, in this case | − 6| = 6. This yields M = 3 so it is guaranteed that all of the real zeros
of f lie in the interval [−4, 4].

Whereas the previous result tells us where we can find the real zeros of a polynomial, the next
theorem gives us a list of possible real zeros.

Theorem 3.9. Rational Zeros Theorem: Suppose f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0

is a polynomial of degree n with n ≥ 1, and a0, a1, . . . an are integers. If r is a rational zero of
f , then r is of the form ±p

q , where p is a factor of the constant term a0, and q is a factor of the
leading coefficient an.

The Rational Zeros Theorem gives us a list of numbers to try in our synthetic division and that
is a lot nicer than simply guessing. If none of the numbers in the list are zeros, then either the
polynomial has no real zeros at all, or all of the real zeros are irrational numbers. To see why the
Rational Zeros Theorem works, suppose c is a zero of f and c = p

q in lowest terms. This means p
and q have no common factors. Since f(c) = 0, we have

an

(
p

q

)n
+ an−1

(
p

q

)n−1

+ . . .+ a1

(
p

q

)
+ a0 = 0.

1Carl is the purist and is responsible for all of the theorems in this section. Jeff, on the other hand, has spent too
much time in school politics and has been polluted with notions of ‘compromise.’ You can blame the slow decline of
civilization on him and those like him who mingle Mathematics with technology.

http://en.wikipedia.org/wiki/Cauchy
http://titan.princeton.edu/papers/claire/hertz-etal-99.ps
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Multiplying both sides of this equation by qn, we clear the denominators to get

anp
n + an−1p

n−1q + . . .+ a1pq
n−1 + a0q

n = 0

Rearranging this equation, we get

anp
n = −an−1p

n−1q − . . .− a1pq
n−1 − a0q

n

Now, the left hand side is an integer multiple of p, and the right hand side is an integer multiple of
q. (Can you see why?) This means anp

n is both a multiple of p and a multiple of q. Since p and q
have no common factors, an must be a multiple of q. If we rearrange the equation

anp
n + an−1p

n−1q + . . .+ a1pq
n−1 + a0q

n = 0

as
a0q

n = −anpn − an−1p
n−1q − . . .− a1pq

n−1

we can play the same game and conclude a0 is a multiple of p, and we have the result.

Example 3.3.2. Let f(x) = 2x4 + 4x3 − x2 − 6x− 3. Use the Rational Zeros Theorem to list all
of the possible rational zeros of f .

Solution. To generate a complete list of rational zeros, we need to take each of the factors of
constant term, a0 = −3, and divide them by each of the factors of the leading coefficient a4 = 2.
The factors of −3 are ± 1 and ± 3. Since the Rational Zeros Theorem tacks on a ± anyway, for
the moment, we consider only the positive factors 1 and 3. The factors of 2 are 1 and 2, so the
Rational Zeros Theorem gives the list

{
± 1

1 ,±
1
2 ,±

3
1 ,±

3
2

}
or
{
± 1

2 ,± 1,± 3
2 ,± 3

}
.

Our discussion now diverges between those who wish to use technology and those who do not.

3.3.1 For Those Wishing to use a Graphing Calculator

At this stage, we know not only the interval in which all of the zeros of f(x) = 2x4+4x3−x2−6x−3
are located, but we also know some potential candidates. We can now use our calculator to help
us determine all of the real zeros of f , as illustrated in the next example.

Example 3.3.3. Let f(x) = 2x4 + 4x3 − x2 − 6x− 3.

1. Graph y = f(x) on the calculator using the interval obtained in Example 3.3.1 as a guide.

2. Use the graph to shorten the list of possible rational zeros obtained in Example 3.3.2.

3. Use synthetic division to find the real zeros of f , and state their multiplicities.

Solution.

1. In Example 3.3.1, we determined all of the real zeros of f lie in the interval [−4, 4]. We set
our window accordingly and get



3.3 Real Zeros of Polynomials 271

2. In Example 3.3.2, we learned that any rational zero of f must be in the list
{
± 1

2 ,± 1,± 3
2 ,± 3

}
.

From the graph, it looks as if we can rule out any of the positive rational zeros, since the
graph seems to cross the x-axis at a value just a little greater than 1. On the negative side,
−1 looks good, so we try that for our synthetic division.

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

2 2 −3 −3 0

We have a winner! Remembering that f was a fourth degree polynomial, we know that our
quotient is a third degree polynomial. If we can do one more successful division, we will have
knocked the quotient down to a quadratic, and, if all else fails, we can use the quadratic
formula to find the last two zeros. Since there seems to be no other rational zeros to try, we
continue with −1. Also, the shape of the crossing at x = −1 leads us to wonder if the zero
x = −1 has multiplicity 3.

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

−1 2 2 −3 −3 0
↓ −2 0 3

2 0 −3 0

Success! Our quotient polynomial is now 2x2 − 3. Setting this to zero gives 2x2 − 3 = 0, or

x2 = 3
2 , which gives us x = ±

√
6

2 . Concerning multiplicities, based on our division, we have
that −1 has a multiplicity of at least 2. The Factor Theorem tells us our remaining zeros,

±
√

6
2 , each have multiplicity at least 1. However, Theorem 3.7 tells us f can have at most 4

real zeros, counting multiplicity, and so we conclude that −1 is of multiplicity exactly 2 and

±
√

6
2 each has multiplicity 1. (Thus, we were wrong to think that −1 had multiplicity 3.)

It is interesting to note that we could greatly improve on the graph of y = f(x) in the previous
example given to us by the calculator. For instance, from our determination of the zeros of f and

their multiplicities, we know the graph crosses at x = −
√

6
2 ≈ −1.22 then turns back upwards to

touch the x−axis at x = −1. This tells us that, despite what the calculator showed us the first time,
there is a relative maximum occurring at x = −1 and not a ‘flattened crossing’ as we originally
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believed. After resizing the window, we see not only the relative maximum but also a relative
minimum2 just to the left of x = −1 which shows us, once again, that Mathematics enhances the
technology, instead of vice-versa.

Our next example shows how even a mild-mannered polynomial can cause problems.

Example 3.3.4. Let f(x) = x4 + x2 − 12.

1. Use Cauchy’s Bound to determine an interval in which all of the real zeros of f lie.

2. Use the Rational Zeros Theorem to determine a list of possible rational zeros of f .

3. Graph y = f(x) using your graphing calculator.

4. Find all of the real zeros of f and their multiplicities.

Solution.

1. Applying Cauchy’s Bound, we find M = 12, so all of the real zeros lie in the interval [−13, 13].

2. Applying the Rational Zeros Theorem with constant term a0 = −12 and leading coefficient
a4 = 1, we get the list {± 1, ± 2, ± 3, ± 4, ± 6, ± 12}.

3. Graphing y = f(x) on the interval [−13, 13] produces the graph below on the left. Zooming
in a bit gives the graph below on the right. Based on the graph, none of our rational zeros
will work. (Do you see why not?)

2This is an example of what is called ‘hidden behavior.’



3.3 Real Zeros of Polynomials 273

4. From the graph, we know f has two real zeros, one positive, and one negative. Our only hope
at this point is to try and find the zeros of f by setting f(x) = x4 + x2 − 12 = 0 and solving.
If we stare at this equation long enough, we may recognize it as a ‘quadratic in disguise’ or
‘quadratic in form’. In other words, we have three terms: x4, x2 and 12, and the exponent
on the first term, x4, is exactly twice that of the second term, x2. We may rewrite this as(
x2
)2

+
(
x2
)
− 12 = 0. To better see the forest for the trees, we momentarily replace x2 with

the variable u. In terms of u, our equation becomes u2 + u − 12 = 0, which we can readily
factor as (u+ 4)(u− 3) = 0. In terms of x, this means x4 + x2 − 12 =

(
x2 − 3

) (
x2 + 4

)
= 0.

We get x2 = 3, which gives us x = ±
√

3, or x2 = −4, which admits no real solutions. Since√
3 ≈ 1.73, the two zeros match what we expected from the graph. In terms of multiplicity,

the Factor Theorem guarantees
(
x−
√

3
)

and
(
x+
√

3
)

are factors of f(x). Since f(x) can

be factored as f(x) =
(
x2 − 3

) (
x2 + 4

)
, and x2 +4 has no real zeros, the quantities

(
x−
√

3
)

and
(
x+
√

3
)

must both be factors of x2 − 3. According to Theorem 3.7, x2 − 3 can have at

most 2 zeros, counting multiplicity, hence each of ±
√

3 is a zero of f of multiplicity 1.

The technique used to factor f(x) in Example 3.3.4 is called u-substitution. We shall see more of
this technique in Section 5.3. In general, substitution can help us identify a ‘quadratic in disguise’
provided that there are exactly three terms and the exponent of the first term is exactly twice that
of the second. It is entirely possible that a polynomial has no real roots at all, or worse, it has
real roots but none of the techniques discussed in this section can help us find them exactly. In
the latter case, we are forced to approximate, which in this subsection means we use the ‘Zero’
command on the graphing calculator.

3.3.2 For Those Wishing NOT to use a Graphing Calculator

Suppose we wish to find the zeros of f(x) = 2x4 + 4x3 − x2 − 6x− 3 without using the calculator.
In this subsection, we present some more advanced mathematical tools (theorems) to help us. Our
first result is due to René Descartes.

Theorem 3.10. Descartes’ Rule of Signs: Suppose f(x) is the formula for a polynomial
function written with descending powers of x.

� If P denotes the number of variations of sign in the formula for f(x), then the number of
positive real zeros (counting multiplicity) is one of the numbers {P , P − 2, P − 4, . . . }.

� If N denotes the number of variations of sign in the formula for f(−x), then the number
of negative real zeros (counting multiplicity) is one of the numbers {N , N −2, N −4, . . . }.

A few remarks are in order. First, to use Descartes’ Rule of Signs, we need to understand what is
meant by a ‘variation in sign’ of a polynomial function. Consider f(x) = 2x4 + 4x3−x2−6x−3.
If we focus on only the signs of the coefficients, we start with a (+), followed by another (+), then
switch to (−), and stay (−) for the remaining two coefficients. Since the signs of the coefficients
switched once as we read from left to right, we say that f(x) has one variation in sign. When

http://en.wikipedia.org/wiki/Descartes
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we speak of the variations in sign of a polynomial function f we assume the formula for f(x) is
written with descending powers of x, as in Definition 3.1, and concern ourselves only with the
nonzero coefficients. Second, unlike the Rational Zeros Theorem, Descartes’ Rule of Signs gives us
an estimate to the number of positive and negative real zeros, not the actual value of the zeros.
Lastly, Descartes’ Rule of Signs counts multiplicities. This means that, for example, if one of the
zeros has multiplicity 2, Descsartes’ Rule of Signs would count this as two zeros. Lastly, note that
the number of positive or negative real zeros always starts with the number of sign changes and
decreases by an even number. For example, if f(x) has 7 sign changes, then, counting multplicities,
f has either 7, 5, 3 or 1 positive real zero. This implies that the graph of y = f(x) crosses the
positive x-axis at least once. If f(−x) results in 4 sign changes, then, counting multiplicities, f has
4, 2 or 0 negative real zeros; hence, the graph of y = f(x) may not cross the negative x-axis at all.
The proof of Descartes’ Rule of Signs is a bit technical, and can be found here.

Example 3.3.5. Let f(x) = 2x4 + 4x3 − x2 − 6x − 3. Use Descartes’ Rule of Signs to determine
the possible number and location of the real zeros of f .

Solution. As noted above, the variations of sign of f(x) is 1. This means, counting multiplicities,
f has exactly 1 positive real zero. Since f(−x) = 2(−x)4 + 4(−x)3 − (−x)2 − 6(−x) − 3 =
2x4− 4x3−x2 + 6x− 3 has 3 variations in sign, f has either 3 negative real zeros or 1 negative real
zero, counting multiplicities.

Cauchy’s Bound gives us a general bound on the zeros of a polynomial function. Our next result
helps us determine bounds on the real zeros of a polynomial as we synthetically divide which are
often sharper3 bounds than Cauchy’s Bound.

Theorem 3.11. Upper and Lower Bounds: Suppose f is a polynomial of degree n ≥ 1.

� If c > 0 is synthetically divided into f and all of the numbers in the final line of the division
tableau have the same signs, then c is an upper bound for the real zeros of f . That is,
there are no real zeros greater than c.

� If c < 0 is synthetically divided into f and the numbers in the final line of the division
tableau alternate signs, then c is a lower bound for the real zeros of f . That is, there are
no real zeros less than c.

NOTE: If the number 0 occurs in the final line of the division tableau in either of the
above cases, it can be treated as (+) or (−) as needed.

The Upper and Lower Bounds Theorem works because of Theorem 3.4. For the upper bound part of
the theorem, suppose c > 0 is divided into f and the resulting line in the division tableau contains,
for example, all nonnegative numbers. This means f(x) = (x − c)q(x) + r, where the coefficients
of the quotient polynomial and the remainder are nonnegative. (Note that the leading coefficient
of q is the same as f so q(x) is not the zero polynomial.) If b > c, then f(b) = (b − c)q(b) + r,
where (b − c) and q(b) are both positive and r ≥ 0. Hence f(b) > 0 which shows b cannot be a
zero of f . Thus no real number b > c can be a zero of f , as required. A similar argument proves

3That is, better, or more accurate.

http://www.cut-the-knot.org/fta/ROS2.shtml
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f(b) < 0 if all of the numbers in the final line of the synthetic division tableau are non-positive. To
prove the lower bound part of the theorem, we note that a lower bound for the negative real zeros
of f(x) is an upper bound for the positive real zeros of f(−x). Applying the upper bound portion
to f(−x) gives the result. (Do you see where the alternating signs come in?) With the additional
mathematical machinery of Descartes’ Rule of Signs and the Upper and Lower Bounds Theorem,
we can find the real zeros of f(x) = 2x4 +4x3−x2−6x−3 without the use of a graphing calculator.

Example 3.3.6. Let f(x) = 2x4 + 4x3 − x2 − 6x− 3.

1. Find all of the real zeros of f and their multiplicities.

2. Sketch the graph of y = f(x).

Solution.

1. We know from Cauchy’s Bound that all of the real zeros lie in the interval [−4, 4] and that
our possible rational zeros are ± 1

2 , ± 1, ± 3
2 and ± 3. Descartes’ Rule of Signs guarantees us

at least one negative real zero and exactly one positive real zero, counting multiplicity. We
try our positive rational zeros, starting with the smallest, 1

2 . Since the remainder isn’t zero,
we know 1

2 isn’t a zero. Sadly, the final line in the division tableau has both positive and
negative numbers, so 1

2 is not an upper bound. The only information we get from this division
is courtesy of the Remainder Theorem which tells us f

(
1
2

)
= −45

8 so the point
(

1
2 ,−

45
8

)
is

on the graph of f . We continue to our next possible zero, 1. As before, the only information
we can glean from this is that (1,−4) is on the graph of f . When we try our next possible
zero, 3

2 , we get that it is not a zero, and we also see that it is an upper bound on the zeros of
f , since all of the numbers in the final line of the division tableau are positive. This means
there is no point trying our last possible rational zero, 3. Descartes’ Rule of Signs guaranteed
us a positive real zero, and at this point we have shown this zero is irrational. Furthermore,
the Intermediate Value Theorem, Theorem 3.1, tells us the zero lies between 1 and 3

2 , since
f(1) < 0 and f

(
3
2

)
> 0.

1
2 2 4 −1 −6 −3
↓ 1 5

2
3
4 −21

8

2 5 3
2 −21

4 −45
8

1 2 4 −1 −6 −3
↓ 2 6 5 −1

2 6 5 −1 −4

3
2 2 4 −1 −6 −3
↓ 3 21

2
57
4

99
8

2 7 19
2

33
4

75
8

We now turn our attention to negative real zeros. We try the largest possible zero, −1
2 .

Synthetic division shows us it is not a zero, nor is it a lower bound (since the numbers in
the final line of the division tableau do not alternate), so we proceed to −1. This division
shows −1 is a zero. Descartes’ Rule of Signs told us that we may have up to three negative
real zeros, counting multiplicity, so we try −1 again, and it works once more. At this point,
we have taken f , a fourth degree polynomial, and performed two successful divisions. Our
quotient polynomial is quadratic, so we look at it to find the remaining zeros.
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−1
2 2 4 −1 −6 −3
↓ −1 −3

2
5
4

19
8

2 3 −5
2 −19

4 −5
8

−1 2 4 −1 −6 −3
↓ −2 −2 3 3

−1 2 2 −3 −3 0
↓ −2 0 3

2 0 −3 0

Setting the quotient polynomial equal to zero yields 2x2−3 = 0, so that x2 = 3
2 , or x = ±

√
6

2 .

Descartes’ Rule of Signs tells us that the positive real zero we found,
√

6
2 , has multiplicity 1.

Descartes also tells us the total multiplicity of negative real zeros is 3, which forces −1 to be

a zero of multiplicity 2 and −
√

6
2 to have multiplicity 1.

2. We know the end behavior of y = f(x) resembles that of its leading term y = 2x4. This

means that the graph enters the scene in Quadrant II and exits in Quadrant I. Since ±
√

6
2

are zeros of odd multiplicity, we have that the graph crosses through the x-axis at the points(
−
√

6
2 , 0

)
and

(√
6

2 , 0
)

. Since −1 is a zero of multiplicity 2, the graph of y = f(x) touches

and rebounds off the x-axis at (−1, 0). Putting this together, we get

x

y

You can see why the ‘no calculator’ approach is not very popular these days. It requires more
computation and more theorems than the alternative.4 In general, no matter how many theorems
you throw at a polynomial, it may well be impossible5 to find their zeros exactly. The polynomial
f(x) = x5 − x − 1 is one such beast.6 According to Descartes’ Rule of Signs, f has exactly one
positive real zero, and it could have two negative real zeros, or none at all. The Rational Zeros

4This is apparently a bad thing.
5We don’t use this word lightly; it can be proven that the zeros of some polynomials cannot be expressed using

the usual algebraic symbols.
6See this page.

http://en.wikipedia.org/wiki/Galois_theory
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Test gives us ±1 as rational zeros to try but neither of these work since f(1) = f(−1) = −1. If
we try the substitution technique we used in Example 3.3.4, we find f(x) has three terms, but the
exponent on the x5 isn’t exactly twice the exponent on x. How could we go about approximating
the positive zero without resorting to the ‘Zero’ command of a graphing calculator? We use the
Bisection Method. The first step in the Bisection Method is to find an interval on which f
changes sign. We know f(1) = −1 and we find f(2) = 29. By the Intermediate Value Theorem,
we know that the zero of f lies in the interval [1, 2]. Next, we ‘bisect’ this interval and find the
midpoint is 1.5. We have that f(1.5) ≈ 5.09. This means that our zero is between 1 and 1.5, since
f changes sign on this interval. Now, we ‘bisect’ the interval [1, 1.5] and find f(1.25) ≈ 0.80, so now
we have the zero between 1 and 1.25. Bisecting [1, 1.25], we find f(1.125) ≈ −0.32, which means
the zero of f is between 1.125 and 1.25. We continue in this fashion until we have ‘sandwiched’ the
zero between two numbers which differ by no more than a desired accuracy. You can think of the
Bisection Method as reversing the sign diagram process: instead of finding the zeros and checking
the sign of f using test values, we are using test values to determine where the signs switch to find
the zeros. It is a slow and tedious, yet fool-proof, method for approximating a real zero.

Our next example reminds us of the role finding zeros plays in solving equations and inequalities.

Example 3.3.7.

1. Find all of the real solutions to the equation 2x5 + 6x3 + 3 = 3x4 + 8x2.

2. Solve the inequality 2x5 + 6x3 + 3 ≤ 3x4 + 8x2.

3. Interpret your answer to part 2 graphically, and verify using a graphing calculator.

Solution.

1. Finding the real solutions to 2x5 + 6x3 + 3 = 3x4 + 8x2 is the same as finding the real
solutions to 2x5 − 3x4 + 6x3 − 8x2 + 3 = 0. In other words, we are looking for the real zeros
of p(x) = 2x5 − 3x4 + 6x3 − 8x2 + 3. Using the techniques developed in this section, we get

1 2 −3 6 −8 0 3
↓ 2 −1 5 −3 −3

1 2 −1 5 −3 −3 0
↓ 2 1 6 3

−1
2 2 1 6 3 0
↓ −1 0 −3

2 0 6 0

The quotient polynomial is 2x2 + 6 which has no real zeros so we get x = −1
2 and x = 1.

2. To solve this nonlinear inequality, we follow the same guidelines set forth in Section 2.4: we get
0 on one side of the inequality and construct a sign diagram. Our original inequality can be
rewritten as 2x5−3x4+6x3−8x2+3 ≤ 0. We found the zeros of p(x) = 2x5−3x4+6x3−8x2+3
in part 1 to be x = −1

2 and x = 1. We construct our sign diagram as before.



278 Polynomial Functions

−1
2

1

(−) 0 (+) 0 (+)

−1 0 2

The solution to p(x) < 0 is
(
−∞,−1

2

)
, and we know p(x) = 0 at x = −1

2 and x = 1. Hence,
the solution to p(x) ≤ 0 is

(
−∞,−1

2

]
∪ {1}.

3. To interpret this solution graphically, we set f(x) = 2x5 + 6x3 + 3 and g(x) = 3x4 + 8x2.
We recall that the solution to f(x) ≤ g(x) is the set of x values for which the graph of f
is below the graph of g (where f(x) < g(x)) along with the x values where the two graphs
intersect (f(x) = g(x)). Graphing f and g on the calculator produces the picture on the
lower left. (The end behavior should tell you which is which.) We see that the graph of f
is below the graph of g on

(
−∞,−1

2

)
. However, it is difficult to see what is happening near

x = 1. Zooming in (and making the graph of g thicker), we see that the graphs of f and g do
intersect at x = 1, but the graph of g remains below the graph of f on either side of x = 1.

Our last example revisits an application from page 247 in the Exercises of Section 3.1.

Example 3.3.8. Suppose the profit P , in thousands of dollars, from producing and selling x
hundred LCD TVs is given by P (x) = −5x3 + 35x2 − 45x − 25, 0 ≤ x ≤ 10.07. How many TVs
should be produced to make a profit? Check your answer using a graphing utility.

Solution. To ‘make a profit’ means to solve P (x) = −5x3 + 35x2 − 45x − 25 > 0, which we
do analytically using a sign diagram. To simplify things, we first factor out the −5 common
to all the coefficients to get −5

(
x3 − 7x2 + 9x− 5

)
> 0, so we can just focus on finding the

zeros of f(x) = x3 − 7x2 + 9x + 5. The possible rational zeros of f are ±1 and ±5, and going
through the usual computations, we find x = 5 is the only rational zero. Using this, we factor
f(x) = x3 − 7x2 + 9x + 5 = (x − 5)

(
x2 − 2x− 1

)
, and we find the remaining zeros by applying

the Quadratic Formula to x2 − 2x − 1 = 0. We find three real zeros, x = 1 −
√

2 = −0.414 . . .,
x = 1 +

√
2 = 2.414 . . ., and x = 5, of which only the last two fall in the applied domain of

[0, 10.07]. We choose x = 0, x = 3 and x = 10.07 as our test values and plug them into the function
P (x) = −5x3 + 35x2 − 45x− 25 (not f(x) = x3 − 7x2 + 9x− 5) to get the sign diagram below.
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1 +
√

2 5

(−) 0 (+) 0

0 3 10.07

(−)

We see immediately that P (x) > 0 on (1+
√

2, 5). Since x measures the number of TVs in hundreds,
x = 1+

√
2 corresponds to 241.4 . . . TVs. Since we can’t produce a fractional part of a TV, we need

to choose between producing 241 and 242 TVs. From the sign diagram, we see that P (2.41) < 0 but
P (2.42) > 0 so, in this case we take the next larger integer value and set the minimum production
to 242 TVs. At the other end of the interval, we have x = 5 which corresponds to 500 TVs. Here,
we take the next smaller integer value, 499 TVs to ensure that we make a profit. Hence, in order
to make a profit, at least 242, but no more than 499 TVs need to be produced. To check our
answer using a calculator, we graph y = P (x) and make use of the ‘Zero’ command. We see that
the calculator approximations bear out our analysis.7

7Note that the y-coordinates of the points here aren’t registered as 0. They are expressed in Scientific Notation.
For instance, 1E − 11 corresponds to 0.00000000001, which is pretty close in the calculator’s eyes8to 0.

8but not a Mathematician’s
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3.3.3 Exercises

In Exercises 1 - 10, for the given polynomial:

� Use Cauchy’s Bound to find an interval containing all of the real zeros.

� Use the Rational Zeros Theorem to make a list of possible rational zeros.

� Use Descartes’ Rule of Signs to list the possible number of positive and negative real zeros,
counting multiplicities.

1. f(x) = x3 − 2x2 − 5x+ 6 2. f(x) = x4 + 2x3 − 12x2 − 40x− 32

3. f(x) = x4 − 9x2 − 4x+ 12 4. f(x) = x3 + 4x2 − 11x+ 6

5. f(x) = x3 − 7x2 + x− 7 6. f(x) = −2x3 + 19x2 − 49x+ 20

7. f(x) = −17x3 + 5x2 + 34x− 10 8. f(x) = 36x4 − 12x3 − 11x2 + 2x+ 1

9. f(x) = 3x3 + 3x2 − 11x− 10 10. f(x) = 2x4 + x3 − 7x2 − 3x+ 3

In Exercises 11 - 30, find the real zeros of the polynomial using the techniques specified by your
instructor. State the multiplicity of each real zero.

11. f(x) = x3 − 2x2 − 5x+ 6 12. f(x) = x4 + 2x3 − 12x2 − 40x− 32

13. f(x) = x4 − 9x2 − 4x+ 12 14. f(x) = x3 + 4x2 − 11x+ 6

15. f(x) = x3 − 7x2 + x− 7 16. f(x) = −2x3 + 19x2 − 49x+ 20

17. f(x) = −17x3 + 5x2 + 34x− 10 18. f(x) = 36x4 − 12x3 − 11x2 + 2x+ 1

19. f(x) = 3x3 + 3x2 − 11x− 10 20. f(x) = 2x4 + x3 − 7x2 − 3x+ 3

21. f(x) = 9x3 − 5x2 − x 22. f(x) = 6x4 − 5x3 − 9x2

23. f(x) = x4 + 2x2 − 15 24. f(x) = x4 − 9x2 + 14

25. f(x) = 3x4 − 14x2 − 5 26. f(x) = 2x4 − 7x2 + 6

27. f(x) = x6 − 3x3 − 10 28. f(x) = 2x6 − 9x3 + 10

29. f(x) = x5 − 2x4 − 4x+ 8 30. f(x) = 2x5 + 3x4 − 18x− 27
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In Exercises 31 - 33, use your calculator,9 to help you find the real zeros of the polynomial. State
the multiplicity of each real zero.

31. f(x) = x5 − 60x3 − 80x2 + 960x+ 2304

32. f(x) = 25x5 − 105x4 + 174x3 − 142x2 + 57x− 9

33. f(x) = 90x4 − 399x3 + 622x2 − 399x+ 90

34. Find the real zeros of f(x) = x3 − 1
12x

2 − 7
72x + 1

72 by first finding a polynomial q(x) with
integer coefficients such that q(x) = N · f(x) for some integer N . (Recall that the Rational
Zeros Theorem required the polynomial in question to have integer coefficients.) Show that
f and q have the same real zeros.

In Exercises 35 - 44, find the real solutions of the polynomial equation. (See Example 3.3.7.)

35. 9x3 = 5x2 + x 36. 9x2 + 5x3 = 6x4

37. x3 + 6 = 2x2 + 5x 38. x4 + 2x3 = 12x2 + 40x+ 32

39. x3 − 7x2 = 7− x 40. 2x3 = 19x2 − 49x+ 20

41. x3 + x2 =
11x+ 10

3
42. x4 + 2x2 = 15

43. 14x2 + 5 = 3x4 44. 2x5 + 3x4 = 18x+ 27

In Exercises 45 - 54, solve the polynomial inequality and state your answer using interval notation.

45. −2x3 + 19x2 − 49x+ 20 > 0 46. x4 − 9x2 ≤ 4x− 12

47. (x− 1)2 ≥ 4 48. 4x3 ≥ 3x+ 1

49. x4 ≤ 16 + 4x− x3 50. 3x2 + 2x < x4

51.
x3 + 2x2

2
< x+ 2 52.

x3 + 20x

8
≥ x2 + 2

53. 2x4 > 5x2 + 3 54. x6 + x3 ≥ 6

55. In Example 3.1.3 in Section 3.1, a box with no top is constructed from a 10 inch × 12 inch
piece of cardboard by cutting out congruent squares from each corner of the cardboard and
then folding the resulting tabs. We determined the volume of that box (in cubic inches) is
given by V (x) = 4x3 − 44x2 + 120x, where x denotes the length of the side of the square
which is removed from each corner (in inches), 0 < x < 5. Solve the inequality V (x) ≥ 80
analytically and interpret your answer in the context of that example.

9You can do these without your calculator, but it may test your mettle!
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56. From Exercise 32 in Section 3.1, C(x) = .03x3 − 4.5x2 + 225x + 250, for x ≥ 0 models the
cost, in dollars, to produce x PortaBoy game systems. If the production budget is $5000, find
the number of game systems which can be produced and still remain under budget.

57. Let f(x) = 5x7 − 33x6 + 3x5 − 71x4 − 597x3 + 2097x2 − 1971x+ 567. With the help of your
classmates, find the x- and y- intercepts of the graph of f . Find the intervals on which the
function is increasing, the intervals on which it is decreasing and the local extrema. Sketch
the graph of f , using more than one picture if necessary to show all of the important features
of the graph.

58. With the help of your classmates, create a list of five polynomials with different degrees whose
real zeros cannot be found using any of the techniques in this section.
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3.3.4 Answers

1. For f(x) = x3 − 2x2 − 5x+ 6

� All of the real zeros lie in the interval [−7, 7]

� Possible rational zeros are ±1, ±2, ±3, ±6

� There are 2 or 0 positive real zeros; there is 1 negative real zero

2. For f(x) = x4 + 2x3 − 12x2 − 40x− 32

� All of the real zeros lie in the interval [−41, 41]

� Possible rational zeros are ±1, ±2, ±4, ±8, ±16, ±32

� There is 1 positive real zero; there are 3 or 1 negative real zeros

3. For f(x) = x4 − 9x2 − 4x+ 12

� All of the real zeros lie in the interval [−13, 13]

� Possible rational zeros are ±1, ±2, ±3, ±4, ±6, ±12

� There are 2 or 0 positive real zeros; there are 2 or 0 negative real zeros

4. For f(x) = x3 + 4x2 − 11x+ 6

� All of the real zeros lie in the interval [−12, 12]

� Possible rational zeros are ±1, ±2, ±3, ±6

� There are 2 or 0 positive real zeros; there is 1 negative real zero

5. For f(x) = x3 − 7x2 + x− 7

� All of the real zeros lie in the interval [−8, 8]

� Possible rational zeros are ±1, ±7

� There are 3 or 1 positive real zeros; there are no negative real zeros

6. For f(x) = −2x3 + 19x2 − 49x+ 20

� All of the real zeros lie in the interval
[
−51

2 ,
51
2

]
� Possible rational zeros are ±1

2 , ±1, ±2, ±5
2 , ±4, ±5, ±10, ±20

� There are 3 or 1 positive real zeros; there are no negative real zeros

7. For f(x) = −17x3 + 5x2 + 34x− 10

� All of the real zeros lie in the interval [−3, 3]

� Possible rational zeros are ± 1
17 , ± 2

17 , ± 5
17 , ±10

17 , ±1, ±2, ±5, ±10

� There are 2 or 0 positive real zeros; there is 1 negative real zero
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8. For f(x) = 36x4 − 12x3 − 11x2 + 2x+ 1

� All of the real zeros lie in the interval
[
−4

3 ,
4
3

]
� Possible rational zeros are ± 1

36 , ± 1
18 , ± 1

12 , ±1
9 , ±1

6 , ±1
4 , ±1

3 , ±1
2 , ±1

� There are 2 or 0 positive real zeros; there are 2 or 0 negative real zeros

9. For f(x) = 3x3 + 3x2 − 11x− 10

� All of the real zeros lie in the interval
[
−14

3 ,
14
3

]
� Possible rational zeros are ±1

3 , ±2
3 , ±5

3 , ±10
3 , ±1, ±2, ±5, ±10

� There is 1 positive real zero; there are 2 or 0 negative real zeros

10. For f(x) = 2x4 + x3 − 7x2 − 3x+ 3

� All of the real zeros lie in the interval
[
−9

2 ,
9
2

]
� Possible rational zeros are ±1

2 , ±1, ±3
2 , ±3

� There are 2 or 0 positive real zeros; there are 2 or 0 negative real zeros

11. f(x) = x3 − 2x2 − 5x+ 6
x = −2, x = 1, x = 3 (each has mult. 1)

12. f(x) = x4 + 2x3 − 12x2 − 40x− 32
x = −2 (mult. 3), x = 4 (mult. 1)

13. f(x) = x4 − 9x2 − 4x+ 12
x = −2 (mult. 2), x = 1 (mult. 1), x = 3 (mult. 1)

14. f(x) = x3 + 4x2 − 11x+ 6
x = −6 (mult. 1), x = 1 (mult. 2)

15. f(x) = x3 − 7x2 + x− 7
x = 7 (mult. 1)

16. f(x) = −2x3 + 19x2 − 49x+ 20
x = 1

2 , x = 4, x = 5 (each has mult. 1)

17. f(x) = −17x3 + 5x2 + 34x− 10
x = 5

17 , x = ±
√

2 (each has mult. 1)

18. f(x) = 36x4 − 12x3 − 11x2 + 2x+ 1
x = 1

2 (mult. 2), x = −1
3 (mult. 2)

19. f(x) = 3x3 + 3x2 − 11x− 10

x = −2, x = 3±
√

69
6 (each has mult. 1)
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20. f(x) = 2x4 + x3 − 7x2 − 3x+ 3
x = −1, x = 1

2 , x = ±
√

3 (each mult. 1)

21. f(x) = 9x3 − 5x2 − x
x = 0, x = 5±

√
61

18 (each has mult. 1)

22. f(x) = 6x4 − 5x3 − 9x2

x = 0 (mult. 2), x = 5±
√

241
12 (each has mult. 1)

23. f(x) = x4 + 2x2 − 15
x = ±

√
3 (each has mult. 1)

24. f(x) = x4 − 9x2 + 14
x = ±

√
2, x = ±

√
7 (each has mult. 1)

25. f(x) = 3x4 − 14x2 − 5
x = ±

√
5 (each has mult. 1)

26. f(x) = 2x4 − 7x2 + 6

x = ±
√

6
2 , x = ±

√
2 (each has mult. 1)

27. f(x) = x6 − 3x3 − 10
x = 3
√
−2 = − 3

√
2, x = 3

√
5 (each has mult. 1)

28. f(x) = 2x6 − 9x3 + 10

x =
3√20
2 , x = 3

√
2 (each has mult. 1)

29. f(x) = x5 − 2x4 − 4x+ 8
x = 2, x = ±

√
2 (each has mult. 1)

30. f(x) = 2x5 + 3x4 − 18x− 27
x = −3

2 , x = ±
√

3 (each has mult. 1)

31. f(x) = x5 − 60x3 − 80x2 + 960x+ 2304
x = −4 (mult. 3), x = 6 (mult. 2)

32. f(x) = 25x5 − 105x4 + 174x3 − 142x2 + 57x− 9
x = 3

5 (mult. 2), x = 1 (mult. 3)

33. f(x) = 90x4 − 399x3 + 622x2 − 399x+ 90
x = 2

3 , x = 3
2 , x = 5

3 , x = 3
5 (each has mult. 1)

34. We choose q(x) = 72x3 − 6x2 − 7x + 1 = 72 · f(x). Clearly f(x) = 0 if and only if q(x) = 0
so they have the same real zeros. In this case, x = −1

3 , x = 1
6 and x = 1

4 are the real zeros
of both f and q.
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35. x = 0, 5±
√

61
18 36. x = 0, 5±

√
241

12

37. x = −2, 1, 3 38. x = −2, 4

39. x = 7 40. x = 1
2 , 4, 5

41. x = −2, 3±
√

69
6

42. x = ±
√

3

43. x = ±
√

5 44. x = −3
2 ,±
√

3

45. (−∞, 1
2) ∪ (4, 5) 46. {−2} ∪ [1, 3]

47. (−∞,−1] ∪ [3,∞) 48.

{
−1

2

}
∪ [1,∞)

49. [−2, 2] 50. (−∞,−1) ∪ (−1, 0) ∪ (2,∞)

51. (−∞,−2) ∪
(
−
√

2,
√

2
)

52. {2} ∪ [4,∞)

53. (−∞,−
√

3) ∪ (
√

3,∞) 54. (−∞,− 3
√

3 ) ∪ ( 3
√

2,∞)

55. V (x) ≥ 80 on [1, 5−
√

5]∪ [5+
√

5,∞). Only the portion [1, 5−
√

5] lies in the applied domain,
however. In the context of the problem, this says for the volume of the box to be at least 80
cubic inches, the square removed from each corner needs to have a side length of at least 1
inch, but no more than 5−

√
5 ≈ 2.76 inches.

56. C(x) ≤ 5000 on (approximately) (−∞, 82.18]. The portion of this which lies in the applied
domain is (0, 82.18]. Since x represents the number of game systems, we check C(82) =
4983.04 and C(83) = 5078.11, so to remain within the production budget, anywhere between
1 and 82 game systems can be produced.
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3.4 Complex Zeros and the Fundamental Theorem of Algebra

In Section 3.3, we were focused on finding the real zeros of a polynomial function. In this section, we
expand our horizons and look for the non-real zeros as well. Consider the polynomial p(x) = x2 +1.
The zeros of p are the solutions to x2 + 1 = 0, or x2 = −1. This equation has no real solutions, but
you may recall from Intermediate Algebra that we can formally extract the square roots of both
sides to get x = ±

√
−1. The quantity

√
−1 is usually re-labeled i, the so-called imaginary unit.1

The number i, while not a real number, plays along well with real numbers, and acts very much
like any other radical expression. For instance, 3(2i) = 6i, 7i− 3i = 4i, (2− 7i) + (3 + 4i) = 5− 3i,
and so forth. The key properties which distinguish i from the real numbers are listed below.

Definition 3.4. The imaginary unit i satisfies the two following properties

1. i2 = −1

2. If c is a real number with c ≥ 0 then
√
−c = i

√
c

Property 1 in Definition 3.4 establishes that i does act as a square root2 of −1, and property 2
establishes what we mean by the ‘principal square root’ of a negative real number. In property
2, it is important to remember the restriction on c. For example, it is perfectly acceptable to say√
−4 = i

√
4 = i(2) = 2i. However,

√
−(−4) 6= i

√
−4, otherwise, we’d get

2 =
√

4 =
√
−(−4) = i

√
−4 = i(2i) = 2i2 = 2(−1) = −2,

which is unacceptable.3 We are now in the position to define the complex numbers.

Definition 3.5. A complex number is a number of the form a + bi, where a and b are real
numbers and i is the imaginary unit.

Complex numbers include things you’d normally expect, like 3 + 2i and 2
5 − i

√
3. However, don’t

forget that a or b could be zero, which means numbers like 3i and 6 are also complex numbers. In
other words, don’t forget that the complex numbers include the real numbers, so 0 and π−

√
21 are

both considered complex numbers.4 The arithmetic of complex numbers is as you would expect.
The only things you need to remember are the two properties in Definition 3.4. The next example
should help recall how these animals behave.

1Some Technical Mathematics textbooks label it ‘j’.
2Note the use of the indefinite article ‘a’. Whatever beast is chosen to be i, −i is the other square root of −1.
3We want to enlarge the number system so we can solve things like x2 = −1, but not at the cost of the established

rules already set in place. For that reason, the general properties of radicals simply do not apply for even roots of
negative quantities.

4See the remarks in Section 1.1.1.
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Example 3.4.1. Perform the indicated operations. Write your answer in the form5 a+ bi.

1. (1− 2i)− (3 + 4i) 2. (1− 2i)(3 + 4i) 3.
1− 2i

3− 4i

4.
√
−3
√
−12 5.

√
(−3)(−12) 6. (x− [1 + 2i])(x− [1− 2i])

Solution.

1. As mentioned earlier, we treat expressions involving i as we would any other radical. We
combine like terms to get (1− 2i)− (3 + 4i) = 1− 2i− 3− 4i = −2− 6i.

2. Using the distributive property, we get (1−2i)(3+4i) = (1)(3)+(1)(4i)− (2i)(3)− (2i)(4i) =
3 + 4i− 6i− 8i2. Since i2 = −1, we get 3 + 4i− 6i− 8i2 = 3− 2i− (−8) = 11− 2i.

3. How in the world are we supposed to simplify 1−2i
3−4i? Well, we deal with the denominator

3− 4i as we would any other denominator containing a radical, and multiply both numerator
and denominator by 3 + 4i (the conjugate of 3− 4i).6 Doing so produces

1− 2i

3− 4i
· 3 + 4i

3 + 4i
=

(1− 2i)(3 + 4i)

(3− 4i)(3 + 4i)
=

11− 2i

25
=

11

25
− 2

25
i

4. We use property 2 of Definition 3.4 first, then apply the rules of radicals applicable to real
radicals to get

√
−3
√
−12 =

(
i
√

3
) (
i
√

12
)

= i2
√

3 · 12 = −
√

36 = −6.

5. We adhere to the order of operations here and perform the multiplication before the radical
to get

√
(−3)(−12) =

√
36 = 6.

6. We can brute force multiply using the distributive property and see that

(x− [1 + 2i])(x− [1− 2i]) = x2 − x[1− 2i]− x[1 + 2i] + [1− 2i][1 + 2i]
= x2 − x+ 2ix− x− 2ix+ 1− 2i+ 2i− 4i2

= x2 − 2x+ 5

A couple of remarks about the last example are in order. First, the conjugate of a complex number
a+ bi is the number a− bi. The notation commonly used for conjugation is a ‘bar’: a+ bi = a− bi.
For example, 3 + 2i = 3−2i, 3− 2i = 3+2i, 6 = 6, 4i = −4i, and 3 +

√
5 = 3+

√
5. The properties

of the conjugate are summarized in the following theorem.

5OK, we’ll accept things like 3− 2i even though it can be written as 3 + (−2)i.
6We will talk more about this in a moment.



3.4 Complex Zeros and the Fundamental Theorem of Algebra 289

Theorem 3.12. Properties of the Complex Conjugate: Let z and w be complex numbers.

� z = z

� z + w = z + w

� z w = zw

� (z)n = zn, for any natural number n

� z is a real number if and only if z = z.

Essentially, Theorem 3.12 says that complex conjugation works well with addition, multiplication
and powers. The proof of these properties can best be achieved by writing out z = a + bi and
w = c + di for real numbers a, b, c and d. Next, we compute the left and right hand sides
of each equation and check to see that they are the same. The proof of the first property is
a very quick exercise.7 To prove the second property, we compare z + w and z + w. We have
z + w = a+ bi+ c+ di = a− bi+ c− di. To find z + w, we first compute

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

so

z + w = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i = a− bi+ c− di

As such, we have established z+w = z + w. The proof for multiplication works similarly. The proof
that the conjugate works well with powers can be viewed as a repeated application of the product
rule, and is best proved using a technique called Mathematical Induction.8 The last property is a
characterization of real numbers. If z is real, then z = a+ 0i, so z = a− 0i = a = z. On the other
hand, if z = z, then a+ bi = a− bi which means b = −b so b = 0. Hence, z = a+ 0i = a and is real.

We now return to the business of zeros. Suppose we wish to find the zeros of f(x) = x2 − 2x+ 5.
To solve the equation x2−2x+5 = 0, we note that the quadratic doesn’t factor nicely, so we resort
to the Quadratic Formula, Equation 2.5 and obtain

x =
−(−2)±

√
(−2)2 − 4(1)(5)

2(1)
=

2±
√
−16

2
=

2± 4i

2
= 1± 2i.

Two things are important to note. First, the zeros 1 + 2i and 1 − 2i are complex conjugates. If
ever we obtain non-real zeros to a quadratic function with real coefficients, the zeros will be a
complex conjugate pair. (Do you see why?) Next, we note that in Example 3.4.1, part 6, we found
(x − [1 + 2i])(x − [1 − 2i]) = x2 − 2x + 5. This demonstrates that the factor theorem holds even
for non-real zeros, i.e, x = 1 + 2i is a zero of f , and, sure enough, (x − [1 + 2i]) is a factor of
f(x). It turns out that polynomial division works the same way for all complex numbers, real and
non-real alike, so the Factor and Remainder Theorems hold as well. But how do we know if a

7Trust us on this.
8See Section 9.3.
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general polynomial has any complex zeros at all? We have many examples of polynomials with no
real zeros. Can there be polynomials with no zeros whatsoever? The answer to that last question
is “No.” and the theorem which provides that answer is The Fundamental Theorem of Algebra.

Theorem 3.13. The Fundamental Theorem of Algebra: Suppose f is a polynomial func-
tion with complex number coefficients of degree n ≥ 1, then f has at least one complex zero.

The Fundamental Theorem of Algebra is an example of an ‘existence’ theorem in Mathematics. Like
the Intermediate Value Theorem, Theorem 3.1, the Fundamental Theorem of Algebra guarantees
the existence of at least one zero, but gives us no algorithm to use in finding it. In fact, as we
mentioned in Section 3.3, there are polynomials whose real zeros, though they exist, cannot be
expressed using the ‘usual’ combinations of arithmetic symbols, and must be approximated. The
authors are fully aware that the full impact and profound nature of the Fundamental Theorem of
Algebra is lost on most students studying College Algebra, and that’s fine. It took mathematicians
literally hundreds of years to prove the theorem in its full generality, and some of that history is
recorded here. Note that the Fundamental Theorem of Algebra applies to not only polynomial
functions with real coefficients, but to those with complex number coefficients as well.

Suppose f is a polynomial of degree n ≥ 1. The Fundamental Theorem of Algebra guarantees us
at least one complex zero, z1, and as such, the Factor Theorem guarantees that f(x) factors as
f(x) = (x− z1) q1(x) for a polynomial function q1, of degree exactly n − 1. If n − 1 ≥ 1, then
the Fundamental Theorem of Algebra guarantees a complex zero of q1 as well, say z2, so then the
Factor Theorem gives us q1(x) = (x− z2) q2(x), and hence f(x) = (x− z1) (x− z2) q2(x). We can
continue this process exactly n times, at which point our quotient polynomial qn has degree 0 so
it’s a constant. This argument gives us the following factorization theorem.

Theorem 3.14. Complex Factorization Theorem: Suppose f is a polynomial function with
complex number coefficients. If the degree of f is n and n ≥ 1, then f has exactly n complex
zeros, counting multiplicity. If z1, z2, . . . , zk are the distinct zeros of f , with multiplicities m1,
m2, . . . , mk, respectively, then f(x) = a (x− z1)

m1 (x− z2)
m2 · · · (x− zk)mk .

Note that the value a in Theorem 3.14 is the leading coefficient of f(x) (Can you see why?) and as
such, we see that a polynomial is completely determined by its zeros, their multiplicities, and its
leading coefficient. We put this theorem to good use in the next example.

Example 3.4.2. Let f(x) = 12x5 − 20x4 + 19x3 − 6x2 − 2x+ 1.

1. Find all of the complex zeros of f and state their multiplicities.

2. Factor f(x) using Theorem 3.14

Solution.

1. Since f is a fifth degree polynomial, we know that we need to perform at least three successful
divisions to get the quotient down to a quadratic function. At that point, we can find the
remaining zeros using the Quadratic Formula, if necessary. Using the techniques developed
in Section 3.3, we get

http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra


3.4 Complex Zeros and the Fundamental Theorem of Algebra 291

1
2 12 −20 19 −6 −2 1

↓ 6 −7 6 0 −1
1
2 12 −14 12 0 −2 0

↓ 6 −4 4 2

−1
3 12 −8 8 4 0

↓ −4 4 −4

12 −12 12 0

Our quotient is 12x2 − 12x + 12, whose zeros we find to be 1±i
√

3
2 . From Theorem 3.14, we

know f has exactly 5 zeros, counting multiplicities, and as such we have the zero 1
2 with

multiplicity 2, and the zeros −1
3 , 1+i

√
3

2 and 1−i
√

3
2 , each of multiplicity 1.

2. Applying Theorem 3.14, we are guaranteed that f factors as

f(x) = 12

(
x− 1

2

)2(
x+

1

3

)(
x−

[
1 + i

√
3

2

])(
x−

[
1− i

√
3

2

])

A true test of Theorem 3.14 (and a student’s mettle!) would be to take the factored form of f(x) in
the previous example and multiply it out9 to see that it really does reduce to the original formula
f(x) = 12x5−20x4 +19x3−6x2−2x+1. When factoring a polynomial using Theorem 3.14, we say
that it is factored completely over the complex numbers, meaning that it is impossible to fac-
tor the polynomial any further using complex numbers. If we wanted to completely factor f(x) over
the real numbers then we would have stopped short of finding the nonreal zeros of f and factored
f using our work from the synthetic division to write f(x) =

(
x− 1

2

)2 (
x+ 1

3

) (
12x2 − 12x+ 12

)
,

or f(x) = 12
(
x− 1

2

)2 (
x+ 1

3

) (
x2 − x+ 1

)
. Since the zeros of x2 − x + 1 are nonreal, we call

x2 − x+ 1 an irreducible quadratic meaning it is impossible to break it down any further using
real numbers.

The last two results of the section show us that, at least in theory, if we have a polynomial function
with real coefficients, we can always factor it down enough so that any nonreal zeros come from
irreducible quadratics.

Theorem 3.15. Conjugate Pairs Theorem: If f is a polynomial function with real number
coefficients and z is a zero of f , then so is z.

To prove the theorem, suppose f is a polynomial with real number coefficients. Specifically, let
f(x) = anx

n + an−1x
n−1 + . . . + a2x

2 + a1x + a0. If z is a zero of f , then f(z) = 0, which means
anz

n+an−1z
n−1 + . . .+a2z

2 +a1z+a0 = 0. Next, we consider f (z) and apply Theorem 3.12 below.

9You really should do this once in your life to convince yourself that all of the theory actually does work!
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f (z) = an (z)n + an−1 (z)n−1 + . . .+ a2 (z)2 + a1z + a0

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since (z)n = zn

= anzn + an−1zn−1 + . . .+ a2z2 + a1 z + a0 since the coefficients are real

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since z w = zw

= anzn + an−1zn−1 + . . .+ a2z2 + a1z + a0 since z + w = z + w

= f(z)

= 0

= 0

This shows that z is a zero of f . So, if f is a polynomial function with real number coefficients,
Theorem 3.15 tells us that if a+ bi is a nonreal zero of f , then so is a− bi. In other words, nonreal
zeros of f come in conjugate pairs. The Factor Theorem kicks in to give us both (x− [a+ bi]) and
(x − [a − bi]) as factors of f(x) which means (x − [a + bi])(x − [a − bi]) = x2 + 2ax +

(
a2 + b2

)
is

an irreducible quadratic factor of f . As a result, we have our last theorem of the section.

Theorem 3.16. Real Factorization Theorem: Suppose f is a polynomial function with real
number coefficients. Then f(x) can be factored into a product of linear factors corresponding to
the real zeros of f and irreducible quadratic factors which give the nonreal zeros of f .

We now present an example which pulls together all of the major ideas of this section.

Example 3.4.3. Let f(x) = x4 + 64.

1. Use synthetic division to show that x = 2 + 2i is a zero of f .

2. Find the remaining complex zeros of f .

3. Completely factor f(x) over the complex numbers.

4. Completely factor f(x) over the real numbers.

Solution.

1. Remembering to insert the 0’s in the synthetic division tableau we have

2 + 2i 1 0 0 0 64
↓ 2 + 2i 8i −16 + 16i −64

1 2 + 2i 8i −16 + 16i 0

2. Since f is a fourth degree polynomial, we need to make two successful divisions to get a
quadratic quotient. Since 2 + 2i is a zero, we know from Theorem 3.15 that 2 − 2i is also a
zero. We continue our synthetic division tableau.
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2 + 2i 1 0 0 0 64
↓ 2 + 2i 8i −16 + 16i −64

2− 2i 1 2 + 2i 8i −16 + 16i 0
↓ 2− 2i 8− 8i 16− 16i

1 4 8 0

Our quotient polynomial is x2 +4x+8. Using the quadratic formula, we obtain the remaining
zeros −2 + 2i and −2− 2i.

3. Using Theorem 3.14, we get f(x) = (x− [2− 2i])(x− [2 + 2i])(x− [−2 + 2i])(x− [−2− 2i]).

4. We multiply the linear factors of f(x) which correspond to complex conjugate pairs. We find
(x − [2 − 2i])(x − [2 + 2i]) = x2 − 4x + 8, and (x − [−2 + 2i])(x − [−2 − 2i]) = x2 + 4x + 8.
Our final answer is f(x) =

(
x2 − 4x+ 8

) (
x2 + 4x+ 8

)
.

Our last example turns the tables and asks us to manufacture a polynomial with certain properties
of its graph and zeros.

Example 3.4.4. Find a polynomial p of lowest degree that has integer coefficients and satisfies all
of the following criteria:

� the graph of y = p(x) touches (but doesn’t cross) the x-axis at
(

1
3 , 0
)

� x = 3i is a zero of p.

� as x→ −∞, p(x)→ −∞

� as x→∞, p(x)→ −∞

Solution. To solve this problem, we will need a good understanding of the relationship between
the x-intercepts of the graph of a function and the zeros of a function, the Factor Theorem, the
role of multiplicity, complex conjugates, the Complex Factorization Theorem, and end behavior of
polynomial functions. (In short, you’ll need most of the major concepts of this chapter.) Since the
graph of p touches the x-axis at

(
1
3 , 0
)
, we know x = 1

3 is a zero of even multiplicity. Since we
are after a polynomial of lowest degree, we need x = 1

3 to have multiplicity exactly 2. The Factor

Theorem now tells us
(
x− 1

3

)2
is a factor of p(x). Since x = 3i is a zero and our final answer is to

have integer (real) coefficients, x = −3i is also a zero. The Factor Theorem kicks in again to give us
(x−3i) and (x+3i) as factors of p(x). We are given no further information about zeros or intercepts

so we conclude, by the Complex Factorization Theorem that p(x) = a
(
x− 1

3

)2
(x− 3i)(x+ 3i) for

some real number a. Expanding this, we get p(x) = ax4− 2a
3 x

3 + 82a
9 x2−6ax+a. In order to obtain

integer coefficients, we know a must be an integer multiple of 9. Our last concern is end behavior.
Since the leading term of p(x) is ax4, we need a < 0 to get p(x)→ −∞ as x→ ±∞. Hence, if we
choose x = −9, we get p(x) = −9x4 + 6x3 − 82x2 + 54x − 9. We can verify our handiwork using
the techniques developed in this chapter.
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This example concludes our study of polynomial functions.10 The last few sections have contained
what is considered by many to be ‘heavy’ Mathematics. Like a heavy meal, heavy Mathematics
takes time to digest. Don’t be overly concerned if it doesn’t seem to sink in all at once, and pace
yourself in the Exercises or you’re liable to get mental cramps. But before we get to the Exercises,
we’d like to offer a bit of an epilogue.

Our main goal in presenting the material on the complex zeros of a polynomial was to give the
chapter a sense of completeness. Given that it can be shown that some polynomials have real zeros
which cannot be expressed using the usual algebraic operations, and still others have no real zeros
at all, it was nice to discover that every polynomial of degree n ≥ 1 has n complex zeros. So like
we said, it gives us a sense of closure. But the observant reader will note that we did not give any
examples of applications which involve complex numbers. Students often wonder when complex
numbers will be used in ‘real-world’ applications. After all, didn’t we call i the imaginary unit?
How can imaginary things be used in reality? It turns out that complex numbers are very useful in
many applied fields such as fluid dynamics, electromagnetism and quantum mechanics, but most
of the applications require Mathematics well beyond College Algebra to fully understand them.
That does not mean you’ll never be be able to understand them; in fact, it is the authors’ sincere
hope that all of you will reach a point in your studies when the glory, awe and splendor of complex
numbers are revealed to you. For now, however, the really good stuff is beyond the scope of this
text. We invite you and your classmates to find a few examples of complex number applications
and see what you can make of them. A simple Internet search with the phrase ‘complex numbers in
real life’ should get you started. Basic electronics classes are another place to look, but remember,
they might use the letter j where we have used i.

For the remainder of the text, with the exception of Section 11.7 and a few exploratory exercises
scattered about, we will restrict our attention to real numbers. We do this primarily because
the first Calculus sequence you will take, ostensibly the one that this text is preparing you for,
studies only functions of real variables. Also, lots of really cool scientific things don’t require any
deep understanding of complex numbers to study them, but they do need more Mathematics like
exponential, logarithmic and trigonometric functions. We believe it makes more sense pedagogically
for you to learn about those functions now then take a course in Complex Function Theory in your
junior or senior year once you’ve completed the Calculus sequence. It is in that course that the
true power of the complex numbers is released. But for now, in order to fully prepare you for life
immediately after College Algebra, we will say that functions like f(x) = 1

x2+1
have a domain of all

real numbers, even though we know x2 +1 = 0 has two complex solutions, namely x = ±i. Because
x2 + 1 > 0 for all real numbers x, the fraction 1

x2+1
is never undefined in the real variable setting.

10With the exception of the Exercises on the next page, of course.
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3.4.1 Exercises

In Exercises 1 - 10, use the given complex numbers z and w to find and simplify the following.
Write your answers in the form a+ bi.

� z + w � zw � z2

�
1

z
�
z

w
�
w

z

� z � zz � (z)2

1. z = 2 + 3i, w = 4i 2. z = 1 + i, w = −i

3. z = i, w = −1 + 2i 4. z = 4i, w = 2− 2i

5. z = 3− 5i, w = 2 + 7i 6. z = −5 + i, w = 4 + 2i

7. z =
√

2− i
√

2, w =
√

2 + i
√

2 8. z = 1− i
√

3, w = −1− i
√

3

9. z =
1

2
+

√
3

2
i, w = −1

2
+

√
3

2
i 10. z = −

√
2

2
+

√
2

2
i, w = −

√
2

2
−
√

2

2
i

In Exercises 11 - 18, simplify the quantity.

11.
√
−49 12.

√
−9 13.

√
−25
√
−4 14.

√
(−25)(−4)

15.
√
−9
√
−16 16.

√
(−9)(−16) 17.

√
−(−9) 18. −

√
(−9)

We know that i2 = −1 which means i3 = i2 · i = (−1) · i = −i and i4 = i2 · i2 = (−1)(−1) = 1. In
Exercises 19 - 26, use this information to simplify the given power of i.

19. i5 20. i6 21. i7 22. i8

23. i15 24. i26 25. i117 26. i304

In Exercises 27 - 48, find all of the zeros of the polynomial then completely factor it over the real
numbers and completely factor it over the complex numbers.

27. f(x) = x2 − 4x+ 13 28. f(x) = x2 − 2x+ 5

29. f(x) = 3x2 + 2x+ 10 30. f(x) = x3 − 2x2 + 9x− 18

31. f(x) = x3 + 6x2 + 6x+ 5 32. f(x) = 3x3 − 13x2 + 43x− 13
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33. f(x) = x3 + 3x2 + 4x+ 12 34. f(x) = 4x3 − 6x2 − 8x+ 15

35. f(x) = x3 + 7x2 + 9x− 2 36. f(x) = 9x3 + 2x+ 1

37. f(x) = 4x4 − 4x3 + 13x2 − 12x+ 3 38. f(x) = 2x4 − 7x3 + 14x2 − 15x+ 6

39. f(x) = x4 + x3 + 7x2 + 9x− 18 40. f(x) = 6x4 + 17x3 − 55x2 + 16x+ 12

41. f(x) = −3x4 − 8x3 − 12x2 − 12x− 5 42. f(x) = 8x4 + 50x3 + 43x2 + 2x− 4

43. f(x) = x4 + 9x2 + 20 44. f(x) = x4 + 5x2 − 24

45. f(x) = x5 − x4 + 7x3 − 7x2 + 12x− 12 46. f(x) = x6 − 64

47. f(x) = x4 − 2x3 + 27x2 − 2x+ 26 (Hint: x = i is one of the zeros.)

48. f(x) = 2x4 + 5x3 + 13x2 + 7x+ 5 (Hint: x = −1 + 2i is a zero.)

In Exercises 49 - 53, create a polynomial f with real number coefficients which has all of the desired
characteristics. You may leave the polynomial in factored form.

49. � The zeros of f are c = ±1 and c = ±i
� The leading term of f(x) is 42x4

50. � c = 2i is a zero.

� the point (−1, 0) is a local minimum on the graph of y = f(x)

� the leading term of f(x) is 117x4

51. � The solutions to f(x) = 0 are x = ±2 and x = ±7i

� The leading term of f(x) is −3x5

� The point (2, 0) is a local maximum on the graph of y = f(x).

52. � f is degree 5.

� x = 6, x = i and x = 1− 3i are zeros of f

� as x→ −∞, f(x)→∞

53. � The leading term of f(x) is −2x3

� c = 2i is a zero

� f(0) = −16

54. Let z and w be arbitrary complex numbers. Show that z w = zw and z = z.
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3.4.2 Answers

1. For z = 2 + 3i and w = 4i

� z + w = 2 + 7i � zw = −12 + 8i � z2 = −5 + 12i

� 1
z = 2

13 −
3
13 i � z

w = 3
4 −

1
2 i � w

z = 12
13 + 8

13 i

� z = 2− 3i � zz = 13 � (z)2 = −5− 12i

2. For z = 1 + i and w = −i

� z + w = 1 � zw = 1− i � z2 = 2i

� 1
z = 1

2 −
1
2 i � z

w = −1 + i � w
z = −1

2 −
1
2 i

� z = 1− i � zz = 2 � (z)2 = −2i

3. For z = i and w = −1 + 2i

� z + w = −1 + 3i � zw = −2− i � z2 = −1

� 1
z = −i � z

w = 2
5 −

1
5 i � w

z = 2 + i

� z = −i � zz = 1 � (z)2 = −1

4. For z = 4i and w = 2− 2i

� z + w = 2 + 2i � zw = 8 + 8i � z2 = −16

� 1
z = −1

4 i � z
w = −1 + i � w

z = −1
2 −

1
2 i

� z = −4i � zz = 16 � (z)2 = −16

5. For z = 3− 5i and w = 2 + 7i

� z + w = 5 + 2i � zw = 41 + 11i � z2 = −16− 30i

� 1
z = 3

34 + 5
34 i � z

w = −29
53 −

31
53 i � w

z = −29
34 + 31

34 i

� z = 3 + 5i � zz = 34 � (z)2 = −16 + 30i
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6. For z = −5 + i and w = 4 + 2i

� z + w = −1 + 3i � zw = −22− 6i � z2 = 24− 10i

� 1
z = − 5

26 −
1
26 i � z

w = − 9
10 + 7

10 i � w
z = − 9

13 −
7
13 i

� z = −5− i � zz = 26 � (z)2 = 24 + 10i

7. For z =
√

2− i
√

2 and w =
√

2 + i
√

2

� z + w = 2
√

2 � zw = 4 � z2 = −4i

� 1
z =

√
2

4 +
√

2
4 i � z

w = −i � w
z = i

� z =
√

2 + i
√

2 � zz = 4 � (z)2 = 4i

8. For z = 1− i
√

3 and w = −1− i
√

3

� z + w = −2i
√

3 � zw = −4 � z2 = −2− 2i
√

3

� 1
z = 1

4 +
√

3
4 i � z

w = 1
2 +

√
3

2 i � w
z = 1

2 −
√

3
2 i

� z = 1 + i
√

3 � zz = 4 � (z)2 = −2 + 2i
√

3

9. For z = 1
2 +

√
3

2 i and w = −1
2 +

√
3

2 i

� z + w = i
√

3 � zw = −1 � z2 = −1
2 +

√
3

2 i

� 1
z = 1

2 −
√

3
2 i � z

w = 1
2 −

√
3

2 i � w
z = 1

2 +
√

3
2 i

� z = 1
2 −

√
3

2 i � zz = 1 � (z)2 = −1
2 −

√
3

2 i

10. For z = −
√

2
2 +

√
2

2 i and w = −
√

2
2 −

√
2

2 i

� −
√

2 � zw = 1 � z2 = −i

� 1
z = −

√
2

2 −
√

2
2 i � z

w = −i � w
z = i

� z = −
√

2
2 −

√
2

2 i � zz = 1 � (z)2 = i

11. 7i 12. 3i 13. −10 14. 10
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15. −12 16. 12 17. 3 18. −3i

19. i5 = i4 · i = 1 · i = i 20. i6 = i4 · i2 = 1 · (−1) = −1

21. i7 = i4 · i3 = 1 · (−i) = −i 22. i8 = i4 · i4 =
(
i4
)2

= (1)2 = 1

23. i15 =
(
i4
)3 · i3 = 1 · (−i) = −i 24. i26 =

(
i4
)6 · i2 = 1 · (−1) = −1

25. i117 =
(
i4
)29 · i = 1 · i = i 26. i304 =

(
i4
)76

= 176 = 1

27. f(x) = x2 − 4x+ 13 = (x− (2 + 3i))(x− (2− 3i))
Zeros: x = 2± 3i

28. f(x) = x2 − 2x+ 5 = (x− (1 + 2i))(x− (1− 2i))
Zeros: x = 1± 2i

29. f(x) = 3x2 + 2x+ 10 = 3
(
x−

(
−1

3 +
√

29
3 i
))(

x−
(
−1

3 −
√

29
3 i
))

Zeros: x = −1
3 ±

√
29
3 i

30. f(x) = x3 − 2x2 + 9x− 18 = (x− 2)
(
x2 + 9

)
= (x− 2)(x− 3i)(x+ 3i)

Zeros: x = 2,±3i

31. f(x) = x3 +6x2 +6x+5 = (x+5)(x2 +x+1) = (x+5)
(
x−

(
−1

2 +
√

3
2 i
))(

x−
(
−1

2 −
√

3
2 i
))

Zeros: x = −5, x = −1
2 ±

√
3

2 i

32. f(x) = 3x3 − 13x2 + 43x− 13 = (3x− 1)(x2 − 4x+ 13) = (3x− 1)(x− (2 + 3i))(x− (2− 3i))
Zeros: x = 1

3 , x = 2± 3i

33. f(x) = x3 + 3x2 + 4x+ 12 = (x+ 3)
(
x2 + 4

)
= (x+ 3)(x+ 2i)(x− 2i)

Zeros: x = −3, ±2i

34. f(x) = 4x3 − 6x2 − 8x+ 15 =
(
x+ 3

2

) (
4x2 − 12x+ 10

)
= 4

(
x+ 3

2

) (
x−

(
3
2 + 1

2 i
)) (

x−
(

3
2 −

1
2 i
))

Zeros: x = −3
2 , x = 3

2 ±
1
2 i

35. f(x) = x3 + 7x2 + 9x− 2 = (x+ 2)
(
x−

(
−5

2 +
√

29
2

))(
x−

(
−5

2 −
√

29
2

))
Zeros: x = −2, x = −5

2 ±
√

29
2

36. f(x) = 9x3 + 2x+ 1 =
(
x+ 1

3

) (
9x2 − 3x+ 3

)
= 9

(
x+ 1

3

) (
x−

(
1
6 +

√
11
6 i
))(

x−
(

1
6 −

√
11
6 i
))

Zeros: x = −1
3 , x = 1

6 ±
√

11
6 i

37. f(x) = 4x4 − 4x3 + 13x2 − 12x+ 3 =
(
x− 1

2

)2 (
4x2 + 12

)
= 4

(
x− 1

2

)2
(x+ i

√
3)(x− i

√
3)

Zeros: x = 1
2 , x = ±

√
3i
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38. f(x) = 2x4 − 7x3 + 14x2 − 15x+ 6 = (x− 1)2
(
2x2 − 3x+ 6

)
= 2(x− 1)2

(
x−

(
3
4 +

√
39
4 i
))(

x−
(

3
4 −

√
39
4 i
))

Zeros: x = 1, x = 3
4 ±

√
39
4 i

39. f(x) = x4 + x3 + 7x2 + 9x− 18 = (x+ 2)(x− 1)
(
x2 + 9

)
= (x+ 2)(x− 1)(x+ 3i)(x− 3i)

Zeros: x = −2, 1, ±3i

40. f(x) = 6x4 +17x3−55x2 +16x+12 = 6
(
x+ 1

3

) (
x− 3

2

) (
x−

(
−2 + 2

√
2
)) (

x−
(
−2− 2

√
2
))

Zeros: x = −1
3 , x = 3

2 , x = −2± 2
√

2

41. f(x) = −3x4 − 8x3 − 12x2 − 12x− 5 = (x+ 1)2
(
−3x2 − 2x− 5

)
= −3(x+ 1)2

(
x−

(
−1

3 +
√

14
3 i
))(

x−
(
−1

3 −
√

14
3 i
))

Zeros: x = −1, x = −1
3 ±

√
14
3 i

42. f(x) = 8x4 + 50x3 + 43x2 + 2x− 4 = 8
(
x+ 1

2

) (
x− 1

4

)
(x− (−3 +

√
5))(x− (−3−

√
5))

Zeros: x = −1
2 ,

1
4 , x = −3±

√
5

43. f(x) = x4 + 9x2 + 20 =
(
x2 + 4

) (
x2 + 5

)
= (x− 2i)(x+ 2i)

(
x− i

√
5
) (
x+ i

√
5
)

Zeros: x = ±2i,±i
√

5

44. f(x) = x4 + 5x2 − 24 =
(
x2 − 3

) (
x2 + 8

)
= (x−

√
3)(x+

√
3)
(
x− 2i

√
2
) (
x+ 2i

√
2
)

Zeros: x = ±
√

3,±2i
√

2

45. f(x) = x5 − x4 + 7x3 − 7x2 + 12x− 12 = (x− 1)
(
x2 + 3

) (
x2 + 4

)
= (x− 1)(x− i

√
3)(x+ i

√
3)(x− 2i)(x+ 2i)

Zeros: x = 1, ±
√

3i, ±2i

46. f(x) = x6 − 64 = (x− 2)(x+ 2)
(
x2 + 2x+ 4

) (
x2 − 2x+ 4

)
= (x− 2)(x+ 2)

(
x−

(
−1 + i

√
3
)) (

x−
(
−1− i

√
3
)) (

x−
(
1 + i

√
3
)) (

x−
(
1− i

√
3
))

Zeros: x = ±2, x = −1± i
√

3, x = 1± i
√

3

47. f(x) = x4−2x3+27x2−2x+26 = (x2−2x+26)(x2+1) = (x−(1+5i))(x−(1−5i))(x+i)(x−i)
Zeros: x = 1± 5i, x = ±i

48. f(x) = 2x4 + 5x3 + 13x2 + 7x+ 5 =
(
x2 + 2x+ 5

) (
2x2 + x+ 1

)
= 2(x− (−1 + 2i))(x− (−1− 2i))

(
x−

(
−1

4 + i
√

7
4

))(
x−

(
−1

4 − i
√

7
4

))
Zeros: x = −1± 2i,−1

4 ± i
√

7
4

49. f(x) = 42(x− 1)(x+ 1)(x− i)(x+ i) 50. f(x) = 117(x+ 1)2(x− 2i)(x+ 2i)

51. f(x) = −3(x− 2)2(x+ 2)(x− 7i)(x+ 7i)

52. f(x) = a(x− 6)(x− i)(x+ i)(x− (1− 3i))(x− (1 + 3i)) where a is any real number, a < 0

53. f(x) = −2(x− 2i)(x+ 2i)(x+ 2)



Chapter 4

Rational Functions

4.1 Introduction to Rational Functions

If we add, subtract or multiply polynomial functions according to the function arithmetic rules
defined in Section 1.5, we will produce another polynomial function. If, on the other hand, we
divide two polynomial functions, the result may not be a polynomial. In this chapter we study
rational functions - functions which are ratios of polynomials.

Definition 4.1. A rational function is a function which is the ratio of polynomial functions.
Said differently, r is a rational function if it is of the form

r(x) =
p(x)

q(x)
,

where p and q are polynomial functions.a

aAccording to this definition, all polynomial functions are also rational functions. (Take q(x) = 1).

As we recall from Section 1.4, we have domain issues anytime the denominator of a fraction is
zero. In the example below, we review this concept as well as some of the arithmetic of rational
expressions.

Example 4.1.1. Find the domain of the following rational functions. Write them in the form p(x)
q(x)

for polynomial functions p and q and simplify.

1. f(x) =
2x− 1

x+ 1
2. g(x) = 2− 3

x+ 1

3. h(x) =
2x2 − 1

x2 − 1
− 3x− 2

x2 − 1
4. r(x) =

2x2 − 1

x2 − 1
÷ 3x− 2

x2 − 1

Solution.

1. To find the domain of f , we proceed as we did in Section 1.4: we find the zeros of the
denominator and exclude them from the domain. Setting x+1 = 0 results in x = −1. Hence,
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our domain is (−∞,−1)∪ (−1,∞). The expression f(x) is already in the form requested and
when we check for common factors among the numerator and denominator we find none, so
we are done.

2. Proceeding as before, we determine the domain of g by solving x+ 1 = 0. As before, we find
the domain of g is (−∞,−1) ∪ (−1,∞). To write g(x) in the form requested, we need to get
a common denominator

g(x) = 2− 3

x+ 1
=

2

1
− 3

x+ 1
=

(2)(x+ 1)

(1)(x+ 1)
− 3

x+ 1

=
(2x+ 2)− 3

x+ 1
=

2x− 1

x+ 1

This formula is now completely simplified.

3. The denominators in the formula for h(x) are both x2 − 1 whose zeros are x = ±1. As a
result, the domain of h is (−∞,−1) ∪ (−1, 1) ∪ (1,∞). We now proceed to simplify h(x).
Since we have the same denominator in both terms, we subtract the numerators. We then
factor the resulting numerator and denominator, and cancel out the common factor.

h(x) =
2x2 − 1

x2 − 1
− 3x− 2

x2 − 1
=

(
2x2 − 1

)
− (3x− 2)

x2 − 1

=
2x2 − 1− 3x+ 2

x2 − 1
=

2x2 − 3x+ 1

x2 − 1

=
(2x− 1)(x− 1)

(x+ 1)(x− 1)
=

(2x− 1)���
�(x− 1)

(x+ 1)���
�(x− 1)

=
2x− 1

x+ 1

4. To find the domain of r, it may help to temporarily rewrite r(x) as

r(x) =

2x2 − 1

x2 − 1
3x− 2

x2 − 1

We need to set all of the denominators equal to zero which means we need to solve not only
x2 − 1 = 0, but also 3x−2

x2−1
= 0. We find x = ±1 for the former and x = 2

3 for the latter. Our

domain is (−∞,−1)∪
(
−1, 2

3

)
∪
(

2
3 , 1
)
∪ (1,∞). We simplify r(x) by rewriting the division as

multiplication by the reciprocal and then by canceling the common factor
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r(x) =
2x2 − 1

x2 − 1
÷ 3x− 2

x2 − 1
=

2x2 − 1

x2 − 1
· x

2 − 1

3x− 2
=

(
2x2 − 1

) (
x2 − 1

)
(x2 − 1) (3x− 2)

=

(
2x2 − 1

)
��

���
(
x2 − 1

)
��

���
(
x2 − 1

)
(3x− 2)

=
2x2 − 1

3x− 2

A few remarks about Example 4.1.1 are in order. Note that the expressions for f(x), g(x) and
h(x) work out to be the same. However, only two of these functions are actually equal. Recall that
functions are ultimately sets of ordered pairs,1 so for two functions to be equal, they need, among
other things, to have the same domain. Since f(x) = g(x) and f and g have the same domain, they
are equal functions. Even though the formula h(x) is the same as f(x), the domain of h is different
than the domain of f , and thus they are different functions.

We now turn our attention to the graphs of rational functions. Consider the function f(x) = 2x−1
x+1

from Example 4.1.1. Using a graphing calculator, we obtain

Two behaviors of the graph are worthy of further discussion. First, note that the graph appears
to ‘break’ at x = −1. We know from our last example that x = −1 is not in the domain of f
which means f(−1) is undefined. When we make a table of values to study the behavior of f near
x = −1 we see that we can get ‘near’ x = −1 from two directions. We can choose values a little
less than −1, for example x = −1.1, x = −1.01, x = −1.001, and so on. These values are said to
‘approach −1 from the left.’ Similarly, the values x = −0.9, x = −0.99, x = −0.999, etc., are said
to ‘approach −1 from the right.’ If we make two tables, we find that the numerical results confirm
what we see graphically.

x f(x) (x, f(x))

−1.1 32 (−1.1, 32)

−1.01 302 (−1.01, 302)

−1.001 3002 (−1.001, 3002)

−1.0001 30002 (−1.001, 30002)

x f(x) (x, f(x))

−0.9 −28 (−0.9,−28)

−0.99 −298 (−0.99,−298)

−0.999 −2998 (−0.999,−2998)

−0.9999 −29998 (−0.9999,−29998)

As the x values approach −1 from the left, the function values become larger and larger positive
numbers.2 We express this symbolically by stating as x → −1−, f(x) → ∞. Similarly, using
analogous notation, we conclude from the table that as x → −1+, f(x) → −∞. For this type of

1You should review Sections 1.2 and 1.3 if this statement caught you off guard.
2We would need Calculus to confirm this analytically.
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unbounded behavior, we say the graph of y = f(x) has a vertical asymptote of x = −1. Roughly
speaking, this means that near x = −1, the graph looks very much like the vertical line x = −1.

The other feature worthy of note about the graph of y = f(x) is that it seems to ‘level off’ on the
left and right hand sides of the screen. This is a statement about the end behavior of the function.
As we discussed in Section 3.1, the end behavior of a function is its behavior as x attains larger3 and
larger negative values without bound, x → −∞, and as x becomes large without bound, x → ∞.
Making tables of values, we find

x f(x) (x, f(x))

−10 ≈ 2.3333 ≈ (−10, 2.3333)

−100 ≈ 2.0303 ≈ (−100, 2.0303)

−1000 ≈ 2.0030 ≈ (−1000, 2.0030)

−10000 ≈ 2.0003 ≈ (−10000, 2.0003)

x f(x) (x, f(x))

10 ≈ 1.7273 ≈ (10, 1.7273)

100 ≈ 1.9703 ≈ (100, 1.9703)

1000 ≈ 1.9970 ≈ (1000, 1.9970)

10000 ≈ 1.9997 ≈ (10000, 1.9997)

From the tables, we see that as x → −∞, f(x) → 2+ and as x → ∞, f(x) → 2−. Here the ‘+’
means ‘from above’ and the ‘−’ means ‘from below’. In this case, we say the graph of y = f(x) has
a horizontal asymptote of y = 2. This means that the end behavior of f resembles the horizontal
line y = 2, which explains the ‘leveling off’ behavior we see in the calculator’s graph. We formalize
the concepts of vertical and horizontal asymptotes in the following definitions.

Definition 4.2. The line x = c is called a vertical asymptote of the graph of a function
y = f(x) if as x→ c− or as x→ c+, either f(x)→∞ or f(x)→ −∞.

Definition 4.3. The line y = c is called a horizontal asymptote of the graph of a function
y = f(x) if as x→ −∞ or as x→∞, f(x)→ c.

Note that in Definition 4.3, we write f(x) → c (not f(x) → c+ or f(x) → c−) because we are
unconcerned from which direction the values f(x) approach the value c, just as long as they do so.4

In our discussion following Example 4.1.1, we determined that, despite the fact that the formula for
h(x) reduced to the same formula as f(x), the functions f and h are different, since x = 1 is in the

domain of f , but x = 1 is not in the domain of h. If we graph h(x) = 2x2−1
x2−1

− 3x−2
x2−1

using a graphing
calculator, we are surprised to find that the graph looks identical to the graph of y = f(x). There
is a vertical asymptote at x = −1, but near x = 1, everything seem fine. Tables of values provide
numerical evidence which supports the graphical observation.

3Here, the word ‘larger’ means larger in absolute value.
4As we shall see in the next section, the graphs of rational functions may, in fact, cross their horizontal asymptotes.

If this happens, however, it does so only a finite number of times, and so for each choice of x → −∞ and x → ∞,
f(x) will approach c from either below (in the case f(x)→ c−) or above (in the case f(x)→ c+.) We leave f(x)→ c
generic in our definition, however, to allow this concept to apply to less tame specimens in the Precalculus zoo, such
as Exercise 50 in Section 10.5.
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x h(x) (x, h(x))

0.9 ≈ 0.4210 ≈ (0.9, 0.4210)

0.99 ≈ 0.4925 ≈ (0.99, 0.4925)

0.999 ≈ 0.4992 ≈ (0.999, 0.4992)

0.9999 ≈ 0.4999 ≈ (0.9999, 0.4999)

x h(x) (x, h(x))

1.1 ≈ 0.5714 ≈ (1.1, 0.5714)

1.01 ≈ 0.5075 ≈ (1.01, 0.5075)

1.001 ≈ 0.5007 ≈ (1.001, 0.5007)

1.0001 ≈ 0.5001 ≈ (1.0001, 0.5001)

We see that as x → 1−, h(x) → 0.5− and as x → 1+, h(x) → 0.5+. In other words, the points on
the graph of y = h(x) are approaching (1, 0.5), but since x = 1 is not in the domain of h, it would
be inaccurate to fill in a point at (1, 0.5). As we’ve done in past sections when something like this
occurs,5 we put an open circle (also called a hole in this case6) at (1, 0.5). Below is a detailed
graph of y = h(x), with the vertical and horizontal asymptotes as dashed lines.

x

y

−4 −3 −2 1 2 3 4
−1

−2

−3

−4

−5

−6

1

3

4

5

6

7

8

Neither x = −1 nor x = 1 are in the domain of h, yet the behavior of the graph of y = h(x) is
drastically different near these x-values. The reason for this lies in the second to last step when
we simplified the formula for h(x) in Example 4.1.1, where we had h(x) = (2x−1)(x−1)

(x+1)(x−1) . The reason

x = −1 is not in the domain of h is because the factor (x + 1) appears in the denominator of
h(x); similarly, x = 1 is not in the domain of h because of the factor (x − 1) in the denominator
of h(x). The major difference between these two factors is that (x − 1) cancels with a factor in
the numerator whereas (x + 1) does not. Loosely speaking, the trouble caused by (x − 1) in the
denominator is canceled away while the factor (x + 1) remains to cause mischief. This is why the
graph of y = h(x) has a vertical asymptote at x = −1 but only a hole at x = 1. These observations
are generalized and summarized in the theorem below, whose proof is found in Calculus.

5For instance, graphing piecewise defined functions in Section 1.6.
6In Calculus, we will see how these ‘holes’ can be ‘plugged’ when embarking on a more advanced study of continuity.
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Theorem 4.1. Location of Vertical Asymptotes and Holes:a Suppose r is a rational
function which can be written as r(x) = p(x)

q(x) where p and q have no common zeros.b Let c be a
real number which is not in the domain of r.

� If q(c) 6= 0, then the graph of y = r(x) has a hole at
(
c, p(c)q(c)

)
.

� If q(c) = 0, then the line x = c is a vertical asymptote of the graph of y = r(x).

aOr, ‘How to tell your asymptote from a hole in the graph.’
bIn other words, r(x) is in lowest terms.

In English, Theorem 4.1 says that if x = c is not in the domain of r but, when we simplify r(x), it
no longer makes the denominator 0, then we have a hole at x = c. Otherwise, the line x = c is a
vertical asymptote of the graph of y = r(x).

Example 4.1.2. Find the vertical asymptotes of, and/or holes in, the graphs of the following
rational functions. Verify your answers using a graphing calculator, and describe the behavior of
the graph near them using proper notation.

1. f(x) =
2x

x2 − 3 2. g(x) =
x2 − x− 6

x2 − 9

3. h(x) =
x2 − x− 6

x2 + 9
4. r(x) =

x2 − x− 6

x2 + 4x+ 4

Solution.

1. To use Theorem 4.1, we first find all of the real numbers which aren’t in the domain of f . To
do so, we solve x2 − 3 = 0 and get x = ±

√
3. Since the expression f(x) is in lowest terms,

there is no cancellation possible, and we conclude that the lines x = −
√

3 and x =
√

3 are
vertical asymptotes to the graph of y = f(x). The calculator verifies this claim, and from the

graph, we see that as x → −
√

3
−

, f(x) → −∞, as x → −
√

3
+

, f(x) → ∞, as x →
√

3
−

,

f(x)→ −∞, and finally as x→
√

3
+

, f(x)→∞.

2. Solving x2 − 9 = 0 gives x = ±3. In lowest terms g(x) = x2−x−6
x2−9

= (x−3)(x+2)
(x−3)(x+3) = x+2

x+3 . Since
x = −3 continues to make trouble in the denominator, we know the line x = −3 is a vertical
asymptote of the graph of y = g(x). Since x = 3 no longer produces a 0 in the denominator,
we have a hole at x = 3. To find the y-coordinate of the hole, we substitute x = 3 into x+2

x+3

and find the hole is at
(
3, 5

6

)
. When we graph y = g(x) using a calculator, we clearly see the

vertical asymptote at x = −3, but everything seems calm near x = 3. Hence, as x → −3−,
g(x)→∞, as x→ −3+, g(x)→ −∞, as x→ 3−, g(x)→ 5

6

−
, and as x→ 3+, g(x)→ 5

6

+
.
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The graph of y = f(x) The graph of y = g(x)

3. The domain of h is all real numbers, since x2 + 9 = 0 has no real solutions. Accordingly, the
graph of y = h(x) is devoid of both vertical asymptotes and holes.

4. Setting x2 + 4x + 4 = 0 gives us x = −2 as the only real number of concern. Simplifying,
we see r(x) = x2−x−6

x2+4x+4
= (x−3)(x+2)

(x+2)2 = x−3
x+2 . Since x = −2 continues to produce a 0 in the

denominator of the reduced function, we know x = −2 is a vertical asymptote to the graph.
The calculator bears this out, and, moreover, we see that as x → −2−, r(x) → ∞ and as
x→ −2+, r(x)→ −∞.

The graph of y = h(x) The graph of y = r(x)

Our next example gives us a physical interpretation of a vertical asymptote. This type of model
arises from a family of equations cheerily named ‘doomsday’ equations.7

Example 4.1.3. A mathematical model for the population P , in thousands, of a certain species
of bacteria, t days after it is introduced to an environment is given by P (t) = 100

(5−t)2 , 0 ≤ t < 5.

1. Find and interpret P (0).

2. When will the population reach 100,000?

3. Determine the behavior of P as t → 5−. Interpret this result graphically and within the
context of the problem.

7These functions arise in Differential Equations. The unfortunate name will make sense shortly.
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Solution.

1. Substituting t = 0 gives P (0) = 100
(5−0)2 = 4, which means 4000 bacteria are initially introduced

into the environment.

2. To find when the population reaches 100,000, we first need to remember that P (t) is measured
in thousands. In other words, 100,000 bacteria corresponds to P (t) = 100. Substituting for
P (t) gives the equation 100

(5−t)2 = 100. Clearing denominators and dividing by 100 gives

(5 − t)2 = 1, which, after extracting square roots, produces t = 4 or t = 6. Of these two
solutions, only t = 4 in our domain, so this is the solution we keep. Hence, it takes 4 days for
the population of bacteria to reach 100,000.

3. To determine the behavior of P as t→ 5−, we can make a table

t P (t)

4.9 10000

4.99 1000000

4.999 100000000

4.9999 10000000000

In other words, as t → 5−, P (t) → ∞. Graphically, the line t = 5 is a vertical asymptote of
the graph of y = P (t). Physically, this means that the population of bacteria is increasing
without bound as we near 5 days, which cannot actually happen. For this reason, t = 5 is
called the ‘doomsday’ for this population. There is no way any environment can support
infinitely many bacteria, so shortly before t = 5 the environment would collapse.

Now that we have thoroughly investigated vertical asymptotes, we can turn our attention to hori-
zontal asymptotes. The next theorem tells us when to expect horizontal asymptotes.

Theorem 4.2. Location of Horizontal Asymptotes: Suppose r is a rational function and
r(x) = p(x)

q(x) , where p and q are polynomial functions with leading coefficients a and b, respectively.

� If the degree of p(x) is the same as the degree of q(x), then y = a
b is thea horizontal

asymptote of the graph of y = r(x).

� If the degree of p(x) is less than the degree of q(x), then y = 0 is the horizontal asymptote
of the graph of y = r(x).

� If the degree of p(x) is greater than the degree of q(x), then the graph of y = r(x) has no
horizontal asymptotes.

aThe use of the definite article will be justified momentarily.

Like Theorem 4.1, Theorem 4.2 is proved using Calculus. Nevertheless, we can understand the idea
behind it using our example f(x) = 2x−1

x+1 . If we interpret f(x) as a division problem, (2x−1)÷(x+1),
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we find that the quotient is 2 with a remainder of −3. Using what we know about polynomial
division, specifically Theorem 3.4, we get 2x − 1 = 2(x + 1) − 3. Dividing both sides by (x + 1)
gives 2x−1

x+1 = 2 − 3
x+1 . (You may remember this as the formula for g(x) in Example 4.1.1.) As x

becomes unbounded in either direction, the quantity 3
x+1 gets closer and closer to 0 so that the

values of f(x) become closer and closer8 to 2. In symbols, as x→ ±∞, f(x)→ 2, and we have the
result.9 Notice that the graph gets close to the same y value as x → −∞ or x → ∞. This means
that the graph can have only one horizontal asymptote if it is going to have one at all. Thus we
were justified in using ‘the’ in the previous theorem.

Alternatively, we can use what we know about end behavior of polynomials to help us understand
this theorem. From Theorem 3.2, we know the end behavior of a polynomial is determined by its
leading term. Applying this to the numerator and denominator of f(x), we get that as x → ±∞,
f(x) = 2x−1

x+1 ≈
2x
x = 2. This last approach is useful in Calculus, and, indeed, is made rigorous there.

(Keep this in mind for the remainder of this paragraph.) Applying this reasoning to the general

case, suppose r(x) = p(x)
q(x) where a is the leading coefficient of p(x) and b is the leading coefficient

of q(x). As x → ±∞, r(x) ≈ axn

bxm , where n and m are the degrees of p(x) and q(x), respectively.
If the degree of p(x) and the degree of q(x) are the same, then n = m so that r(x) ≈ a

b , which
means y = a

b is the horizontal asymptote in this case. If the degree of p(x) is less than the degree
of q(x), then n < m, so m− n is a positive number, and hence, r(x) ≈ a

bxm−n → 0 as x→ ±∞. If
the degree of p(x) is greater than the degree of q(x), then n > m, and hence n −m is a positive

number and r(x) ≈ axn−m

b , which becomes unbounded as x→ ±∞. As we said before, if a rational
function has a horizontal asymptote, then it will have only one. (This is not true for other types
of functions we shall see in later chapters.)

Example 4.1.4. List the horizontal asymptotes, if any, of the graphs of the following functions.
Verify your answers using a graphing calculator, and describe the behavior of the graph near them
using proper notation.

1. f(x) =
5x

x2 + 1 2. g(x) =
x2 − 4

x+ 1
3. h(x) =

6x3 − 3x+ 1

5− 2x3

Solution.

1. The numerator of f(x) is 5x, which has degree 1. The denominator of f(x) is x2 + 1, which
has degree 2. Applying Theorem 4.2, y = 0 is the horizontal asymptote. Sure enough, we see
from the graph that as x→ −∞, f(x)→ 0− and as x→∞, f(x)→ 0+.

2. The numerator of g(x), x2 − 4, has degree 2, but the degree of the denominator, x + 1, has
degree 1. By Theorem 4.2, there is no horizontal asymptote. From the graph, we see that
the graph of y = g(x) doesn’t appear to level off to a constant value, so there is no horizontal
asymptote.10

8As seen in the tables immediately preceding Definition 4.2.
9More specifically, as x→ −∞, f(x)→ 2+, and as x→∞, f(x)→ 2−.

10Sit tight! We’ll revisit this function and its end behavior shortly.
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3. The degrees of the numerator and denominator of h(x) are both three, so Theorem 4.2 tells
us y = 6

−2 = −3 is the horizontal asymptote. We see from the calculator’s graph that as
x→ −∞, h(x)→ −3+, and as x→∞, h(x)→ −3−.

The graph of y = f(x) The graph of y = g(x) The graph of y = h(x)

Our next example of the section gives us a real-world application of a horizontal asymptote.11

Example 4.1.5. The number of students N at local college who have had the flu t months after
the semester begins can be modeled by the formula N(t) = 500− 450

1+3t for t ≥ 0.

1. Find and interpret N(0).

2. How long will it take until 300 students will have had the flu?

3. Determine the behavior of N as t → ∞. Interpret this result graphically and within the
context of the problem.

Solution.

1. N(0) = 500 − 450
1+3(0) = 50. This means that at the beginning of the semester, 50 students

have had the flu.

2. We set N(t) = 300 to get 500− 450
1+3t = 300 and solve. Isolating the fraction gives 450

1+3t = 200.

Clearing denominators gives 450 = 200(1 + 3t). Finally, we get t = 5
12 . This means it will

take 5
12 months, or about 13 days, for 300 students to have had the flu.

3. To determine the behavior of N as t→∞, we can use a table.

t N(t)

10 ≈ 485.48

100 ≈ 498.50

1000 ≈ 499.85

10000 ≈ 499.98

The table suggests that as t → ∞, N(t) → 500. (More specifically, 500−.) This means as
time goes by, only a total of 500 students will have ever had the flu.

11Though the population below is more accurately modeled with the functions in Chapter 6, we approximate it
(using Calculus, of course!) using a rational function.
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We close this section with a discussion of the third (and final!) kind of asymptote which can be

associated with the graphs of rational functions. Let us return to the function g(x) = x2−4
x+1 in

Example 4.1.4. Performing long division,12 we get g(x) = x2−4
x+1 = x − 1 − 3

x+1 . Since the term
3

x+1 → 0 as x → ±∞, it stands to reason that as x becomes unbounded, the function values

g(x) = x− 1− 3
x+1 ≈ x− 1. Geometrically, this means that the graph of y = g(x) should resemble

the line y = x− 1 as x→ ±∞. We see this play out both numerically and graphically below.

x g(x) x− 1

−10 ≈ −10.6667 −11

−100 ≈ −100.9697 −101

−1000 ≈ −1000.9970 −1001

−10000 ≈ −10000.9997 −10001

x g(x) x− 1

10 ≈ 8.7273 9

100 ≈ 98.9703 99

1000 ≈ 998.9970 999

10000 ≈ 9998.9997 9999

y = g(x) and y = x− 1 y = g(x) and y = x− 1
as x→ −∞ as x→∞

The way we symbolize the relationship between the end behavior of y = g(x) with that of the line
y = x − 1 is to write ‘as x → ±∞, g(x) → x − 1.’ In this case, we say the line y = x − 1 is a
slant asymptote13 to the graph of y = g(x). Informally, the graph of a rational function has a
slant asymptote if, as x → ∞ or as x → −∞, the graph resembles a non-horizontal, or ‘slanted’
line. Formally, we define a slant asymptote as follows.

Definition 4.4. The line y = mx + b where m 6= 0 is called a slant asymptote of the graph
of a function y = f(x) if as x→ −∞ or as x→∞, f(x)→ mx+ b.

A few remarks are in order. First, note that the stipulation m 6= 0 in Definition 4.4 is what
makes the ‘slant’ asymptote ‘slanted’ as opposed to the case when m = 0 in which case we’d have a
horizontal asymptote. Secondly, while we have motivated what me mean intuitively by the notation
‘f(x)→ mx+b,’ like so many ideas in this section, the formal definition requires Calculus. Another
way to express this sentiment, however, is to rephrase ‘f(x) → mx + b’ as ‘f(x)− (mx + b) → 0.’
In other words, the graph of y = f(x) has the slant asymptote y = mx+ b if and only if the graph
of y = f(x)− (mx+ b) has a horizontal asymptote y = 0.

12See the remarks following Theorem 4.2.
13Also called an ‘oblique’ asymptote in some, ostensibly higher class (and more expensive), texts.
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Our next task is to determine the conditions under which the graph of a rational function has
a slant asymptote, and if it does, how to find it. In the case of g(x) = x2−4

x+1 , the degree of the

numerator x2 − 4 is 2, which is exactly one more than the degree if its denominator x + 1 which
is 1. This results in a linear quotient polynomial, and it is this quotient polynomial which is the
slant asymptote. Generalizing this situation gives us the following theorem.14

Theorem 4.3. Determination of Slant Asymptotes: Suppose r is a rational function and
r(x) = p(x)

q(x) , where the degree of p is exactly one more than the degree of q. Then the graph of

y = r(x) has the slant asymptote y = L(x) where L(x) is the quotient obtained by dividing
p(x) by q(x).

In the same way that Theorem 4.2 gives us an easy way to see if the graph of a rational function
r(x) = p(x)

q(x) has a horizontal asymptote by comparing the degrees of the numerator and denominator,
Theorem 4.3 gives us an easy way to check for slant asymptotes. Unlike Theorem 4.2, which gives
us a quick way to find the horizontal asymptotes (if any exist), Theorem 4.3 gives us no such
‘short-cut’. If a slant asymptote exists, we have no recourse but to use long division to find it.15

Example 4.1.6. Find the slant asymptotes of the graphs of the following functions if they exist.
Verify your answers using a graphing calculator and describe the behavior of the graph near them
using proper notation.

1. f(x) =
x2 − 4x+ 2

1− x
2. g(x) =

x2 − 4

x− 2
3. h(x) =

x3 + 1

x2 − 4

Solution.

1. The degree of the numerator is 2 and the degree of the denominator is 1, so Theorem 4.3
guarantees us a slant asymptote. To find it, we divide 1 − x = −x + 1 into x2 − 4x + 2 and
get a quotient of −x+ 3, so our slant asymptote is y = −x+ 3. We confirm this graphically,
and we see that as x → −∞, the graph of y = f(x) approaches the asymptote from below,
and as x→∞, the graph of y = f(x) approaches the asymptote from above.16

2. As with the previous example, the degree of the numerator g(x) = x2−4
x−2 is 2 and the degree

of the denominator is 1, so Theorem 4.3 applies. In this case,

g(x) =
x2 − 4

x− 2
=

(x+ 2)(x− 2)

(x− 2)
=

(x+ 2)���
�(x− 2)

���
�: 1

(x− 2)
= x+ 2, x 6= 2

14Once again, this theorem is brought to you courtesy of Theorem 3.4 and Calculus.
15That’s OK, though. In the next section, we’ll use long division to analyze end behavior and it’s worth the effort!
16Note that we are purposefully avoiding notation like ‘as x→∞, f(x)→ (−x+ 3)+. While it is possible to define

these notions formally with Calculus, it is not standard to do so. Besides, with the introduction of the symbol ‘�’ in
the next section, the authors feel we are in enough trouble already.
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so we have that the slant asymptote y = x+ 2 is identical to the graph of y = g(x) except at
x = 2 (where the latter has a ‘hole’ at (2, 4).) The calculator supports this claim.17

3. For h(x) = x3+1
x2−4

, the degree of the numerator is 3 and the degree of the denominator is 2 so

again, we are guaranteed the existence of a slant asymptote. The long division
(
x3 + 1

)
÷(

x2 − 4
)

gives a quotient of just x, so our slant asymptote is the line y = x. The calculator
confirms this, and we find that as x→ −∞, the graph of y = h(x) approaches the asymptote
from below, and as x→∞, the graph of y = h(x) approaches the asymptote from above.

The graph of y = f(x) The graph of y = g(x) The graph of y = h(x)

The reader may be a bit disappointed with the authors at this point owing to the fact that in Exam-
ples 4.1.2, 4.1.4, and 4.1.6, we used the calculator to determine function behavior near asymptotes.
We rectify that in the next section where we, in excruciating detail, demonstrate the usefulness of
‘number sense’ to reveal this behavior analytically.

17While the word ‘asymptote’ has the connotation of ‘approaching but not equaling,’ Definitions 4.3 and 4.4 invite
the same kind of pathologies we saw with Definitions 1.11 in Section 1.6.
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4.1.1 Exercises

In Exercises 1 - 18, for the given rational function f :

� Find the domain of f .

� Identify any vertical asymptotes of the graph of y = f(x).

� Identify any holes in the graph.

� Find the horizontal asymptote, if it exists.

� Find the slant asymptote, if it exists.

� Graph the function using a graphing utility and describe the behavior near the asymptotes.

1. f(x) =
x

3x− 6 2. f(x) =
3 + 7x

5− 2x
3. f(x) =

x

x2 + x− 12

4. f(x) =
x

x2 + 1 5. f(x) =
x+ 7

(x+ 3)2 6. f(x) =
x3 + 1

x2 − 1

7. f(x) =
4x

x2 + 4
8. f(x) =

4x

x2 − 4 9. f(x) =
x2 − x− 12

x2 + x− 6

10. f(x) =
3x2 − 5x− 2

x2 − 9
11. f(x) =

x3 + 2x2 + x

x2 − x− 2
12. f(x) =

x3 − 3x+ 1

x2 + 1

13. f(x) =
2x2 + 5x− 3

3x+ 2
14. f(x) =

−x3 + 4x

x2 − 9
15. f(x) =

−5x4 − 3x3 + x2 − 10

x3 − 3x2 + 3x− 1

16. f(x) =
x3

1− x
17. f(x) =

18− 2x2

x2 − 9
18. f(x) =

x3 − 4x2 − 4x− 5

x2 + x+ 1

19. The cost C in dollars to remove p% of the invasive species of Ippizuti fish from Sasquatch
Pond is given by

C(p) =
1770p

100− p
, 0 ≤ p < 100

(a) Find and interpret C(25) and C(95).

(b) What does the vertical asymptote at x = 100 mean within the context of the problem?

(c) What percentage of the Ippizuti fish can you remove for $40000?

20. In Exercise 71 in Section 1.4, the population of Sasquatch in Portage County was modeled
by the function

P (t) =
150t

t+ 15
,

where t = 0 represents the year 1803. Find the horizontal asymptote of the graph of y = P (t)
and explain what it means.
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21. Recall from Example 1.5.3 that the cost C (in dollars) to make x dOpi media players is
C(x) = 100x+ 2000, x ≥ 0.

(a) Find a formula for the average cost C(x). Recall: C(x) = C(x)
x .

(b) Find and interpret C(1) and C(100).

(c) How many dOpis need to be produced so that the average cost per dOpi is $200?

(d) Interpret the behavior of C(x) as x→ 0+. (HINT: You may want to find the fixed cost
C(0) to help in your interpretation.)

(e) Interpret the behavior of C(x) as x → ∞. (HINT: You may want to find the variable
cost (defined in Example 2.1.5 in Section 2.1) to help in your interpretation.)

22. In Exercise 35 in Section 3.1, we fit a few polynomial models to the following electric circuit
data. (The circuit was built with a variable resistor. For each of the following resistance values
(measured in kilo-ohms, kΩ), the corresponding power to the load (measured in milliwatts,
mW ) is given in the table below.)18

Resistance: (kΩ) 1.012 2.199 3.275 4.676 6.805 9.975

Power: (mW ) 1.063 1.496 1.610 1.613 1.505 1.314

Using some fundamental laws of circuit analysis mixed with a healthy dose of algebra, we can
derive the actual formula relating power to resistance. For this circuit, it is P (x) = 25x

(x+3.9)2 ,

where x is the resistance value, x ≥ 0.

(a) Graph the data along with the function y = P (x) on your calculator.

(b) Use your calculator to approximate the maximum power that can be delivered to the
load. What is the corresponding resistance value?

(c) Find and interpret the end behavior of P (x) as x→∞.

23. In his now famous 1919 dissertation The Learning Curve Equation, Louis Leon Thurstone
presents a rational function which models the number of words a person can type in four
minutes as a function of the number of pages of practice one has completed. (This paper,
which is now in the public domain and can be found here, is from a bygone era when students
at business schools took typing classes on manual typewriters.) Using his original notation

and original language, we have Y = L(X+P )
(X+P )+R where L is the predicted practice limit in terms

of speed units, X is pages written, Y is writing speed in terms of words in four minutes, P is
equivalent previous practice in terms of pages and R is the rate of learning. In Figure 5 of the
paper, he graphs a scatter plot and the curve Y = 216(X+19)

X+148 . Discuss this equation with your
classmates. How would you update the notation? Explain what the horizontal asymptote of
the graph means. You should take some time to look at the original paper. Skip over the
computations you don’t understand yet and try to get a sense of the time and place in which
the study was conducted.

18The authors wish to thank Don Anthan and Ken White of Lakeland Community College for devising this problem
and generating the accompanying data set.

http://books.google.com/books?id=pb5BAAAAIAAJ&dq=Louis+Leon+Thurstone&printsec=frontcover&source=an&hl=en&ei=Ev_bSaeKGInEMbmM9OQN&sa=X&oi=book_result&ct=result&resnum=6#PPP1,M1
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4.1.2 Answers

1. f(x) =
x

3x− 6
Domain: (−∞, 2) ∪ (2,∞)
Vertical asymptote: x = 2
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 1

3

As x→ −∞, f(x)→ 1
3

−

As x→∞, f(x)→ 1
3

+

2. f(x) =
3 + 7x

5− 2x
Domain: (−∞, 5

2) ∪ (5
2 ,∞)

Vertical asymptote: x = 5
2

As x→ 5
2

−
, f(x)→∞

As x→ 5
2

+
, f(x)→ −∞

No holes in the graph
Horizontal asymptote: y = −7

2

As x→ −∞, f(x)→ −7
2

+

As x→∞, f(x)→ −7
2

−

3. f(x) =
x

x2 + x− 12
=

x

(x+ 4)(x− 3)
Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
Vertical asymptotes: x = −4, x = 3
As x→ −4−, f(x)→ −∞
As x→ −4+, f(x)→∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

4. f(x) =
x

x2 + 1
Domain: (−∞,∞)
No vertical asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

5. f(x) =
x+ 7

(x+ 3)2

Domain: (−∞,−3) ∪ (−3,∞)
Vertical asymptote: x = −3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
19As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

6. f(x) =
x3 + 1

x2 − 1
=
x2 − x+ 1

x− 1
Domain: (−∞,−1) ∪ (−1, 1) ∪ (1,∞)
Vertical asymptote: x = 1
As x→ 1−, f(x)→ −∞
As x→ 1+, f(x)→∞
Hole at (−1,−3

2)
Slant asymptote: y = x
As x→ −∞, the graph is below y = x
As x→∞, the graph is above y = x

19This is hard to see on the calculator, but trust me, the graph is below the x-axis to the left of x = −7.
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7. f(x) =
4x

x2 + 4
Domain: (−∞,∞)
No vertical asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

8. f(x) =
4x

x2 − 4
=

4x

(x+ 2)(x− 2)
Domain: (−∞,−2) ∪ (−2, 2) ∪ (2,∞)
Vertical asymptotes: x = −2, x = 2
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

9. f(x) =
x2 − x− 12

x2 + x− 6
=
x− 4

x− 2
Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
Vertical asymptote: x = 2
As x→ 2−, f(x)→∞
As x→ 2+, f(x)→ −∞
Hole at

(
−3, 7

5

)
Horizontal asymptote: y = 1
As x→ −∞, f(x)→ 1+

As x→∞, f(x)→ 1−

10. f(x) =
3x2 − 5x− 2

x2 − 9
=

(3x+ 1)(x− 2)

(x+ 3)(x− 3)
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
Vertical asymptotes: x = −3, x = 3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 3
As x→ −∞, f(x)→ 3+

As x→∞, f(x)→ 3−

11. f(x) =
x3 + 2x2 + x

x2 − x− 2
=
x(x+ 1)

x− 2
Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
Vertical asymptote: x = 2
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
Hole at (−1, 0)
Slant asymptote: y = x+ 3
As x→ −∞, the graph is below y = x+ 3
As x→∞, the graph is above y = x+ 3

12. f(x) =
x3 − 3x+ 1

x2 + 1
Domain: (−∞,∞)
No vertical asymptotes
No holes in the graph
Slant asymptote: y = x
As x→ −∞, the graph is above y = x
As x→∞, the graph is below y = x
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13. f(x) =
2x2 + 5x− 3

3x+ 2
Domain:

(
−∞,−2

3

)
∪
(
−2

3 ,∞
)

Vertical asymptote: x = −2
3

As x→ −2
3

−
, f(x)→∞

As x→ −2
3

+
, f(x)→ −∞

No holes in the graph
Slant asymptote: y = 2

3x+ 11
9

As x→ −∞, the graph is above y = 2
3x+ 11

9

As x→∞, the graph is below y = 2
3x+ 11

9

14. f(x) =
−x3 + 4x

x2 − 9
=

−x3 + 4x

(x− 3)(x+ 3)
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
Vertical asymptotes: x = −3, x = 3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
As x→ 3−, f(x)→∞
As x→ 3+, f(x)→ −∞
No holes in the graph
Slant asymptote: y = −x
As x→ −∞, the graph is above y = −x
As x→∞, the graph is below y = −x

15. f(x) =
−5x4 − 3x3 + x2 − 10

x3 − 3x2 + 3x− 1

=
−5x4 − 3x3 + x2 − 10

(x− 1)3

Domain: (−∞, 1) ∪ (1,∞)
Vertical asymptotes: x = 1
As x→ 1−, f(x)→∞
As x→ 1+, f(x)→ −∞
No holes in the graph
Slant asymptote: y = −5x− 18
As x→ −∞, the graph is above y = −5x− 18

As x→∞, the graph is below y = −5x− 18

16. f(x) =
x3

1− x
Domain: (−∞, 1) ∪ (1,∞)
Vertical asymptote: x = 1
As x→ 1−, f(x)→∞
As x→ 1+, f(x)→ −∞
No holes in the graph
No horizontal or slant asymptote
As x→ −∞, f(x)→ −∞
As x→∞, f(x)→ −∞

17. f(x) =
18− 2x2

x2 − 9
= −2

Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
No vertical asymptotes
Holes in the graph at (−3,−2) and (3,−2)
Horizontal asymptote y = −2
As x→ ±∞, f(x) = −2

18. f(x) =
x3 − 4x2 − 4x− 5

x2 + x+ 1
= x− 5

Domain: (−∞,∞)
No vertical asymptotes
No holes in the graph
Slant asymptote: y = x− 5
f(x) = x− 5 everywhere.

19. (a) C(25) = 590 means it costs $590 to remove 25% of the fish and and C(95) = 33630
means it would cost $33630 to remove 95% of the fish from the pond.

(b) The vertical asymptote at x = 100 means that as we try to remove 100% of the fish from
the pond, the cost increases without bound; i.e., it’s impossible to remove all of the fish.

(c) For $40000 you could remove about 95.76% of the fish.
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20. The horizontal asymptote of the graph of P (t) = 150t
t+15 is y = 150 and it means that the model

predicts the population of Sasquatch in Portage County will never exceed 150.

21. (a) C(x) = 100x+2000
x , x > 0.

(b) C(1) = 2100 and C(100) = 120. When just 1 dOpi is produced, the cost per dOpi is
$2100, but when 100 dOpis are produced, the cost per dOpi is $120.

(c) C(x) = 200 when x = 20. So to get the cost per dOpi to $200, 20 dOpis need to be
produced.

(d) As x → 0+, C(x) → ∞. This means that as fewer and fewer dOpis are produced,
the cost per dOpi becomes unbounded. In this situation, there is a fixed cost of $2000
(C(0) = 2000), we are trying to spread that $2000 over fewer and fewer dOpis.

(e) As x→∞, C(x)→ 100+. This means that as more and more dOpis are produced, the
cost per dOpi approaches $100, but is always a little more than $100. Since $100 is the
variable cost per dOpi (C(x) = 100x+ 2000), it means that no matter how many dOpis
are produced, the average cost per dOpi will always be a bit higher than the variable
cost to produce a dOpi. As before, we can attribute this to the $2000 fixed cost, which
factors into the average cost per dOpi no matter how many dOpis are produced.

22. (a)

(b) The maximum power is approximately 1.603 mW which corresponds to 3.9 kΩ.

(c) As x → ∞, P (x) → 0+ which means as the resistance increases without bound, the
power diminishes to zero.
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4.2 Graphs of Rational Functions

In this section, we take a closer look at graphing rational functions. In Section 4.1, we learned that
the graphs of rational functions may have holes in them and could have vertical, horizontal and
slant asymptotes. Theorems 4.1, 4.2 and 4.3 tell us exactly when and where these behaviors will
occur, and if we combine these results with what we already know about graphing functions, we
will quickly be able to generate reasonable graphs of rational functions.

One of the standard tools we will use is the sign diagram which was first introduced in Section 2.4,
and then revisited in Section 3.1. In those sections, we operated under the belief that a function
couldn’t change its sign without its graph crossing through the x-axis. The major theorem we
used to justify this belief was the Intermediate Value Theorem, Theorem 3.1. It turns out the
Intermediate Value Theorem applies to all continuous functions,1 not just polynomials. Although
rational functions are continuous on their domains,2 Theorem 4.1 tells us that vertical asymptotes
and holes occur at the values excluded from their domains. In other words, rational functions
aren’t continuous at these excluded values which leaves open the possibility that the function could
change sign without crossing through the x-axis. Consider the graph of y = h(x) from Example
4.1.1, recorded below for convenience. We have added its x-intercept at

(
1
2 , 0
)

for the discussion
that follows. Suppose we wish to construct a sign diagram for h(x). Recall that the intervals where
h(x) > 0, or (+), correspond to the x-values where the graph of y = h(x) is above the x-axis; the
intervals on which h(x) < 0, or (−) correspond to where the graph is below the x-axis.

x

y

1
2

−4 −3 −2 1 2 3 4

−1

−2

−3

−4

−5

−6

1

3

4

5

6

7

8

−1 1
2

1

(+) � (−) 0 (+) � (+)

As we examine the graph of y = h(x), reading from left to right, we note that from (−∞,−1),
the graph is above the x-axis, so h(x) is (+) there. At x = −1, we have a vertical asymptote, at
which point the graph ‘jumps’ across the x-axis. On the interval

(
−1, 1

2

)
, the graph is below the

1Recall that, for our purposes, this means the graphs are devoid of any breaks, jumps or holes
2Another result from Calculus.
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x-axis, so h(x) is (−) there. The graph crosses through the x-axis at
(

1
2 , 0
)

and remains above
the x-axis until x = 1, where we have a ‘hole’ in the graph. Since h(1) is undefined, there is no
sign here. So we have h(x) as (+) on the interval

(
1
2 , 1
)
. Continuing, we see that on (1,∞), the

graph of y = h(x) is above the x-axis, so we mark (+) there. To construct a sign diagram from
this information, we not only need to denote the zero of h, but also the places not in the domain of
h. As is our custom, we write ‘0’ above 1

2 on the sign diagram to remind us that it is a zero of h.
We need a different notation for −1 and 1, and we have chosen to use ‘�’ - a nonstandard symbol
called the interrobang. We use this symbol to convey a sense of surprise, caution and wonderment
- an appropriate attitude to take when approaching these points. The moral of the story is that
when constructing sign diagrams for rational functions, we include the zeros as well as the values
excluded from the domain.

Steps for Constructing a Sign Diagram for a Rational Function

Suppose r is a rational function.

1. Place any values excluded from the domain of r on the number line with an ‘�’ above them.

2. Find the zeros of r and place them on the number line with the number 0 above them.

3. Choose a test value in each of the intervals determined in steps 1 and 2.

4. Determine the sign of r(x) for each test value in step 3, and write that sign above the
corresponding interval.

We now present our procedure for graphing rational functions and apply it to a few exhaustive
examples. Please note that we decrease the amount of detail given in the explanations as we move
through the examples. The reader should be able to fill in any details in those steps which we have
abbreviated.

Steps for Graphing Rational Functions

Suppose r is a rational function.

1. Find the domain of r.

2. Reduce r(x) to lowest terms, if applicable.

3. Find the x- and y-intercepts of the graph of y = r(x), if they exist.

4. Determine the location of any vertical asymptotes or holes in the graph, if they exist.
Analyze the behavior of r on either side of the vertical asymptotes, if applicable.

5. Analyze the end behavior of r. Find the horizontal or slant asymptote, if one exists.

6. Use a sign diagram and plot additional points, as needed, to sketch the graph of y = r(x).

http://en.wikipedia.org/wiki/Interrobang
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Example 4.2.1. Sketch a detailed graph of f(x) =
3x

x2 − 4
.

Solution. We follow the six step procedure outlined above.

1. As usual, we set the denominator equal to zero to get x2 − 4 = 0. We find x = ±2, so our
domain is (−∞,−2) ∪ (−2, 2) ∪ (2,∞).

2. To reduce f(x) to lowest terms, we factor the numerator and denominator which yields
f(x) = 3x

(x−2)(x+2) . There are no common factors which means f(x) is already in lowest
terms.

3. To find the x-intercepts of the graph of y = f(x), we set y = f(x) = 0. Solving 3x
(x−2)(x+2) = 0

results in x = 0. Since x = 0 is in our domain, (0, 0) is the x-intercept. To find the y-intercept,
we set x = 0 and find y = f(0) = 0, so that (0, 0) is our y-intercept as well.3

4. The two numbers excluded from the domain of f are x = −2 and x = 2. Since f(x) didn’t
reduce at all, both of these values of x still cause trouble in the denominator. Thus by
Theorem 4.1, x = −2 and x = 2 are vertical asymptotes of the graph. We can actually go
a step further at this point and determine exactly how the graph approaches the asymptote
near each of these values. Though not absolutely necessary,4 it is good practice for those
heading off to Calculus. For the discussion that follows, it is best to use the factored form of
f(x) = 3x

(x−2)(x+2) .

� The behavior of y = f(x) as x→ −2: Suppose x→ −2−. If we were to build a table of
values, we’d use x-values a little less than −2, say −2.1, −2.01 and −2.001. While there
is no harm in actually building a table like we did in Section 4.1, we want to develop a
‘number sense’ here. Let’s think about each factor in the formula of f(x) as we imagine
substituting a number like x = −2.000001 into f(x). The quantity 3x would be very
close to −6, the quantity (x−2) would be very close to −4, and the factor (x+ 2) would
be very close to 0. More specifically, (x + 2) would be a little less than 0, in this case,
−0.000001. We will call such a number a ‘very small (−)’, ‘very small’ meaning close to
zero in absolute value. So, mentally, as x→ −2−, we estimate

f(x) =
3x

(x− 2)(x+ 2)
≈ −6

(−4) (very small (−))
=

3

2 (very small (−))

Now, the closer x gets to −2, the smaller (x + 2) will become, so even though we are
multiplying our ‘very small (−)’ by 2, the denominator will continue to get smaller and
smaller, and remain negative. The result is a fraction whose numerator is positive, but
whose denominator is very small and negative. Mentally,

f(x) ≈ 3

2 (very small (−))
≈ 3

very small (−)
≈ very big (−)

3As we mentioned at least once earlier, since functions can have at most one y-intercept, once we find that (0, 0)
is on the graph, we know it is the y-intercept.

4The sign diagram in step 6 will also determine the behavior near the vertical asymptotes.
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The term ‘very big (−)’ means a number with a large absolute value which is negative.5

What all of this means is that as x → −2−, f(x) → −∞. Now suppose we wanted to
determine the behavior of f(x) as x → −2+. If we imagine substituting something a
little larger than −2 in for x, say −1.999999, we mentally estimate

f(x) ≈ −6

(−4) (very small (+))
=

3

2 (very small (+))
≈ 3

very small (+)
≈ very big (+)

We conclude that as x→ −2+, f(x)→∞.

� The behavior of y = f(x) as x → 2: Consider x → 2−. We imagine substituting
x = 1.999999. Approximating f(x) as we did above, we get

f(x) ≈ 6

(very small (−)) (4)
=

3

2 (very small (−))
≈ 3

very small (−)
≈ very big (−)

We conclude that as x→ 2−, f(x)→ −∞. Similarly, as x→ 2+, we imagine substituting
x = 2.000001 to get f(x) ≈ 3

very small (+) ≈ very big (+). So as x→ 2+, f(x)→∞.

Graphically, we have that near x = −2 and x = 2 the graph of y = f(x) looks like6

x

y

−3 −1 1 3

5. Next, we determine the end behavior of the graph of y = f(x). Since the degree of the
numerator is 1, and the degree of the denominator is 2, Theorem 4.2 tells us that y = 0
is the horizontal asymptote. As with the vertical asymptotes, we can glean more detailed
information using ‘number sense’. For the discussion below, we use the formula f(x) = 3x

x2−4
.

� The behavior of y = f(x) as x → −∞: If we were to make a table of values to discuss
the behavior of f as x→ −∞, we would substitute very ‘large’ negative numbers in for
x, say for example, x = −1 billion. The numerator 3x would then be −3 billion, whereas

5The actual retail value of f(−2.000001) is approximately −1,500,000.
6We have deliberately left off the labels on the y-axis because we know only the behavior near x = ±2, not the

actual function values.
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the denominator x2 − 4 would be (−1 billion)2 − 4, which is pretty much the same as
1(billion)2. Hence,

f (−1 billion) ≈ −3 billion

1(billion)2
≈ − 3

billion
≈ very small (−)

Notice that if we substituted in x = −1 trillion, essentially the same kind of cancellation
would happen, and we would be left with an even ‘smaller’ negative number. This not
only confirms the fact that as x→ −∞, f(x)→ 0, it tells us that f(x)→ 0−. In other
words, the graph of y = f(x) is a little bit below the x-axis as we move to the far left.

� The behavior of y = f(x) as x→∞: On the flip side, we can imagine substituting very
large positive numbers in for x and looking at the behavior of f(x). For example, let
x = 1 billion. Proceeding as before, we get

f (1 billion) ≈ 3 billion

1(billion)2
≈ 3

billion
≈ very small (+)

The larger the number we put in, the smaller the positive number we would get out. In
other words, as x → ∞, f(x) → 0+, so the graph of y = f(x) is a little bit above the
x-axis as we look toward the far right.

Graphically, we have7

x

y

−1

1

6. Lastly, we construct a sign diagram for f(x). The x-values excluded from the domain of f
are x = ±2, and the only zero of f is x = 0. Displaying these appropriately on the number
line gives us four test intervals, and we choose the test values8 x = −3, x = −1, x = 1 and
x = 3. We find f(−3) is (−), f(−1) is (+), f(1) is (−) and f(3) is (+). Combining this with
our previous work, we get the graph of y = f(x) below.

7As with the vertical asymptotes in the previous step, we know only the behavior of the graph as x→ ±∞. For
that reason, we provide no x-axis labels.

8In this particular case, we can eschew test values, since our analysis of the behavior of f near the vertical
asymptotes and our end behavior analysis have given us the signs on each of the test intervals. In general, however,
this won’t always be the case, so for demonstration purposes, we continue with our usual construction.
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−2 0 2

(−)

−3

� (+)

−1

0 (−)

1

� (+)

3
x

y

−5 −4 −3 −1 1 3 4 5

−3

−2

−1

1

2

3

A couple of notes are in order. First, the graph of y = f(x) certainly seems to possess symmetry
with respect to the origin. In fact, we can check f(−x) = −f(x) to see that f is an odd function.
In some textbooks, checking for symmetry is part of the standard procedure for graphing rational
functions; but since it happens comparatively rarely9 we’ll just point it out when we see it. Also
note that while y = 0 is the horizontal asymptote, the graph of f actually crosses the x-axis at (0, 0).
The myth that graphs of rational functions can’t cross their horizontal asymptotes is completely
false,10 as we shall see again in our next example.

Example 4.2.2. Sketch a detailed graph of g(x) =
2x2 − 3x− 5

x2 − x− 6
.

Solution.

1. Setting x2 − x− 6 = 0 gives x = −2 and x = 3. Our domain is (−∞,−2) ∪ (−2, 3) ∪ (3,∞).

2. Factoring g(x) gives g(x) = (2x−5)(x+1)
(x−3)(x+2) . There is no cancellation, so g(x) is in lowest terms.

3. To find the x-intercept we set y = g(x) = 0. Using the factored form of g(x) above, we find
the zeros to be the solutions of (2x − 5)(x + 1) = 0. We obtain x = 5

2 and x = −1. Since
both of these numbers are in the domain of g, we have two x-intercepts,

(
5
2 , 0
)

and (−1, 0).
To find the y-intercept, we set x = 0 and find y = g(0) = 5

6 , so our y-intercept is
(
0, 5

6

)
.

4. Since g(x) was given to us in lowest terms, we have, once again by Theorem 4.1 vertical

asymptotes x = −2 and x = 3. Keeping in mind g(x) = (2x−5)(x+1)
(x−3)(x+2) , we proceed to our

analysis near each of these values.

� The behavior of y = g(x) as x → −2: As x → −2−, we imagine substituting a number
a little bit less than −2. We have

g(x) ≈ (−9)(−1)

(−5)(very small (−))
≈ 9

very small (+)
≈ very big (+)

9And Jeff doesn’t think much of it to begin with...
10That’s why we called it a MYTH!
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so as x→ −2−, g(x)→∞. On the flip side, as x→ −2+, we get

g(x) ≈ 9

very small (−)
≈ very big (−)

so g(x)→ −∞.

� The behavior of y = g(x) as x → 3: As x → 3−, we imagine plugging in a number just
shy of 3. We have

g(x) ≈ (1)(4)

( very small (−))(5)
≈ 4

very small (−)
≈ very big (−)

Hence, as x→ 3−, g(x)→ −∞. As x→ 3+, we get

g(x) ≈ 4

very small (+)
≈ very big (+)

so g(x)→∞.

Graphically, we have (again, without labels on the y-axis)

x

y

−3 −1 1 2 4

5. Since the degrees of the numerator and denominator of g(x) are the same, we know from
Theorem 4.2 that we can find the horizontal asymptote of the graph of g by taking the
ratio of the leading terms coefficients, y = 2

1 = 2. However, if we take the time to do a
more detailed analysis, we will be able to reveal some ‘hidden’ behavior which would be lost
otherwise.11 As in the discussion following Theorem 4.2, we use the result of the long division(
2x2 − 3x− 5

)
÷
(
x2 − x− 6

)
to rewrite g(x) = 2x2−3x−5

x2−x−6
as g(x) = 2− x−7

x2−x−6
. We focus our

attention on the term x−7
x2−x−6

.

11That is, if you use a calculator to graph. Once again, Calculus is the ultimate graphing power tool.
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� The behavior of y = g(x) as x → −∞: If imagine substituting x = −1 billion into
x−7

x2−x−6
, we estimate x−7

x2−x−6
≈ −1 billion

1billion2 ≈ very small (−).12 Hence,

g(x) = 2− x− 7

x2 − x− 6
≈ 2− very small (−) = 2 + very small (+)

In other words, as x→ −∞, the graph of y = g(x) is a little bit above the line y = 2.

� The behavior of y = g(x) as x → ∞. To consider x−7
x2−x−6

as x → ∞, we imagine
substituting x = 1 billion and, going through the usual mental routine, find

x− 7

x2 − x− 6
≈ very small (+)

Hence, g(x) ≈ 2 − very small (+), in other words, the graph of y = g(x) is just below
the line y = 2 as x→∞.

On y = g(x), we have (again, without labels on the x-axis)

x

y

−1

1

6. Finally we construct our sign diagram. We place an ‘�’ above x = −2 and x = 3, and a ‘0’
above x = 5

2 and x = −1. Choosing test values in the test intervals gives us f(x) is (+) on
the intervals (−∞,−2),

(
−1, 5

2

)
and (3,∞), and (−) on the intervals (−2,−1) and

(
5
2 , 3
)
. As

we piece together all of the information, we note that the graph must cross the horizontal
asymptote at some point after x = 3 in order for it to approach y = 2 from underneath. This
is the subtlety that we would have missed had we skipped the long division and subsequent
end behavior analysis. We can, in fact, find exactly when the graph crosses y = 2. As a result
of the long division, we have g(x) = 2 − x−7

x2−x−6
. For g(x) = 2, we would need x−7

x2−x−6
= 0.

This gives x− 7 = 0, or x = 7. Note that x− 7 is the remainder when 2x2− 3x− 5 is divided
by x2 − x − 6, so it makes sense that for g(x) to equal the quotient 2, the remainder from
the division must be 0. Sure enough, we find g(7) = 2. Moreover, it stands to reason that g
must attain a relative minimum at some point past x = 7. Calculus verifies that at x = 13,
we have such a minimum at exactly (13, 1.96). The reader is challenged to find calculator
windows which show the graph crossing its horizontal asymptote on one window, and the
relative minimum in the other.

12In the denominator, we would have (1billion)2 − 1billion − 6. It’s easy to see why the 6 is insignificant, but to
ignore the 1 billion seems criminal. However, compared to (1 billion)2, it’s on the insignificant side; it’s 1018 versus
109. We are once again using the fact that for polynomials, end behavior is determined by the leading term, so in
the denominator, the x2 term wins out over the x term.
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Our next example gives us an opportunity to more thoroughly analyze a slant asymptote.

Example 4.2.3. Sketch a detailed graph of h(x) =
2x3 + 5x2 + 4x+ 1

x2 + 3x+ 2
.

Solution.

1. For domain, you know the drill. Solving x2 + 3x + 2 = 0 gives x = −2 and x = −1. Our
answer is (−∞,−2) ∪ (−2,−1) ∪ (−1,∞).

2. To reduce h(x), we need to factor the numerator and denominator. To factor the numerator,
we use the techniques13 set forth in Section 3.3 and we get

h(x) =
2x3 + 5x2 + 4x+ 1

x2 + 3x+ 2
=

(2x+ 1)(x+ 1)2

(x+ 2)(x+ 1)
=

(2x+ 1)(x+ 1)���
1

2

(x+ 2)���
�(x+ 1)

=
(2x+ 1)(x+ 1)

x+ 2

We will use this reduced formula for h(x) as long as we’re not substituting x = −1. To make

this exclusion specific, we write h(x) = (2x+1)(x+1)
x+2 , x 6= −1.

3. To find the x-intercepts, as usual, we set h(x) = 0 and solve. Solving (2x+1)(x+1)
x+2 = 0 yields

x = −1
2 and x = −1. The latter isn’t in the domain of h, so we exclude it. Our only x-

intercept is
(
−1

2 , 0
)
. To find the y-intercept, we set x = 0. Since 0 6= −1, we can use the

reduced formula for h(x) and we get h(0) = 1
2 for a y-intercept of

(
0, 1

2

)
.

4. From Theorem 4.1, we know that since x = −2 still poses a threat in the denominator of
the reduced function, we have a vertical asymptote there. As for x = −1, the factor (x+ 1)
was canceled from the denominator when we reduced h(x), so it no longer causes trouble
there. This means that we get a hole when x = −1. To find the y-coordinate of the hole,
we substitute x = −1 into (2x+1)(x+1)

x+2 , per Theorem 4.1 and get 0. Hence, we have a hole on

13Bet you never thought you’d never see that stuff again before the Final Exam!
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the x-axis at (−1, 0). It should make you uncomfortable plugging x = −1 into the reduced
formula for h(x), especially since we’ve made such a big deal concerning the stipulation about
not letting x = −1 for that formula. What we are really doing is taking a Calculus short-cut
to the more detailed kind of analysis near x = −1 which we will show below. Speaking of
which, for the discussion that follows, we will use the formula h(x) = (2x+1)(x+1)

x+2 , x 6= −1.

� The behavior of y = h(x) as x → −2: As x → −2−, we imagine substituting a number

a little bit less than −2. We have h(x) ≈ (−3)(−1)
(very small (−)) ≈

3
(very small (−)) ≈ very big (−)

thus as x → −2−, h(x) → −∞. On the other side of −2, as x → −2+, we find that
h(x) ≈ 3

very small (+) ≈ very big (+), so h(x)→∞.

� The behavior of y = h(x) as x → −1. As x → −1−, we imagine plugging in a number

a bit less than x = −1. We have h(x) ≈ (−1)(very small (−))
1 = very small (+) Hence, as

x→ −1−, h(x)→ 0+. This means that as x→ −1−, the graph is a bit above the point

(−1, 0). As x → −1+, we get h(x) ≈ (−1)(very small (+))
1 = very small (−). This gives us

that as x→ −1+, h(x)→ 0−, so the graph is a little bit lower than (−1, 0) here.

Graphically, we have

x

y

−3

5. For end behavior, we note that the degree of the numerator of h(x), 2x3 + 5x2 + 4x + 1,
is 3 and the degree of the denominator, x2 + 3x + 2, is 2 so by Theorem 4.3, the graph of
y = h(x) has a slant asymptote. For x→ ±∞, we are far enough away from x = −1 to use the

reduced formula, h(x) = (2x+1)(x+1)
x+2 , x 6= −1. To perform long division, we multiply out the

numerator and get h(x) = 2x2+3x+1
x+2 , x 6= −1, and rewrite h(x) = 2x− 1 + 3

x+2 , x 6= −1. By
Theorem 4.3, the slant asymptote is y = 2x− 1, and to better see how the graph approaches
the asymptote, we focus our attention on the term generated from the remainder, 3

x+2 .

� The behavior of y = h(x) as x→ −∞: Substituting x = −1 billion into 3
x+2 , we get the

estimate 3
−1 billion ≈ very small (−). Hence, h(x) = 2x−1+ 3

x+2 ≈ 2x−1+very small (−).
This means the graph of y = h(x) is a little bit below the line y = 2x− 1 as x→ −∞.
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� The behavior of y = h(x) as x→∞: If x→∞, then 3
x+2 ≈ very small (+). This means

h(x) ≈ 2x − 1 + very small (+), or that the graph of y = h(x) is a little bit above the
line y = 2x− 1 as x→∞.

Graphically we have

x

y
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3

4

6. To make our sign diagram, we place an ‘�’ above x = −2 and x = −1 and a ‘0’ above x = −1
2 .

On our four test intervals, we find h(x) is (+) on (−2,−1) and
(
−1

2 ,∞
)

and h(x) is (−) on
(−∞,−2) and

(
−1,−1

2

)
. Putting all of our work together yields the graph below.
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We could ask whether the graph of y = h(x) crosses its slant asymptote. From the formula
h(x) = 2x− 1 + 3

x+2 , x 6= −1, we see that if h(x) = 2x− 1, we would have 3
x+2 = 0. Since this will

never happen, we conclude the graph never crosses its slant asymptote.14

14But rest assured, some graphs do!
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We end this section with an example that shows it’s not all pathological weirdness when it comes
to rational functions and technology still has a role to play in studying their graphs at this level.

Example 4.2.4. Sketch the graph of r(x) =
x4 + 1

x2 + 1
.

Solution.

1. The denominator x2 + 1 is never zero so the domain is (−∞,∞).

2. With no real zeros in the denominator, x2 + 1 is an irreducible quadratic. Our only hope of
reducing r(x) is if x2 + 1 is a factor of x4 + 1. Performing long division gives us

x4 + 1

x2 + 1
= x2 − 1 +

2

x2 + 1

The remainder is not zero so r(x) is already reduced.

3. To find the x-intercept, we’d set r(x) = 0. Since there are no real solutions to x4+1
x2+1

= 0, we
have no x-intercepts. Since r(0) = 1, we get (0, 1) as the y-intercept.

4. This step doesn’t apply to r, since its domain is all real numbers.

5. For end behavior, we note that since the degree of the numerator is exactly two more than
the degree of the denominator, neither Theorems 4.2 nor 4.3 apply.15 We know from our
attempt to reduce r(x) that we can rewrite r(x) = x2 − 1 + 2

x2+1
, so we focus our attention

on the term corresponding to the remainder, 2
x2+1

It should be clear that as x → ±∞,
2

x2+1
≈ very small (+), which means r(x) ≈ x2 − 1 + very small (+). So the graph y = r(x)

is a little bit above the graph of the parabola y = x2 − 1 as x→ ±∞. Graphically,

1

2

3

4

5

x

y

6. There isn’t much work to do for a sign diagram for r(x), since its domain is all real numbers
and it has no zeros. Our sole test interval is (−∞,∞), and since we know r(0) = 1, we
conclude r(x) is (+) for all real numbers. At this point, we don’t have much to go on for

15This won’t stop us from giving it the old community college try, however!
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a graph.16 Below is a comparison of what we have determined analytically versus what the
calculator shows us. We have no way to detect the relative extrema analytically17 apart from
brute force plotting of points, which is done more efficiently by the calculator.

x

y
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As usual, the authors offer no apologies for what may be construed as ‘pedantry’ in this section.
We feel that the detail presented in this section is necessary to obtain a firm grasp of the concepts
presented here and it also serves as an introduction to the methods employed in Calculus. As we
have said many times in the past, your instructor will decide how much, if any, of the kinds of
details presented here are ‘mission critical’ to your understanding of Precalculus. Without further
delay, we present you with this section’s Exercises.

16So even Jeff at this point may check for symmetry! We leave it to the reader to show r(−x) = r(x) so r is even,
and, hence, its graph is symmetric about the y-axis.

17Without appealing to Calculus, of course.



4.2 Graphs of Rational Functions 333

4.2.1 Exercises

In Exercises 1 - 16, use the six-step procedure to graph the rational function. Be sure to draw any
asymptotes as dashed lines.

1. f(x) =
4

x+ 2
2. f(x) =

5x

6− 2x

3. f(x) =
1

x2
4. f(x) =

1

x2 + x− 12

5. f(x) =
2x− 1

−2x2 − 5x+ 3
6. f(x) =

x

x2 + x− 12

7. f(x) =
4x

x2 + 4
8. f(x) =

4x

x2 − 4

9. f(x) =
x2 − x− 12

x2 + x− 6
10. f(x) =

3x2 − 5x− 2

x2 − 9

11. f(x) =
x2 − x− 6

x+ 1
12. f(x) =

x2 − x
3− x

13. f(x) =
x3 + 2x2 + x

x2 − x− 2
14. f(x) =

−x3 + 4x

x2 − 9

15. f(x) =
x3 − 2x2 + 3x

2x2 + 2
16.18 f(x) =

x2 − 2x+ 1

x3 + x2 − 2x

In Exercises 17 - 20, graph the rational function by applying transformations to the graph of y =
1

x
.

17. f(x) =
1

x− 2
18. g(x) = 1− 3

x

19. h(x) =
−2x+ 1

x
(Hint: Divide) 20. j(x) =

3x− 7

x− 2
(Hint: Divide)

21. Discuss with your classmates how you would graph f(x) =
ax+ b

cx+ d
. What restrictions must

be placed on a, b, c and d so that the graph is indeed a transformation of y =
1

x
?

22. In Example 3.1.1 in Section 3.1 we showed that p(x) = 4x+x3

x is not a polynomial even though
its formula reduced to 4 + x2 for x 6= 0. However, it is a rational function similar to those
studied in the section. With the help of your classmates, graph p(x).

18Once you’ve done the six-step procedure, use your calculator to graph this function on the viewing window
[0, 12]× [0, 0.25]. What do you see?
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23. Let g(x) =
x4 − 8x3 + 24x2 − 72x+ 135

x3 − 9x2 + 15x− 7
. With the help of your classmates, find the x- and

y- intercepts of the graph of g. Find the intervals on which the function is increasing, the
intervals on which it is decreasing and the local extrema. Find all of the asymptotes of the
graph of g and any holes in the graph, if they exist. Be sure to show all of your work including
any polynomial or synthetic division. Sketch the graph of g, using more than one picture if
necessary to show all of the important features of the graph.

Example 4.2.4 showed us that the six-step procedure cannot tell us everything of importance about
the graph of a rational function. Without Calculus, we need to use our graphing calculators to
reveal the hidden mysteries of rational function behavior. Working with your classmates, use a
graphing calculator to examine the graphs of the rational functions given in Exercises 24 - 27.
Compare and contrast their features. Which features can the six-step process reveal and which
features cannot be detected by it?

24. f(x) =
1

x2 + 1
25. f(x) =

x

x2 + 1
26. f(x) =

x2

x2 + 1
27. f(x) =

x3

x2 + 1
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4.2.2 Answers

1. f(x) =
4

x+ 2
Domain: (−∞,−2) ∪ (−2,∞)
No x-intercepts
y-intercept: (0, 2)
Vertical asymptote: x = −2
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−7−6−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

2. f(x) =
5x

6− 2x
Domain: (−∞, 3) ∪ (3,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptote: x = 3
As x→ 3−, f(x)→∞
As x→ 3+, f(x)→ −∞
Horizontal asymptote: y = −5

2

As x→ −∞, f(x)→ −5
2

+

As x→∞, f(x)→ −5
2

−

x

y
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1
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3. f(x) =
1

x2

Domain: (−∞, 0) ∪ (0,∞)
No x-intercepts
No y-intercepts
Vertical asymptote: x = 0
As x→ 0−, f(x)→∞
As x→ 0+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0+

As x→∞, f(x)→ 0+ x

y
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1
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4
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4. f(x) =
1

x2 + x− 12
=

1

(x− 3)(x+ 4)
Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
No x-intercepts
y-intercept: (0,− 1

12)
Vertical asymptotes: x = −4 and x = 3
As x→ −4−, f(x)→∞
As x→ −4+, f(x)→ −∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0+

As x→∞, f(x)→ 0+

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4

−1

1

5. f(x) =
2x− 1

−2x2 − 5x+ 3
= − 2x− 1

(2x− 1)(x+ 3)
Domain: (−∞,−3) ∪ (−3, 1

2) ∪ (1
2 ,∞)

No x-intercepts
y-intercept: (0,−1

3)

f(x) =
−1

x+ 3
, x 6= 1

2

Hole in the graph at (1
2 ,−

2
7)

Vertical asymptote: x = −3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0+

As x→∞, f(x)→ 0−

x

y

−7 −6 −5 −4 −3 −2 −1 1 2

−1

1

6. f(x) =
x

x2 + x− 12
=

x

(x− 3)(x+ 4)
Domain: (−∞,−4) ∪ (−4, 3) ∪ (3,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptotes: x = −4 and x = 3
As x→ −4−, f(x)→ −∞
As x→ −4+, f(x)→∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5

−1

1
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7. f(x) =
4x

x2 + 4
Domain: (−∞,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
No vertical asymptotes
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−7−6−5−4−3−2−1 1 2 3 4 5 6 7

−1

1

8. f(x) =
4x

x2 − 4
=

4x

(x+ 2)(x− 2)
Domain: (−∞,−2) ∪ (−2, 2) ∪ (2,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptotes: x = −2, x = 2
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

9. f(x) =
x2 − x− 12

x2 + x− 6
=
x− 4

x− 2
x 6= −3

Domain: (−∞,−3) ∪ (−3, 2) ∪ (2,∞)
x-intercept: (4, 0)
y-intercept: (0, 2)
Vertical asymptote: x = 2
As x→ 2−, f(x)→∞
As x→ 2+, f(x)→ −∞
Hole at

(
−3, 7

5

)
Horizontal asymptote: y = 1
As x→ −∞, f(x)→ 1+

As x→∞, f(x)→ 1−

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5
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10. f(x) =
3x2 − 5x− 2

x2 − 9
=

(3x+ 1)(x− 2)

(x+ 3)(x− 3)
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
x-intercepts:

(
−1

3 , 0
)
, (2, 0)

y-intercept:
(
0, 2

9

)
Vertical asymptotes: x = −3, x = 3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
As x→ 3−, f(x)→ −∞
As x→ 3+, f(x)→∞
No holes in the graph
Horizontal asymptote: y = 3
As x→ −∞, f(x)→ 3+

As x→∞, f(x)→ 3−

x

y

−9−8−7−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

11. f(x) =
x2 − x− 6

x+ 1
=

(x− 3)(x+ 2)

x+ 1
Domain: (−∞,−1) ∪ (−1,∞)
x-intercepts: (−2, 0), (3, 0)
y-intercept: (0,−6)
Vertical asymptote: x = −1
As x→ −1−, f(x)→∞
As x→ −1+, f(x)→ −∞
Slant asymptote: y = x− 2
As x→ −∞, the graph is above y = x− 2
As x→∞, the graph is below y = x− 2

x

y

−4−3−2−1 1 2 3 4

−6

−4

−2

2

4

6

8

9

1

3

5

7

12. f(x) =
x2 − x
3− x

=
x(x− 1)

3− x
Domain: (−∞, 3) ∪ (3,∞)
x-intercepts: (0, 0), (1, 0)
y-intercept: (0, 0)
Vertical asymptote: x = 3
As x→ 3−, f(x)→∞
As x→ 3+, f(x)→ −∞
Slant asymptote: y = −x− 2
As x→ −∞, the graph is above y = −x− 2
As x→∞, the graph is below y = −x− 2

x

y

−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9 10

−12

−14

−16

−18

−10

−8

−6

−4

−2

2

4

6

8
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13. f(x) =
x3 + 2x2 + x

x2 − x− 2
=
x(x+ 1)

x− 2
x 6= −1

Domain: (−∞,−1) ∪ (−1, 2) ∪ (2,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Vertical asymptote: x = 2
As x→ 2−, f(x)→ −∞
As x→ 2+, f(x)→∞
Hole at (−1, 0)
Slant asymptote: y = x+ 3
As x→ −∞, the graph is below y = x+ 3
As x→∞, the graph is above y = x+ 3

x

y

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6 7 8 9

−10

−8

−6

−4

−2

2

4

6

8

10

12

14

16

18

14. f(x) =
−x3 + 4x

x2 − 9
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)
x-intercepts: (−2, 0), (0, 0), (2, 0)
y-intercept: (0, 0)
Vertical asymptotes: x = −3, x = 3
As x→ −3−, f(x)→∞
As x→ −3+, f(x)→ −∞
As x→ 3−, f(x)→∞
As x→ 3+, f(x)→ −∞
Slant asymptote: y = −x
As x→ −∞, the graph is above y = −x
As x→∞, the graph is below y = −x

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

15. f(x) =
x3 − 2x2 + 3x

2x2 + 2
Domain: (−∞,∞)
x-intercept: (0, 0)
y-intercept: (0, 0)
Slant asymptote: y = 1

2x− 1
As x→ −∞, the graph is below y = 1

2x− 1
As x→∞, the graph is above y = 1

2x− 1

x

y

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2
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16. f(x) =
x2 − 2x+ 1

x3 + x2 − 2x
Domain: (−∞,−2) ∪ (−2, 0) ∪ (0, 1) ∪ (1,∞)

f(x) =
x− 1

x(x+ 2)
, x 6= 1

No x-intercepts
No y-intercepts
Vertical asymptotes: x = −2 and x = 0
As x→ −2−, f(x)→ −∞
As x→ −2+, f(x)→∞
As x→ 0−, f(x)→∞
As x→ 0+, f(x)→ −∞
Hole in the graph at (1, 0)
Horizontal asymptote: y = 0
As x→ −∞, f(x)→ 0−

As x→∞, f(x)→ 0+

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

17. f(x) =
1

x− 2

Shift the graph of y =
1

x
to the right 2 units.

x

y

−1 1 2 3 4 5

−3

−2

−1

1

2

3

18. g(x) = 1− 3

x

Vertically stretch the graph of y =
1

x
by a factor of 3.

Reflect the graph of y =
3

x
about the x-axis.

Shift the graph of y = −3

x
up 1 unit.

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7
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19. h(x) =
−2x+ 1

x
= −2 +

1

x

Shift the graph of y =
1

x
down 2 units. x

y

−3 −2 −1 1 2 3

−5

−4

−3

−2

−1

1

20. j(x) =
3x− 7

x− 2
= 3− 1

x− 2

Shift the graph of y =
1

x
to the right 2 units.

Reflect the graph of y =
1

x− 2
about the x-axis.

Shift the graph of y = − 1

x− 2
up 3 units.

x

y

−3 −2 −1 1 2 3 4 5

−1

1

2

3

4

5

6

7



342 Rational Functions

4.3 Rational Inequalities and Applications

In this section, we solve equations and inequalities involving rational functions and explore associ-
ated application problems. Our first example showcases the critical difference in procedure between
solving a rational equation and a rational inequality.

Example 4.3.1.

1. Solve
x3 − 2x+ 1

x− 1
=

1

2
x− 1. 2. Solve

x3 − 2x+ 1

x− 1
≥ 1

2
x− 1.

3. Use your calculator to graphically check your answers to 1 and 2.

Solution.

1. To solve the equation, we clear denominators

x3 − 2x+ 1

x− 1
=

1

2
x− 1(

x3 − 2x+ 1

x− 1

)
· 2(x− 1) =

(
1

2
x− 1

)
· 2(x− 1)

2x3 − 4x+ 2 = x2 − 3x+ 2 expand
2x3 − x2 − x = 0

x(2x+ 1)(x− 1) = 0 factor
x = −1

2 , 0, 1

Since we cleared denominators, we need to check for extraneous solutions. Sure enough, we
see that x = 1 does not satisfy the original equation and must be discarded. Our solutions
are x = −1

2 and x = 0.

2. To solve the inequality, it may be tempting to begin as we did with the equation − namely
by multiplying both sides by the quantity (x − 1). The problem is that, depending on x,
(x − 1) may be positive (which doesn’t affect the inequality) or (x − 1) could be negative
(which would reverse the inequality). Instead of working by cases, we collect all of the terms
on one side of the inequality with 0 on the other and make a sign diagram using the technique
given on page 321 in Section 4.2.

x3 − 2x+ 1

x− 1
≥ 1

2
x− 1

x3 − 2x+ 1

x− 1
− 1

2
x+ 1 ≥ 0

2
(
x3 − 2x+ 1

)
− x(x− 1) + 1(2(x− 1))

2(x− 1)
≥ 0 get a common denominator

2x3 − x2 − x
2x− 2

≥ 0 expand



4.3 Rational Inequalities and Applications 343

Viewing the left hand side as a rational function r(x) we make a sign diagram. The only
value excluded from the domain of r is x = 1 which is the solution to 2x− 2 = 0. The zeros
of r are the solutions to 2x3 − x2 − x = 0, which we have already found to be x = 0, x = −1

2
and x = 1, the latter was discounted as a zero because it is not in the domain. Choosing test
values in each test interval, we construct the sign diagram below.

−1
2

0 1

(+) 0 (−) 0 (+) � (+)

We are interested in where r(x) ≥ 0. We find r(x) > 0, or (+), on the intervals
(
−∞,−1

2

)
,

(0, 1) and (1,∞). We add to these intervals the zeros of r, −1
2 and 0, to get our final solution:(

−∞,−1
2

]
∪ [0, 1) ∪ (1,∞).

3. Geometrically, if we set f(x) = x3−2x+1
x−1 and g(x) = 1

2x− 1, the solutions to f(x) = g(x) are
the x-coordinates of the points where the graphs of y = f(x) and y = g(x) intersect. The
solution to f(x) ≥ g(x) represents not only where the graphs meet, but the intervals over
which the graph of y = f(x) is above (>) the graph of g(x). We obtain the graphs below.

The ‘Intersect’ command confirms that the graphs cross when x = −1
2 and x = 0. It is clear

from the calculator that the graph of y = f(x) is above the graph of y = g(x) on
(
−∞,−1

2

)
as well as on (0,∞). According to the calculator, our solution is then

(
−∞,−1

2

]
∪ [0,∞)

which almost matches the answer we found analytically. We have to remember that f is not
defined at x = 1, and, even though it isn’t shown on the calculator, there is a hole1 in the
graph of y = f(x) when x = 1 which is why x = 1 is not part of our final answer.

Next, we explore how rational equations can be used to solve some classic problems involving rates.

Example 4.3.2. Carl decides to explore the Meander River, the location of several recent Sasquatch
sightings. From camp, he canoes downstream five miles to check out a purported Sasquatch nest.
Finding nothing, he immediately turns around, retraces his route (this time traveling upstream),

1There is no asymptote at x = 1 since the graph is well behaved near x = 1. According to Theorem 4.1, there
must be a hole there.
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and returns to camp 3 hours after he left. If Carl canoes at a rate of 6 miles per hour in still water,
how fast was the Meander River flowing on that day?

Solution. We are given information about distances, rates (speeds) and times. The basic principle
relating these quantities is:

distance = rate · time

The first observation to make, however, is that the distance, rate and time given to us aren’t
‘compatible’: the distance given is the distance for only part of the trip, the rate given is the speed
Carl can canoe in still water, not in a flowing river, and the time given is the duration of the entire
trip. Ultimately, we are after the speed of the river, so let’s call that R measured in miles per hour
to be consistent with the other rate given to us. To get started, let’s divide the trip into its two
parts: the initial trip downstream and the return trip upstream. For the downstream trip, all we
know is that the distance traveled is 5 miles.

distance downstream = rate traveling downstream · time traveling downstream
5 miles = rate traveling downstream · time traveling downstream

Since the return trip upstream followed the same route as the trip downstream, we know that the
distance traveled upstream is also 5 miles.

distance upstream = rate traveling upstream · time traveling upstream
5 miles = rate traveling upstream · time traveling upstream

We are told Carl can canoe at a rate of 6 miles per hour in still water. How does this figure
into the rates traveling upstream and downstream? The speed the canoe travels in the river is a
combination of the speed at which Carl can propel the canoe in still water, 6 miles per hour, and
the speed of the river, which we’re calling R. When traveling downstream, the river is helping Carl
along, so we add these two speeds:

rate traveling downstream = rate Carl propels the canoe + speed of the river

= 6miles
hour +Rmiles

hour

So our downstream speed is (6 + R)miles
hour . Substituting this into our ‘distance-rate-time’ equation

for the downstream part of the trip, we get:

5 miles = rate traveling downstream · time traveling downstream

5 miles = (6 +R)miles
hour · time traveling downstream

When traveling upstream, Carl works against the current. Since the canoe manages to travel
upstream, the speed Carl can canoe in still water is greater than the river’s speed, so we subtract
the river’s speed from Carl’s canoing speed to get:

rate traveling upstream = rate Carl propels the canoe− river speed

= 6miles
hour −R

miles
hour

Proceeding as before, we get
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5 miles = rate traveling upstream · time traveling upstream

5 miles = (6−R)miles
hour · time traveling upstream

The last piece of information given to us is that the total trip lasted 3 hours. If we let tdown denote
the time of the downstream trip and tup the time of the upstream trip, we have: tdown+tup = 3 hours.
Substituting tdown and tup into the ‘distance-rate-time’ equations, we get (suppressing the units)
three equations in three unknowns:2

E1 (6 +R) tdown = 5
E2 (6−R) tup = 5
E3 tdown + tup = 3

Since we are ultimately after R, we need to use these three equations to get at least one equation
involving only R. To that end, we solve E1 for tdown by dividing both sides3 by the quantity (6+R)
to get tdown = 5

6+R . Similarly, we solve E2 for tup and get tup = 5
6−R . Substituting these into E3,

we get:4

5

6 +R
+

5

6−R
= 3.

Clearing denominators, we get 5(6− R) + 5(6 + R) = 3(6 + R)(6− R) which reduces to R2 = 16.
We find R = ±4, and since R represents the speed of the river, we choose R = 4. On the day in
question, the Meander River is flowing at a rate of 4 miles per hour.

One of the important lessons to learn from Example 4.3.2 is that speeds, and more generally, rates,
are additive. As we see in our next example, the concept of rate and its associated principles can
be applied to a wide variety of problems - not just ‘distance-rate-time’ scenarios.

Example 4.3.3. Working alone, Taylor can weed the garden in 4 hours. If Carl helps, they can
weed the garden in 3 hours. How long would it take for Carl to weed the garden on his own?

Solution. The key relationship between work and time which we use in this problem is:

amount of work done = rate of work · time spent working

We are told that, working alone, Taylor can weed the garden in 4 hours. In Taylor’s case then:

amount of work Taylor does = rate of Taylor working · time Taylor spent working
1 garden = (rate of Taylor working) · (4 hours)

So we have that the rate Taylor works is 1 garden
4 hours = 1

4
garden
hour . We are also told that when working

together, Taylor and Carl can weed the garden in just 3 hours. We have:

2This is called a system of equations. No doubt, you’ve had experience with these things before, and we will study
systems in greater detail in Chapter 8.

3While we usually discourage dividing both sides of an equation by a variable expression, we know (6 + R) 6= 0
since otherwise we couldn’t possibly multiply it by tdown and get 5.

4The reader is encouraged to verify that the units in this equation are the same on both sides. To get you started,
the units on the ‘3’ is ‘hours.’
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amount of work done together = rate of working together · time spent working together
1 garden = (rate of working together) · (3 hours)

From this, we find that the rate of Taylor and Carl working together is 1 garden
3 hours = 1

3
garden
hour . We are

asked to find out how long it would take for Carl to weed the garden on his own. Let us call this
unknown t, measured in hours to be consistent with the other times given to us in the problem.
Then:

amount of work Carl does = rate of Carl working · time Carl spent working
1 garden = (rate of Carl working) · (t hours)

In order to find t, we need to find the rate of Carl working, so let’s call this quantity R, with units
garden
hour . Using the fact that rates are additive, we have:

rate working together = rate of Taylor working + rate of Carl working

1
3

garden
hour = 1

4
garden
hour +R garden

hour

so that R = 1
12

garden
hour . Substituting this into our ‘work-rate-time’ equation for Carl, we get:

1 garden = (rate of Carl working) · (t hours)

1 garden =
(

1
12

garden
hour

)
· (t hours)

Solving 1 = 1
12 t, we get t = 12, so it takes Carl 12 hours to weed the garden on his own.5

As is common with ‘word problems’ like Examples 4.3.2 and 4.3.3, there is no short-cut to the
answer. We encourage the reader to carefully think through and apply the basic principles of rate
to each (potentially different!) situation. It is time well spent. We also encourage the tracking of
units, especially in the early stages of the problem. Not only does this promote uniformity in the
units, it also serves as a quick means to check if an equation makes sense.6

Our next example deals with the average cost function, first introduced on page 82, as applied to
PortaBoy Game systems from Example 2.1.5 in Section 2.1.

Example 4.3.4. Given a cost function C(x), which returns the total cost of producing x items,

recall that the average cost function, C(x) = C(x)
x computes the cost per item when x items are

produced. Suppose the cost C, in dollars, to produce x PortaBoy game systems for a local retailer
is C(x) = 80x+ 150, x ≥ 0.

1. Find an expression for the average cost function C(x).

2. Solve C(x) < 100 and interpret.

5Carl would much rather spend his time writing open-source Mathematics texts than gardening anyway.
6In other words, make sure you don’t try to add apples to oranges!
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3. Determine the behavior of C(x) as x→∞ and interpret.

Solution.

1. From C(x) = C(x)
x , we obtain C(x) = 80x+150

x . The domain of C is x ≥ 0, but since x = 0
causes problems for C(x), we get our domain to be x > 0, or (0,∞).

2. Solving C(x) < 100 means we solve 80x+150
x < 100. We proceed as in the previous example.

80x+ 150

x
< 100

80x+ 150

x
− 100 < 0

80x+ 150− 100x

x
< 0 common denominator

150− 20x

x
< 0

If we take the left hand side to be a rational function r(x), we need to keep in mind that the
applied domain of the problem is x > 0. This means we consider only the positive half of the
number line for our sign diagram. On (0,∞), r is defined everywhere so we need only look
for zeros of r. Setting r(x) = 0 gives 150− 20x = 0, so that x = 15

2 = 7.5. The test intervals
on our domain are (0, 7.5) and (7.5,∞). We find r(x) < 0 on (7.5,∞).

0

�

7.5

(+) 0 (−)

In the context of the problem, x represents the number of PortaBoy games systems produced
and C(x) is the average cost to produce each system. Solving C(x) < 100 means we are trying
to find how many systems we need to produce so that the average cost is less than $100 per
system. Our solution, (7.5,∞) tells us that we need to produce more than 7.5 systems to
achieve this. Since it doesn’t make sense to produce half a system, our final answer is [8,∞).

3. When we apply Theorem 4.2 to C(x) we find that y = 80 is a horizontal asymptote to
the graph of y = C(x). To more precisely determine the behavior of C(x) as x → ∞, we
first use long division7 and rewrite C(x) = 80 + 150

x . As x → ∞, 150
x → 0+, which means

C(x) ≈ 80 + very small (+). Thus the average cost per system is getting closer to $80 per
system. If we set C(x) = 80, we get 150

x = 0, which is impossible, so we conclude that
C(x) > 80 for all x > 0. This means that the average cost per system is always greater than
$80 per system, but the average cost is approaching this amount as more and more systems
are produced. Looking back at Example 2.1.5, we realize $80 is the variable cost per system −

7In this case, long division amounts to term-by-term division.
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the cost per system above and beyond the fixed initial cost of $150. Another way to interpret
our answer is that ‘infinitely’ many systems would need to be produced to effectively ‘zero
out’ the fixed cost.

Our next example is another classic ‘box with no top’ problem.

Example 4.3.5. A box with a square base and no top is to be constructed so that it has a volume
of 1000 cubic centimeters. Let x denote the width of the box, in centimeters as seen below.

width, x

height depth

1. Express the height h in centimeters as a function of the width x and state the applied domain.

2. Solve h(x) ≥ x and interpret.

3. Find and interpret the behavior of h(x) as x→ 0+ and as x→∞.

4. Express the surface area S of the box as a function of x and state the applied domain.

5. Use a calculator to approximate (to two decimal places) the dimensions of the box which
minimize the surface area.

Solution.

1. We are told that the volume of the box is 1000 cubic centimeters and that x represents the
width, in centimeters. From geometry, we know Volume = width× height× depth. Since the
base of the box is a square, the width and the depth are both x centimeters. Using h for the
height, we have 1000 = x2h, so that h = 1000

x2 . Using function notation,8 h(x) = 1000
x2 As for

the applied domain, in order for there to be a box at all, x > 0, and since every such choice
of x will return a positive number for the height h we have no other restrictions and conclude
our domain is (0,∞).

2. To solve h(x) ≥ x, we proceed as before and collect all nonzero terms on one side of the
inequality in order to use a sign diagram.

8That is, h(x) means ‘h of x’, not ‘h times x’ here.
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h(x) ≥ x

1000

x2
≥ x

1000

x2
− x ≥ 0

1000− x3

x2
≥ 0 common denominator

We consider the left hand side of the inequality as our rational function r(x). We see r is
undefined at x = 0, but, as in the previous example, the applied domain of the problem is
x > 0, so we are considering only the behavior of r on (0,∞). The sole zero of r comes when
1000−x3 = 0, which is x = 10. Choosing test values in the intervals (0, 10) and (10,∞) gives
the following diagram.

0

� (+)

10

0 (−)

We see r(x) > 0 on (0, 10), and since r(x) = 0 at x = 10, our solution is (0, 10]. In the context
of the problem, h represents the height of the box while x represents the width (and depth)
of the box. Solving h(x) ≥ x is tantamount to finding the values of x which result in a box
where the height is at least as big as the width (and, in this case, depth.) Our answer tells
us the width of the box can be at most 10 centimeters for this to happen.

3. As x → 0+, h(x) = 1000
x2 → ∞. This means that the smaller the width x (and, in this

case, depth), the larger the height h has to be in order to maintain a volume of 1000 cubic
centimeters. As x→∞, we find h(x)→ 0+, which means that in order to maintain a volume
of 1000 cubic centimeters, the width and depth must get bigger as the height becomes smaller.

4. Since the box has no top, the surface area can be found by adding the area of each of the
sides to the area of the base. The base is a square of dimensions x by x, and each side has
dimensions x by h. We get the surface area, S = x2 + 4xh. To get S as a function of x, we
substitute h = 1000

x2 to obtain S = x2 + 4x
(

1000
x2

)
. Hence, as a function of x, S(x) = x2 + 4000

x .
The domain of S is the same as h, namely (0,∞), for the same reasons as above.

5. A first attempt at the graph of y = S(x) on the calculator may lead to frustration. Chances
are good that the first window chosen to view the graph will suggest y = S(x) has the x-axis
as a horizontal asymptote. From the formula S(x) = x2 + 4000

x , however, we get S(x) ≈ x2 as
x→∞, so S(x)→∞. Readjusting the window, we find S does possess a relative minimum
at x ≈ 12.60. As far as we can tell,9 this is the only relative extremum, so it is the absolute
minimum as well. This means that the width and depth of the box should each measure

9without Calculus, that is...
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approximately 12.60 centimeters. To determine the height, we find h(12.60) ≈ 6.30, so the
height of the box should be approximately 6.30 centimeters.

4.3.1 Variation

In many instances in the sciences, rational functions are encountered as a result of fundamental
natural laws which are typically a result of assuming certain basic relationships between variables.
These basic relationships are summarized in the definition below.

Definition 4.5. Suppose x, y and z are variable quantities. We say

� y varies directly with (or is directly proportional to) x if there is a constant k such
that y = kx.

� y varies inversely with (or is inversely proportional to) x if there is a constant k
such that y = k

x .

� z varies jointly with (or is jointly proportional to) x and y if there is a constant k
such that z = kxy.

The constant k in the above definitions is called the constant of proportionality.

Example 4.3.6. Translate the following into mathematical equations using Definition 4.5.

1. Hooke’s Law: The force F exerted on a spring is directly proportional the extension x of the
spring.

2. Boyle’s Law: At a constant temperature, the pressure P of an ideal gas is inversely propor-
tional to its volume V .

3. The volume V of a right circular cone varies jointly with the height h of the cone and the
square of the radius r of the base.

4. Ohm’s Law: The current I through a conductor between two points is directly proportional to
the voltage V between the two points and inversely proportional to the resistance R between
the two points.

http://en.wikipedia.org/wiki/Hooke's_law
http://en.wikipedia.org/wiki/Boyle's_law
http://en.wikipedia.org/wiki/Ohm's_law
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5. Newton’s Law of Universal Gravitation: Suppose two objects, one of mass m and one of mass
M , are positioned so that the distance between their centers of mass is r. The gravitational
force F exerted on the two objects varies directly with the product of the two masses and
inversely with the square of the distance between their centers of mass.

Solution.

1. Applying the definition of direct variation, we get F = kx for some constant k.

2. Since P and V are inversely proportional, we write P = k
V .

3. There is a bit of ambiguity here. It’s clear that the volume and the height of the cone are
represented by the quantities V and h, respectively, but does r represent the radius of the base
or the square of the radius of the base? It is the former. Usually, if an algebraic operation is
specified (like squaring), it is meant to be expressed in the formula. We apply Definition 4.5
to get V = khr2.

4. Even though the problem doesn’t use the phrase ‘varies jointly’, it is implied by the fact that
the current I is related to two different quantities. Since I varies directly with V but inversely
with R, we write I = kV

R .

5. We write the product of the masses mM and the square of the distance as r2. We have that
F varies directly with mM and inversely with r2, so F = kmM

r2 .

In many of the formulas in the previous example, more than two varying quantities are related. In
practice, however, usually all but two quantities are held constant in an experiment and the data
collected is used to relate just two of the variables. Comparing just two varying quantities allows
us to view the relationship between them as functional, as the next example illustrates.

Example 4.3.7. According to this website the actual data relating the volume V of a gas and its
pressure P used by Boyle and his assistant in 1662 to verify the gas law that bears his name is
given below.

V 48 46 44 42 40 38 36 34 32 30 28 26 24

P 29.13 30.56 31.94 33.5 35.31 37 39.31 41.63 44.19 47.06 50.31 54.31 58.81

V 23 22 21 20 19 18 17 16 15 14 13 12

P 61.31 64.06 67.06 70.69 74.13 77.88 82.75 87.88 93.06 100.44 107.81 117.56

1. Use your calculator to generate a scatter diagram for these data using V as the independent
variable and P as the dependent variable. Does it appear from the graph that P is inversely
proportional to V ? Explain.

2. Assuming that P and V do vary inversely, use the data to approximate the constant of
proportionality.

http://en.wikipedia.org/wiki/Law_of_universal_gravitation
http://web.lemoyne.edu/~giunta/classicalcs/boyleverify.html
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3. Use your calculator to determine a ‘Power Regression’ for this data10 and use it verify your
results in 1 and 2.

Solution.

1. If P really does vary inversely with V , then P = k
V for some constant k. From the data plot,

the points do seem to lie along a curve like y = k
x .

2. To determine the constant of proportionality, we note that from P = k
V , we get k = PV .

Multiplying each of the volume numbers times each of the pressure numbers,11 we produce a
number which is always approximately 1400. We suspect that P = 1400

V . Graphing y = 1400
x

along with the data gives us good reason to believe our hypotheses that P and V are, in fact,
inversely related.

The graph of the data The data with y = 1400
x

3. After performing a ‘Power Regression’, the calculator fits the data to the curve y = axb where
a ≈ 1400 and b ≈ −1 with a correlation coefficient which is darned near perfect.12 In other
words, y = 1400x−1 or y = 1400

x , as we guessed.

10We will talk more about this in the coming chapters.
11You can use tell the calculator to do this arithmetic on the lists and save yourself some time.
12We will revisit this example once we have developed logarithms in Chapter 6 to see how we can actually ‘linearize’

this data and do a linear regression to obtain the same result.



4.3 Rational Inequalities and Applications 353

4.3.2 Exercises

In Exercises 1 - 6, solve the rational equation. Be sure to check for extraneous solutions.

1.
x

5x+ 4
= 3 2.

3x− 1

x2 + 1
= 1

3.
1

x+ 3
+

1

x− 3
=
x2 − 3

x2 − 9
4.

2x+ 17

x+ 1
= x+ 5

5.
x2 − 2x+ 1

x3 + x2 − 2x
= 1 6.

−x3 + 4x

x2 − 9
= 4x

In Exercises 7 - 20, solve the rational inequality. Express your answer using interval notation.

7.
1

x+ 2
≥ 0 8.

x− 3

x+ 2
≤ 0 9.

x

x2 − 1
> 0

10.
4x

x2 + 4
≥ 0 11.

x2 − x− 12

x2 + x− 6
> 0 12.

3x2 − 5x− 2

x2 − 9
< 0

13.
x3 + 2x2 + x

x2 − x− 2
≥ 0 14.

x2 + 5x+ 6

x2 − 1
> 0 15.

3x− 1

x2 + 1
≤ 1

16.
2x+ 17

x+ 1
> x+ 5 17.

−x3 + 4x

x2 − 9
≥ 4x 18.

1

x2 + 1
< 0

19.
x4 − 4x3 + x2 − 2x− 15

x3 − 4x2
≥ x 20.

5x3 − 12x2 + 9x+ 10

x2 − 1
≥ 3x− 1

21. Carl and Mike start a 3 mile race at the same time. If Mike ran the race at 6 miles per hour
and finishes the race 10 minutes before Carl, how fast does Carl run?

22. One day, Donnie observes that the wind is blowing at 6 miles per hour. A unladen swallow
nesting near Donnie’s house flies three quarters of a mile down the road (in the direction of
the wind), turns around, and returns exactly 4 minutes later. What is the airspeed of the
unladen swallow? (Here, ‘airspeed’ is the speed that the swallow can fly in still air.)

23. In order to remove water from a flooded basement, two pumps, each rated at 40 gallons per
minute, are used. After half an hour, the one pump burns out, and the second pump finishes
removing the water half an hour later. How many gallons of water were removed from the
basement?

24. A faucet can fill a sink in 5 minutes while a drain will empty the same sink in 8 minutes. If
the faucet is turned on and the drain is left open, how long will it take to fill the sink?

25. Working together, Daniel and Donnie can clean the llama pen in 45 minutes. On his own,
Daniel can clean the pen in an hour. How long does it take Donnie to clean the llama pen on
his own?
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26. In Exercise 32, the function C(x) = .03x3 − 4.5x2 + 225x+ 250, for x ≥ 0 was used to model
the cost (in dollars) to produce x PortaBoy game systems. Using this cost function, find the
number of PortaBoys which should be produced to minimize the average cost C. Round your
answer to the nearest number of systems.

27. Suppose we are in the same situation as Example 4.3.5. If the volume of the box is to be 500
cubic centimeters, use your calculator to find the dimensions of the box which minimize the
surface area. What is the minimum surface area? Round your answers to two decimal places.

28. The box for the new Sasquatch-themed cereal, ‘Crypt-Os’, is to have a volume of 140 cubic
inches. For aesthetic reasons, the height of the box needs to be 1.62 times the width of the
base of the box.13 Find the dimensions of the box which will minimize the surface area of the
box. What is the minimum surface area? Round your answers to two decimal places.

29. Sally is Skippy’s neighbor from Exercise 19 in Section 2.3. Sally also wants to plant a vegetable
garden along the side of her home. She doesn’t have any fencing, but wants to keep the size
of the garden to 100 square feet. What are the dimensions of the garden which will minimize
the amount of fencing she needs to buy? What is the minimum amount of fencing she needs
to buy? Round your answers to the nearest foot. (Note: Since one side of the garden will
border the house, Sally doesn’t need fencing along that side.)

30. Another Classic Problem: A can is made in the shape of a right circular cylinder and is to
hold one pint. (For dry goods, one pint is equal to 33.6 cubic inches.)14

(a) Find an expression for the volume V of the can in terms of the height h and the base
radius r.

(b) Find an expression for the surface area S of the can in terms of the height h and the
base radius r. (Hint: The top and bottom of the can are circles of radius r and the side
of the can is really just a rectangle that has been bent into a cylinder.)

(c) Using the fact that V = 33.6, write S as a function of r and state its applied domain.

(d) Use your graphing calculator to find the dimensions of the can which has minimal surface
area.

31. A right cylindrical drum is to hold 7.35 cubic feet of liquid. Find the dimensions (radius
of the base and height) of the drum which would minimize the surface area. What is the
minimum surface area? Round your answers to two decimal places.

32. In Exercise 71 in Section 1.4, the population of Sasquatch in Portage County was modeled
by the function P (t) = 150t

t+15 , where t = 0 represents the year 1803. When were there fewer
than 100 Sasquatch in Portage County?

131.62 is a crude approximation of the so-called ‘Golden Ratio’ φ = 1+
√

5
2

.
14According to www.dictionary.com, there are different values given for this conversion. We will stick with 33.6in3

for this problem.

http://dictionary.reference.com/browse/pint
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In Exercises 33 - 38, translate the following into mathematical equations.

33. At a constant pressure, the temperature T of an ideal gas is directly proportional to its volume
V . (This is Charles’s Law)

34. The frequency of a wave f is inversely proportional to the wavelength of the wave λ.

35. The density d of a material is directly proportional to the mass of the object m and inversely
proportional to its volume V .

36. The square of the orbital period of a planet P is directly proportional to the cube of the
semi-major axis of its orbit a. (This is Kepler’s Third Law of Planetary Motion )

37. The drag of an object traveling through a fluid D varies jointly with the density of the fluid
ρ and the square of the velocity of the object ν.

38. Suppose two electric point charges, one with charge q and one with charge Q, are positioned r
units apart. The electrostatic force F exerted on the charges varies directly with the product
of the two charges and inversely with the square of the distance between the charges. (This
is Coulomb’s Law)

39. According to this webpage, the frequency f of a vibrating string is given by f =
1

2L

√
T

µ
where T is the tension, µ is the linear mass15 of the string and L is the length of the vibrating
part of the string. Express this relationship using the language of variation.

40. According to the Centers for Disease Control and Prevention www.cdc.gov, a person’s Body
Mass Index B is directly proportional to his weight W in pounds and inversely proportional
to the square of his height h in inches.

(a) Express this relationship as a mathematical equation.

(b) If a person who was 5 feet, 10 inches tall weighed 235 pounds had a Body Mass Index
of 33.7, what is the value of the constant of proportionality?

(c) Rewrite the mathematical equation found in part 40a to include the value of the constant
found in part 40b and then find your Body Mass Index.

41. We know that the circumference of a circle varies directly with its radius with 2π as the
constant of proportionality. (That is, we know C = 2πr.) With the help of your classmates,
compile a list of other basic geometric relationships which can be seen as variations.

15Also known as the linear density. It is simply a measure of mass per unit length.

http://en.wikipedia.org/wiki/Charles's_law
http://en.wikipedia.org/wiki/Kepler
http://en.wikipedia.org/wiki/Electrostatic#Coulomb.27s_law
http://en.wikipedia.org/wiki/Vibrating_string
http://www.cdc.gov
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4.3.3 Answers

1. x = −6
7 2. x = 1, x = 2 3. x = −1

4. x = −6, x = 2 5. No solution 6. x = 0, x = ±2
√

2

7. (−2,∞) 8. (−2, 3]

9. (−1, 0) ∪ (1,∞) 10. [0,∞)

11. (−∞,−3) ∪ (−3, 2) ∪ (4,∞) 12.
(
−3,−1

3

)
∪ (2, 3)

13. (−1, 0] ∪ (2,∞) 14. (−∞,−3) ∪ (−2,−1) ∪ (1,∞)

15. (−∞, 1] ∪ [2,∞) 16. (−∞,−6) ∪ (−1, 2)

17. (−∞,−3) ∪
[
−2
√

2, 0
]
∪
[
2
√

2, 3
)

18. No solution

19. [−3, 0) ∪ (0, 4) ∪ [5,∞) 20.
(
−1,−1

2

]
∪ (1,∞)

21. 4.5 miles per hour 22. 24 miles per hour 23. 3600 gallons

24. 40
3 ≈ 13.33 minutes 25. 3 hours

26. The absolute minimum of y = C(x) occurs at ≈ (75.73, 59.57). Since x represents the number
of game systems, we check C(75) ≈ 59.58 and C(76) ≈ 59.57. Hence, to minimize the average
cost, 76 systems should be produced at an average cost of $59.57 per system.

27. The width (and depth) should be 10.00 centimeters, the height should be 5.00 centimeters.
The minimum surface area is 300.00 square centimeters.

28. The width of the base of the box should be ≈ 4.12 inches, the height of the box should be
≈ 6.67 inches, and the depth of the base of the box should be ≈ 5.09 inches; minimum surface
area ≈ 164.91 square inches.

29. The dimensions are ≈ 7 feet by ≈ 14 feet; minimum amount of fencing required ≈ 28 feet.

30. (a) V = πr2h (b) S = 2πr2 + 2πrh

(c) S(r) = 2πr2 + 67.2
r , Domain r > 0 (d) r ≈ 1.749 in. and h ≈ 3.498 in.

31. The radius of the drum should be ≈ 1.05 feet and the height of the drum should be ≈ 2.12
feet. The minimum surface area of the drum is ≈ 20.93 cubic feet.

32. P (t) < 100 on (−15, 30), and the portion of this which lies in the applied domain is [0, 30).
Since t = 0 corresponds to the year 1803, from 1803 through the end of 1832, there were
fewer than 100 Sasquatch in Portage County.
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33. T = kV 34. 16 f =
k

λ
35. d =

km

V

36. P 2 = ka3 37. 17 D = kρν2
38. 18 F =

kqQ

r2

39. Rewriting f =
1

2L

√
T

µ
as f =

1
2

√
T

L
√
µ

we see that the frequency f varies directly with the

square root of the tension and varies inversely with the length and the square root of the
linear mass.

40. (a) B =
kW

h2
(b) 19 k = 702.68 (c) B =

702.68W

h2

16The character λ is the lower case Greek letter ‘lambda.’
17The characters ρ and ν are the lower case Greek letters ‘rho’ and ‘nu,’ respectively.
18Note the similarity to this formula and Newton’s Law of Universal Gravitation as discussed in Example 5.
19The CDC uses 703.
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Chapter 5

Further Topics in Functions

5.1 Function Composition

Before we embark upon any further adventures with functions, we need to take some time to gather
our thoughts and gain some perspective. Chapter 1 first introduced us to functions in Section 1.3.
At that time, functions were specific kinds of relations - sets of points in the plane which passed the
Vertical Line Test, Theorem 1.1. In Section 1.4, we developed the idea that functions are processes
- rules which match inputs to outputs - and this gave rise to the concepts of domain and range.
We spoke about how functions could be combined in Section 1.5 using the four basic arithmetic
operations, took a more detailed look at their graphs in Section 1.6 and studied how their graphs
behaved under certain classes of transformations in Section 1.7. In Chapter 2, we took a closer
look at three families of functions: linear functions (Section 2.1), absolute value functions1 (Section
2.2), and quadratic functions (Section 2.3). Linear and quadratic functions were special cases of
polynomial functions, which we studied in generality in Chapter 3. Chapter 3 culminated with
the Real Factorization Theorem, Theorem 3.16, which says that all polynomial functions with real
coefficients can be thought of as products of linear and quadratic functions. Our next step was to
enlarge our field2 of study to rational functions in Chapter 4. Being quotients of polynomials, we
can ultimately view this family of functions as being built up of linear and quadratic functions as
well. So in some sense, Chapters 2, 3, and 4 can be thought of as an exhaustive study of linear and
quadratic3 functions and their arithmetic combinations as described in Section 1.5. We now wish
to study other algebraic functions, such as f(x) =

√
x and g(x) = x2/3, and the purpose of the

first two sections of this chapter is to see how these kinds of functions arise from polynomial and
rational functions. To that end, we first study a new way to combine functions as defined below.

1These were introduced, as you may recall, as piecewise-defined linear functions.
2This is a really bad math pun.
3If we broaden our concept of functions to allow for complex valued coefficients, the Complex Factorization

Theorem, Theorem 3.14, tells us every function we have studied thus far is a combination of linear functions.
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Definition 5.1. Suppose f and g are two functions. The composite of g with f , denoted g ◦f ,
is defined by the formula (g ◦ f)(x) = g(f(x)), provided x is an element of the domain of f and
f(x) is an element of the domain of g.

The quantity g ◦f is also read ‘g composed with f ’ or, more simply ‘g of f .’ At its most basic level,
Definition 5.1 tells us to obtain the formula for (g ◦ f) (x), we replace every occurrence of x in the
formula for g(x) with the formula we have for f(x). If we take a step back and look at this from a
procedural, ‘inputs and outputs’ perspective, Defintion 5.1 tells us the output from g ◦ f is found
by taking the output from f , f(x), and then making that the input to g. The result, g(f(x)), is
the output from g ◦ f . From this perspective, we see g ◦ f as a two step process taking an input x
and first applying the procedure f then applying the procedure g. Abstractly, we have

f g

g ◦ f

x f(x)
g(f(x))

In the expression g(f(x)), the function f is often called the ‘inside’ function while g is often called
the ‘outside’ function. There are two ways to go about evaluating composite functions - ‘inside
out’ and ‘outside in’ - depending on which function we replace with its formula first. Both ways
are demonstrated in the following example.

Example 5.1.1. Let f(x) = x2 − 4x, g(x) = 2−
√
x+ 3, and h(x) =

2x

x+ 1
.

In numbers 1 - 3, find the indicated function value.

1. (g ◦ f)(1) 2. (f ◦ g)(1) 3. (g ◦ g)(6)

In numbers 4 - 10, find and simplify the indicated composite functions. State the domain of each.

4. (g ◦ f)(x) 5. (f ◦ g)(x) 6. (g ◦ h)(x) 7. (h ◦ g)(x)

8. (h ◦ h)(x) 9. (h ◦ (g ◦ f))(x) 10. ((h ◦ g) ◦ f)(x)

Solution.

1. Using Definition 5.1, (g ◦ f)(1) = g(f(1)). We find f(1) = −3, so

(g ◦ f)(1) = g(f(1)) = g(−3) = 2
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2. As before, we use Definition 5.1 to write (f ◦ g)(1) = f(g(1)). We find g(1) = 0, so

(f ◦ g)(1) = f(g(1)) = f(0) = 0

3. Once more, Definition 5.1 tells us (g ◦ g)(6) = g(g(6)). That is, we evaluate g at 6, then plug
that result back into g. Since g(6) = −1,

(g ◦ g)(6) = g(g(6)) = g(−1) = 2−
√

2

4. By definition, (g ◦ f)(x) = g(f(x)). We now illustrate two ways to approach this problem.

� inside out : We insert the expression f(x) into g first to get

(g ◦ f)(x) = g(f(x)) = g
(
x2 − 4x

)
= 2−

√
(x2 − 4x) + 3 = 2−

√
x2 − 4x+ 3

Hence, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

� outside in: We use the formula for g first to get

(g ◦ f)(x) = g(f(x)) = 2−
√
f(x) + 3 = 2−

√
(x2 − 4x) + 3 = 2−

√
x2 − 4x+ 3

We get the same answer as before, (g ◦ f)(x) = 2−
√
x2 − 4x+ 3.

To find the domain of g ◦ f , we need to find the elements in the domain of f whose outputs
f(x) are in the domain of g. We accomplish this by following the rule set forth in Section
1.4, that is, we find the domain before we simplify. To that end, we examine (g ◦ f)(x) =
2−

√
(x2 − 4x) + 3. To keep the square root happy, we solve the inequality x2 − 4x+ 3 ≥ 0

by creating a sign diagram. If we let r(x) = x2 − 4x + 3, we find the zeros of r to be x = 1
and x = 3. We obtain

1 3

(+) 0 (−) 0 (+)

Our solution to x2 − 4x+ 3 ≥ 0, and hence the domain of g ◦ f , is (−∞, 1] ∪ [3,∞).

5. To find (f ◦ g)(x), we find f(g(x)).

� inside out : We insert the expression g(x) into f first to get

(f ◦ g)(x) = f(g(x)) = f
(
2−
√
x+ 3

)
=

(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
= 4− 4

√
x+ 3 +

(√
x+ 3

)2 − 8 + 4
√
x+ 3

= 4 + x+ 3− 8
= x− 1
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� outside in: We use the formula for f(x) first to get

(f ◦ g)(x) = f(g(x)) = (g(x))2 − 4 (g(x))

=
(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
= x− 1 same algebra as before

Thus we get (f ◦ g)(x) = x − 1. To find the domain of (f ◦ g), we look to the step before

we did any simplification and find (f ◦ g)(x) =
(
2−
√
x+ 3

)2 − 4
(
2−
√
x+ 3

)
. To keep the

square root happy, we set x+ 3 ≥ 0 and find our domain to be [−3,∞).

6. To find (g ◦ h)(x), we compute g(h(x)).

� inside out : We insert the expression h(x) into g first to get

(g ◦ h)(x) = g(h(x)) = g

(
2x

x+ 1

)

= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

2x

x+ 1
+

3(x+ 1)

x+ 1
get common denominators

= 2−
√

5x+ 3

x+ 1

� outside in: We use the formula for g(x) first to get

(g ◦ h)(x) = g(h(x)) = 2−
√
h(x) + 3

= 2−

√(
2x

x+ 1

)
+ 3

= 2−
√

5x+ 3

x+ 1
get common denominators as before

To find the domain of (g ◦ h), we look to the step before we began to simplify:

(g ◦ h)(x) = 2−

√(
2x

x+ 1

)
+ 3

To avoid division by zero, we need x 6= −1. To keep the radical happy, we need to solve

2x

x+ 1
+ 3 =

5x+ 3

x+ 1
≥ 0

Defining r(x) = 5x+3
x+1 , we see r is undefined at x = −1 and r(x) = 0 at x = −3

5 . We get
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−1 −3
5

(+) � (−) 0 (+)

Our domain is (−∞,−1) ∪
[
−3

5 ,∞
)
.

7. We find (h ◦ g)(x) by finding h(g(x)).

� inside out : We insert the expression g(x) into h first to get

(h ◦ g)(x) = h(g(x)) =h
(
2−
√
x+ 3

)
=

2
(
2−
√
x+ 3

)(
2−
√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

� outside in: We use the formula for h(x) first to get

(h ◦ g)(x) = h(g(x)) =
2 (g(x))

(g(x)) + 1

=
2
(
2−
√
x+ 3

)(
2−
√
x+ 3

)
+ 1

=
4− 2

√
x+ 3

3−
√
x+ 3

To find the domain of h ◦ g, we look to the step before any simplification:

(h ◦ g)(x) =
2
(
2−
√
x+ 3

)(
2−
√
x+ 3

)
+ 1

To keep the square root happy, we require x+3 ≥ 0 or x ≥ −3. Setting the denominator equal
to zero gives

(
2−
√
x+ 3

)
+ 1 = 0 or

√
x+ 3 = 3. Squaring both sides gives us x+ 3 = 9, or

x = 6. Since x = 6 checks in the original equation,
(
2−
√
x+ 3

)
+ 1 = 0, we know x = 6 is

the only zero of the denominator. Hence, the domain of h ◦ g is [−3, 6) ∪ (6,∞).

8. To find (h ◦ h)(x), we substitute the function h into itself, h(h(x)).

� inside out : We insert the expression h(x) into h to get

(h ◦ h)(x) = h(h(x)) = h

(
2x

x+ 1

)
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=

2

(
2x

x+ 1

)
(

2x

x+ 1

)
+ 1

=

4x

x+ 1
2x

x+ 1
+ 1
· (x+ 1)

(x+ 1)

=
4x
x+1 · (x+ 1)(

2x

x+ 1

)
· (x+ 1) + 1 · (x+ 1)

=

4x

���
�: 1

(x+ 1)
·����(x+ 1)

2x

��
��: 1

(x+ 1)
·����(x+ 1) + x+ 1

=
4x

3x+ 1

� outside in: This approach yields

(h ◦ h)(x) = h(h(x)) =
2(h(x))

h(x) + 1

=

2

(
2x

x+ 1

)
(

2x

x+ 1

)
+ 1

=
4x

3x+ 1
same algebra as before

To find the domain of h ◦ h, we analyze

(h ◦ h)(x) =

2

(
2x

x+ 1

)
(

2x

x+ 1

)
+ 1

To keep the denominator x+ 1 happy, we need x 6= −1. Setting the denominator

2x

x+ 1
+ 1 = 0

gives x = −1
3 . Our domain is (−∞,−1) ∪

(
−1,−1

3

)
∪
(
−1

3 ,∞
)
.
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9. The expression (h ◦ (g ◦ f))(x) indicates that we first find the composite, g ◦ f and compose
the function h with the result. We know from number 1 that (g ◦ f)(x) = 2−

√
x2 − 4x+ 3.

We now proceed as usual.

� inside out : We insert the expression (g ◦ f)(x) into h first to get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h
(

2−
√
x2 − 4x+ 3

)
=

2
(

2−
√
x2 − 4x+ 3

)
(

2−
√
x2 − 4x+ 3

)
+ 1

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

� outside in: We use the formula for h(x) first to get

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) =
2 ((g ◦ f)(x))

((g ◦ f)(x)) + 1

=
2
(

2−
√
x2 − 4x+ 3

)
(

2−
√
x2 − 4x+ 3

)
+ 1

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

To find the domain of (h ◦ (g ◦ f)), we look at the step before we began to simplify,

(h ◦ (g ◦ f))(x) =
2
(

2−
√
x2 − 4x+ 3

)
(

2−
√
x2 − 4x+ 3

)
+ 1

For the square root, we need x2 − 4x + 3 ≥ 0, which we determined in number 1 to be

(−∞, 1]∪[3,∞). Next, we set the denominator to zero and solve:
(

2−
√
x2 − 4x+ 3

)
+1 = 0.

We get
√
x2 − 4x+ 3 = 3, and, after squaring both sides, we have x2 − 4x+ 3 = 9. To solve

x2−4x−6 = 0, we use the quadratic formula and get x = 2±
√

10. The reader is encouraged

to check that both of these numbers satisfy the original equation,
(

2−
√
x2 − 4x+ 3

)
+1 = 0.

Hence we must exclude these numbers from the domain of h ◦ (g ◦ f). Our final domain for
h ◦ (f ◦ g) is (−∞, 2−

√
10) ∪ (2−

√
10, 1] ∪

[
3, 2 +

√
10
)
∪
(
2 +
√

10,∞
)
.

10. The expression ((h◦g)◦f)(x) indicates that we first find the composite h◦g and then compose
that with f . From number 4, we have

(h ◦ g)(x) =
4− 2

√
x+ 3

3−
√
x+ 3
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We now proceed as before.

� inside out : We insert the expression f(x) into h ◦ g first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = (h ◦ g)
(
x2 − 4x

)
=

4− 2
√

(x2 − 4x) + 3

3−
√

(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

� outside in: We use the formula for (h ◦ g)(x) first to get

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) =
4− 2

√
(f(x)) + 3

3−
√
f(x)) + 3

=
4− 2

√
(x2 − 4x) + 3

3−
√

(x2 − 4x) + 3

=
4− 2

√
x2 − 4x+ 3

3−
√
x2 − 4x+ 3

We note that the formula for ((h ◦ g) ◦ f)(x) before simplification is identical to that of
(h ◦ (g ◦ f))(x) before we simplified it. Hence, the two functions have the same domain,
h ◦ (f ◦ g) is (−∞, 2−

√
10) ∪ (2−

√
10, 1] ∪

[
3, 2 +

√
10
)
∪
(
2 +
√

10,∞
)
.

It should be clear from Example 5.1.1 that, in general, when you compose two functions, such as
f and g above, the order matters.4 We found that the functions f ◦ g and g ◦ f were different
as were g ◦ h and h ◦ g. Thinking of functions as processes, this isn’t all that surprising. If we
think of one process as putting on our socks, and the other as putting on our shoes, the order in
which we do these two tasks does matter.5 Also note the importance of finding the domain of the
composite function before simplifying. For instance, the domain of f ◦ g is much different than
its simplified formula would indicate. Composing a function with itself, as in the case of finding
(g ◦ g)(6) and (h ◦ h)(x), may seem odd. Looking at this from a procedural perspective, however,
this merely indicates performing a task h and then doing it again - like setting the washing machine
to do a ‘double rinse’. Composing a function with itself is called ‘iterating’ the function, and we
could easily spend an entire course on just that. The last two problems in Example 5.1.1 serve
to demonstrate the associative property of functions. That is, when composing three (or more)
functions, as long as we keep the order the same, it doesn’t matter which two functions we compose
first. This property as well as another important property are listed in the theorem below.

4This shows us function composition isn’t commutative. An example of an operation we perform on two functions
which is commutative is function addition, which we defined in Section 1.5. In other words, the functions f + g and
g + f are always equal. Which of the remaining operations on functions we have discussed are commutative?

5A more mathematical example in which the order of two processes matters can be found in Section 1.7. In fact,
all of the transformations in that section can be viewed in terms of composing functions with linear functions.
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Theorem 5.1. Properties of Function Composition: Suppose f , g, and h are functions.

� h ◦ (g ◦ f) = (h ◦ g) ◦ f , provided the composite functions are defined.

� If I is defined as I(x) = x for all real numbers x, then I ◦ f = f ◦ I = f .

By repeated applications of Definition 5.1, we find (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))).
Similarly, ((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) = h(g(f(x))). This establishes that the formulas for the
two functions are the same. We leave it to the reader to think about why the domains of these
two functions are identical, too. These two facts establish the equality h ◦ (g ◦ f) = (h ◦ g) ◦ f .
A consequence of the associativity of function composition is that there is no need for parentheses
when we write h ◦ g ◦ f . The second property can also be verified using Definition 5.1. Recall that
the function I(x) = x is called the identity function and was introduced in Exercise 73 in Section
2.1. If we compose the function I with a function f , then we have (I ◦ f)(x) = I(f(x)) = f(x),
and a similar computation shows (f ◦ I)(x) = f(x). This establishes that we have an identity
for function composition much in the same way the real number 1 is an identity for real number
multiplication. That is, just as for any real number x, 1 · x = x · 1 = x , we have for any function
f , I ◦ f = f ◦ I = f . We shall see the concept of an identity take on great significance in the next
section. Out in the wild, function composition is often used to relate two quantities which may not
be directly related, but have a variable in common, as illustrated in our next example.

Example 5.1.2. The surface area S of a sphere is a function of its radius r and is given by the
formula S(r) = 4πr2. Suppose the sphere is being inflated so that the radius of the sphere is
increasing according to the formula r(t) = 3t2, where t is measured in seconds, t ≥ 0, and r is
measured in inches. Find and interpret (S ◦ r)(t).
Solution. If we look at the functions S(r) and r(t) individually, we see the former gives the surface
area of a sphere of a given radius while the latter gives the radius at a given time. So, given a
specific time, t, we could find the radius at that time, r(t) and feed that into S(r) to find the surface
area at that time. From this we see that the surface area S is ultimately a function of time t and
we find (S ◦ r)(t) = S(r(t)) = 4π(r(t))2 = 4π

(
3t2
)2

= 36πt4. This formula allows us to compute
the surface area directly given the time without going through the ‘middle man’ r.

A useful skill in Calculus is to be able to take a complicated function and break it down into a
composition of easier functions which our last example illustrates.

Example 5.1.3. Write each of the following functions as a composition of two or more (non-
identity) functions. Check your answer by performing the function composition.

1. F (x) = |3x− 1| 2. G(x) =
2

x2 + 1
3. H(x) =

√
x+ 1√
x− 1

Solution. There are many approaches to this kind of problem, and we showcase a different method-
ology in each of the solutions below.
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1. Our goal is to express the function F as F = g ◦ f for functions g and f . From Definition
5.1, we know F (x) = g(f(x)), and we can think of f(x) as being the ‘inside’ function and g
as being the ‘outside’ function. Looking at F (x) = |3x − 1| from an ‘inside versus outside’
perspective, we can think of 3x − 1 being inside the absolute value symbols. Taking this
cue, we define f(x) = 3x − 1. At this point, we have F (x) = |f(x)|. What is the outside
function? The function which takes the absolute value of its input, g(x) = |x|. Sure enough,
(g ◦ f)(x) = g(f(x)) = |f(x)| = |3x− 1| = F (x), so we are done.

2. We attack deconstructing G from an operational approach. Given an input x, the first step
is to square x, then add 1, then divide the result into 2. We will assign each of these steps a
function so as to write G as a composite of three functions: f , g and h. Our first function, f ,
is the function that squares its input, f(x) = x2. The next function is the function that adds
1 to its input, g(x) = x+ 1. Our last function takes its input and divides it into 2, h(x) = 2

x .
The claim is that G = h ◦ g ◦ f . We find

(h ◦ g ◦ f)(x) = h(g(f(x))) = h(g
(
x2
)
) = h

(
x2 + 1

)
=

2

x2 + 1
= G(x),

so we are done.

3. If we look H(x) =
√
x+1√
x−1

with an eye towards building a complicated function from simpler

functions, we see the expression
√
x is a simple piece of the larger function. If we define

f(x) =
√
x, we have H(x) = f(x)+1

f(x)−1 . If we want to decompose H = g ◦ f , then we can glean

the formula for g(x) by looking at what is being done to f(x). We take g(x) = x+1
x−1 , so

(g ◦ f)(x) = g(f(x)) =
f(x) + 1

f(x)− 1
=

√
x+ 1√
x− 1

= H(x),

as required.
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5.1.1 Exercises

In Exercises 1 - 12, use the given pair of functions to find the following values if they exist.

� (g ◦ f)(0) � (f ◦ g)(−1) � (f ◦ f)(2)

� (g ◦ f)(−3) � (f ◦ g)
(

1
2

)
� (f ◦ f)(−2)

1. f(x) = x2, g(x) = 2x+ 1 2. f(x) = 4− x, g(x) = 1− x2

3. f(x) = 4− 3x, g(x) = |x| 4. f(x) = |x− 1|, g(x) = x2 − 5

5. f(x) = 4x+ 5, g(x) =
√
x 6. f(x) =

√
3− x, g(x) = x2 + 1

7. f(x) = 6− x− x2, g(x) = x
√
x+ 10 8. f(x) = 3

√
x+ 1, g(x) = 4x2 − x

9. f(x) =
3

1− x
, g(x) =

4x

x2 + 1
10. f(x) =

x

x+ 5
, g(x) =

2

7− x2

11. f(x) =
2x

5− x2
, g(x) =

√
4x+ 1 12. f(x) =

√
2x+ 5, g(x) =

10x

x2 + 1

In Exercises 13 - 24, use the given pair of functions to find and simplify expressions for the following
functions and state the domain of each using interval notation.

� (g ◦ f)(x) � (f ◦ g)(x) � (f ◦ f)(x)

13. f(x) = 2x+ 3, g(x) = x2 − 9 14. f(x) = x2 − x+ 1, g(x) = 3x− 5

15. f(x) = x2 − 4, g(x) = |x| 16. f(x) = 3x− 5, g(x) =
√
x

17. f(x) = |x+ 1|, g(x) =
√
x 18. f(x) = 3− x2, g(x) =

√
x+ 1

19. f(x) = |x|, g(x) =
√

4− x 20. f(x) = x2 − x− 1, g(x) =
√
x− 5

21. f(x) = 3x− 1, g(x) =
1

x+ 3
22. f(x) =

3x

x− 1
, g(x) =

x

x− 3

23. f(x) =
x

2x+ 1
, g(x) =

2x+ 1

x
24. f(x) =

2x

x2 − 4
, g(x) =

√
1− x
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In Exercises 25 - 30, use f(x) = −2x, g(x) =
√
x and h(x) = |x| to find and simplify expressions

for the following functions and state the domain of each using interval notation.

25. (h ◦ g ◦ f)(x) 26. (h ◦ f ◦ g)(x) 27. (g ◦ f ◦ h)(x)

28. (g ◦ h ◦ f)(x) 29. (f ◦ h ◦ g)(x) 30. (f ◦ g ◦ h)(x)

In Exercises 31 - 40, write the given function as a composition of two or more non-identity functions.
(There are several correct answers, so check your answer using function composition.)

31. p(x) = (2x+ 3)3 32. P (x) =
(
x2 − x+ 1

)5
33. h(x) =

√
2x− 1 34. H(x) = |7− 3x|

35. r(x) =
2

5x+ 1
36. R(x) =

7

x2 − 1

37. q(x) =
|x|+ 1

|x| − 1
38. Q(x) =

2x3 + 1

x3 − 1

39. v(x) =
2x+ 1

3− 4x 40. w(x) =
x2

x4 + 1

41. Write the function F (x) =

√
x3 + 6

x3 − 9
as a composition of three or more non-identity functions.

42. Let g(x) = −x, h(x) = x+2, j(x) = 3x and k(x) = x−4. In what order must these functions
be composed with f(x) =

√
x to create F (x) = 3

√
−x+ 2− 4?

43. What linear functions could be used to transform f(x) = x3 into F (x) = −1
2(2x − 7)3 + 1?

What is the proper order of composition?

In Exercises 44 - 55, let f be the function defined by

f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)}

and let g be the function defined

g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}

. Find the value if it exists.

44. (f ◦ g)(3) 45. f(g(−1)) 46. (f ◦ f)(0)

47. (f ◦ g)(−3) 48. (g ◦ f)(3) 49. g(f(−3))
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50. (g ◦ g)(−2) 51. (g ◦ f)(−2) 52. g(f(g(0)))

53. f(f(f(−1))) 54. f(f(f(f(f(1))))) 55. (g ◦ g ◦ · · · ◦ g)︸ ︷︷ ︸
n times

(0)

In Exercises 56 - 61, use the graphs of y = f(x) and y = g(x) below to find the function value.

x

y

1 2 3 4

1

2

3

4

y = f(x)

x

y

1 2 3 4

1

2

3

4

y = g(x)

56. (g ◦ f)(1) 57. (f ◦ g)(3) 58. (g ◦ f)(2)

59. (f ◦ g)(0) 60. (f ◦ f)(1) 61. (g ◦ g)(1)

62. The volume V of a cube is a function of its side length x. Let’s assume that x = t + 1 is
also a function of time t, where x is measured in inches and t is measured in minutes. Find
a formula for V as a function of t.

63. Suppose a local vendor charges $2 per hot dog and that the number of hot dogs sold per hour
x is given by x(t) = −4t2 + 20t+ 92, where t is the number of hours since 10 AM, 0 ≤ t ≤ 4.

(a) Find an expression for the revenue per hour R as a function of x.

(b) Find and simplify (R ◦ x) (t). What does this represent?

(c) What is the revenue per hour at noon?

64. Discuss with your classmates how ‘real-world’ processes such as filling out federal income tax
forms or computing your final course grade could be viewed as a use of function composition.
Find a process for which composition with itself (iteration) makes sense.
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5.1.2 Answers

1. For f(x) = x2 and g(x) = 2x+ 1,

� (g ◦ f)(0) = 1 � (f ◦ g)(−1) = 1 � (f ◦ f)(2) = 16

� (g ◦ f)(−3) = 19 � (f ◦ g)
(

1
2

)
= 4 � (f ◦ f)(−2) = 16

2. For f(x) = 4− x and g(x) = 1− x2,

� (g ◦ f)(0) = −15 � (f ◦ g)(−1) = 4 � (f ◦ f)(2) = 2

� (g ◦ f)(−3) = −48 � (f ◦ g)
(

1
2

)
= 13

4 � (f ◦ f)(−2) = −2

3. For f(x) = 4− 3x and g(x) = |x|,

� (g ◦ f)(0) = 4 � (f ◦ g)(−1) = 1 � (f ◦ f)(2) = 10

� (g ◦ f)(−3) = 13 � (f ◦ g)
(

1
2

)
= 5

2 � (f ◦ f)(−2) = −26

4. For f(x) = |x− 1| and g(x) = x2 − 5,

� (g ◦ f)(0) = −4 � (f ◦ g)(−1) = 5 � (f ◦ f)(2) = 0

� (g ◦ f)(−3) = 11 � (f ◦ g)
(

1
2

)
= 23

4 � (f ◦ f)(−2) = 2

5. For f(x) = 4x+ 5 and g(x) =
√
x,

� (g ◦ f)(0) =
√

5 � (f ◦ g)(−1) is not real � (f ◦ f)(2) = 57

� (g ◦ f)(−3) is not real � (f ◦ g)
(

1
2

)
= 5 + 2

√
2 � (f ◦ f)(−2) = −7

6. For f(x) =
√

3− x and g(x) = x2 + 1,

� (g ◦ f)(0) = 4 � (f ◦ g)(−1) = 1 � (f ◦ f)(2) =
√

2

� (g ◦ f)(−3) = 7 � (f ◦ g)
(

1
2

)
=
√

7
2 � (f ◦ f)(−2) =

√
3−
√

5



5.1 Function Composition 373

7. For f(x) = 6− x− x2 and g(x) = x
√
x+ 10,

� (g ◦ f)(0) = 24 � (f ◦ g)(−1) = 0 � (f ◦ f)(2) = 6

� (g ◦ f)(−3) = 0 � (f ◦ g)
(

1
2

)
= 27−2

√
42

8
� (f ◦ f)(−2) = −14

8. For f(x) = 3
√
x+ 1 and g(x) = 4x2 − x,

� (g ◦ f)(0) = 3 � (f ◦ g)(−1) = 3
√

6 � (f ◦ f)(2) =
3
√

3
√

3 + 1

� (g ◦ f)(−3) = 4 3
√

4 + 3
√

2 � (f ◦ g)
(

1
2

)
=

3√12
2

� (f ◦ f)(−2) = 0

9. For f(x) = 3
1−x and g(x) = 4x

x2+1
,

� (g ◦ f)(0) = 6
5 � (f ◦ g)(−1) = 1 � (f ◦ f)(2) = 3

4

� (g ◦ f)(−3) = 48
25 � (f ◦ g)

(
1
2

)
= −5 � (f ◦ f)(−2) is undefined

10. For f(x) = x
x+5 and g(x) = 2

7−x2 ,

� (g ◦ f)(0) = 2
7 � (f ◦ g)(−1) = 1

16 � (f ◦ f)(2) = 2
37

� (g ◦ f)(−3) = 8
19 � (f ◦ g)

(
1
2

)
= 8

143 � (f ◦ f)(−2) = − 2
13

11. For f(x) = 2x
5−x2 and g(x) =

√
4x+ 1,

� (g ◦ f)(0) = 1 � (f ◦ g)(−1) is not real � (f ◦ f)(2) = − 8
11

� (g ◦ f)(−3) =
√

7 � (f ◦ g)
(

1
2

)
=
√

3 � (f ◦ f)(−2) = 8
11

12. For f(x) =
√

2x+ 5 and g(x) = 10x
x2+1

,

� (g ◦ f)(0) = 5
√

5
3

� (f ◦ g)(−1) is not real � (f ◦ f)(2) =
√

11

� (g ◦ f)(−3) is not real � (f ◦ g)
(

1
2

)
=
√

13 � (f ◦ f)(−2) =
√

7

13. For f(x) = 2x+ 3 and g(x) = x2 − 9

� (g ◦ f)(x) = 4x2 + 12x, domain: (−∞,∞)

� (f ◦ g)(x) = 2x2 − 15, domain: (−∞,∞)

� (f ◦ f)(x) = 4x+ 9, domain: (−∞,∞)
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14. For f(x) = x2 − x+ 1 and g(x) = 3x− 5

� (g ◦ f)(x) = 3x2 − 3x− 2, domain: (−∞,∞)

� (f ◦ g)(x) = 9x2 − 33x+ 31, domain: (−∞,∞)

� (f ◦ f)(x) = x4 − 2x3 + 2x2 − x+ 1, domain: (−∞,∞)

15. For f(x) = x2 − 4 and g(x) = |x|

� (g ◦ f)(x) = |x2 − 4|, domain: (−∞,∞)

� (f ◦ g)(x) = |x|2 − 4 = x2 − 4, domain: (−∞,∞)

� (f ◦ f)(x) = x4 − 8x2 + 12, domain: (−∞,∞)

16. For f(x) = 3x− 5 and g(x) =
√
x

� (g ◦ f)(x) =
√

3x− 5, domain:
[

5
3 ,∞

)
� (f ◦ g)(x) = 3

√
x− 5, domain: [0,∞)

� (f ◦ f)(x) = 9x− 20, domain: (−∞,∞)

17. For f(x) = |x+ 1| and g(x) =
√
x

� (g ◦ f)(x) =
√
|x+ 1|, domain: (−∞,∞)

� (f ◦ g)(x) = |
√
x+ 1| =

√
x+ 1, domain: [0,∞)

� (f ◦ f)(x) = ||x+ 1|+ 1| = |x+ 1|+ 1, domain: (−∞,∞)

18. For f(x) = 3− x2 and g(x) =
√
x+ 1

� (g ◦ f)(x) =
√

4− x2, domain: [−2, 2]

� (f ◦ g)(x) = 2− x, domain: [−1,∞)

� (f ◦ f)(x) = −x4 + 6x2 − 6, domain: (−∞,∞)

19. For f(x) = |x| and g(x) =
√

4− x

� (g ◦ f)(x) =
√

4− |x|, domain: [−4, 4]

� (f ◦ g)(x) = |
√

4− x| =
√

4− x, domain: (−∞, 4]

� (f ◦ f)(x) = ||x|| = |x|, domain: (−∞,∞)
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20. For f(x) = x2 − x− 1 and g(x) =
√
x− 5

� (g ◦ f)(x) =
√
x2 − x− 6, domain: (−∞,−2] ∪ [3,∞)

� (f ◦ g)(x) = x− 6−
√
x− 5, domain: [5,∞)

� (f ◦ f)(x) = x4 − 2x3 − 2x2 + 3x+ 1, domain: (−∞,∞)

21. For f(x) = 3x− 1 and g(x) = 1
x+3

� (g ◦ f)(x) = 1
3x+2 , domain:

(
−∞,−2

3

)
∪
(
−2

3 ,∞
)

� (f ◦ g)(x) = − x
x+3 , domain: (−∞,−3) ∪ (−3,∞)

� (f ◦ f)(x) = 9x− 4, domain: (−∞,∞)

22. For f(x) = 3x
x−1 and g(x) = x

x−3

� (g ◦ f)(x) = x, domain: (−∞, 1) ∪ (1,∞)

� (f ◦ g)(x) = x, domain: (−∞, 3) ∪ (3,∞)

� (f ◦ f)(x) = 9x
2x+1 , domain:

(
−∞,−1

2

)
∪
(
−1

2 , 1
)
∪ (1,∞)

23. For f(x) = x
2x+1 and g(x) = 2x+1

x

� (g ◦ f)(x) = 4x+1
x , domain:

(
−∞,−1

2

)
∪
(
−1

2 , 0),∪(0,∞
)

� (f ◦ g)(x) = 2x+1
5x+2 , domain:

(
−∞,−2

5

)
∪
(
−2

5 , 0
)
∪ (0,∞)

� (f ◦ f)(x) = x
4x+1 , domain:

(
−∞,−1

2

)
∪
(
−1

2 ,−
1
4

)
∪
(
−1

4 ,∞
)

24. For f(x) = 2x
x2−4

and g(x) =
√

1− x

� (g ◦ f)(x) =
√

x2−2x−4
x2−4

, domain: (−∞,−2) ∪
[
1−
√

5, 2
)
∪
[
1 +
√

5,∞
)

� (f ◦ g)(x) = −2
√

1−x
x+3 , domain: (−∞,−3) ∪ (−3, 1]

� (f ◦ f)(x) = 4x−x3

x4−9x2+16
, domain:

(
−∞,−1+

√
17

2

)
∪
(
−1+

√
17

2 ,−2
)
∪
(
−2, 1−

√
17

2

)
∪(

1−
√

17
2 , −1+

√
17

2

)
∪
(
−1+

√
17

2 , 2
)
∪
(

2, 1+
√

17
2

)
∪
(

1+
√

17
2 ,∞

)
25. (h ◦ g ◦ f)(x) = |

√
−2x| =

√
−2x, domain: (−∞, 0]

26. (h ◦ f ◦ g)(x) = | − 2
√
x| = 2

√
x, domain: [0,∞)

27. (g ◦ f ◦ h)(x) =
√
−2|x|, domain: {0}

28. (g ◦ h ◦ f)(x) =
√
| − 2x| =

√
2|x|, domain: (−∞,∞)

29. (f ◦ h ◦ g)(x) = −2|
√
x| = −2

√
x, domain: [0,∞)
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30. (f ◦ g ◦ h)(x) = −2
√
|x|, , domain: (−∞,∞)

31. Let f(x) = 2x+ 3 and g(x) = x3, then p(x) = (g ◦ f)(x).

32. Let f(x) = x2 − x+ 1 and g(x) = x5, P (x) = (g ◦ f)(x).

33. Let f(x) = 2x− 1 and g(x) =
√
x, then h(x) = (g ◦ f)(x).

34. Let f(x) = 7− 3x and g(x) = |x|, then H(x) = (g ◦ f)(x).

35. Let f(x) = 5x+ 1 and g(x) = 2
x , then r(x) = (g ◦ f)(x).

36. Let f(x) = x2 − 1 and g(x) = 7
x , then R(x) = (g ◦ f)(x).

37. Let f(x) = |x| and g(x) = x+1
x−1 , then q(x) = (g ◦ f)(x).

38. Let f(x) = x3 and g(x) = 2x+1
x−1 , then Q(x) = (g ◦ f)(x).

39. Let f(x) = 2x and g(x) = x+1
3−2x , then v(x) = (g ◦ f)(x).

40. Let f(x) = x2 and g(x) = x
x2+1

, then w(x) = (g ◦ f)(x).

41. F (x) =
√

x3+6
x3−9

= (h(g(f(x))) where f(x) = x3, g(x) = x+6
x−9 and h(x) =

√
x.

42. F (x) = 3
√
−x+ 2− 4 = k(j(f(h(g(x)))))

43. One possible solution is F (x) = −1
2(2x− 7)3 + 1 = k(j(f(h(g(x))))) where g(x) = 2x, h(x) =

x − 7, j(x) = −1
2x and k(x) = x + 1. You could also have F (x) = H(f(G(x))) where

G(x) = 2x− 7 and H(x) = −1
2x+ 1.

44. (f ◦ g)(3) = f(g(3)) = f(2) = 4 45. f(g(−1)) = f(−4) which is undefined

46. (f ◦ f)(0) = f(f(0)) = f(1) = 3 47. (f ◦ g)(−3) = f(g(−3)) = f(−2) = 2

48. (g ◦ f)(3) = g(f(3)) = g(−1) = −4 49. g(f(−3)) = g(4) which is undefined

50. (g ◦ g)(−2) = g(g(−2)) = g(0) = 0 51. (g ◦ f)(−2) = g(f(−2)) = g(2) = 1

52. g(f(g(0))) = g(f(0)) = g(1) = −3 53. f(f(f(−1))) = f(f(0)) = f(1) = 3

54. f(f(f(f(f(1))))) = f(f(f(f(3)))) =
f(f(f(−1))) = f(f(0)) = f(1) = 3

55. (g ◦ g ◦ · · · ◦ g)︸ ︷︷ ︸
n times

(0) = 0
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56. (g ◦ f)(1) = 3 57. (f ◦ g)(3) = 4 58. (g ◦ f)(2) = 0

59. (f ◦ g)(0) = 4 60. (f ◦ f)(1) = 3 61. (g ◦ g)(1) = 0

62. V (x) = x3 so V (x(t)) = (t+ 1)3

63. (a) R(x) = 2x

(b) (R ◦ x) (t) = −8t2 + 40t+ 184, 0 ≤ t ≤ 4. This gives the revenue per hour as a function
of time.

(c) Noon corresponds to t = 2, so (R ◦ x) (2) = 232. The hourly revenue at noon is $232
per hour.
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5.2 Inverse Functions

Thinking of a function as a process like we did in Section 1.4, in this section we seek another
function which might reverse that process. As in real life, we will find that some processes (like
putting on socks and shoes) are reversible while some (like cooking a steak) are not. We start by
discussing a very basic function which is reversible, f(x) = 3x+ 4. Thinking of f as a process, we
start with an input x and apply two steps, as we saw in Section 1.4

1. multiply by 3

2. add 4

To reverse this process, we seek a function g which will undo each of these steps and take the output
from f , 3x+ 4, and return the input x. If we think of the real-world reversible two-step process of
first putting on socks then putting on shoes, to reverse the process, we first take off the shoes, and
then we take off the socks. In much the same way, the function g should undo the second step of
f first. That is, the function g should

1. subtract 4

2. divide by 3

Following this procedure, we get g(x) = x−4
3 . Let’s check to see if the function g does the job.

If x = 5, then f(5) = 3(5) + 4 = 15 + 4 = 19. Taking the output 19 from f , we substitute it
into g to get g(19) = 19−4

3 = 15
3 = 5, which is our original input to f . To check that g does

the job for all x in the domain of f , we take the generic output from f , f(x) = 3x + 4, and

substitute that into g. That is, g(f(x)) = g(3x + 4) = (3x+4)−4
3 = 3x

3 = x, which is our original
input to f . If we carefully examine the arithmetic as we simplify g(f(x)), we actually see g first
‘undoing’ the addition of 4, and then ‘undoing’ the multiplication by 3. Not only does g undo
f , but f also undoes g. That is, if we take the output from g, g(x) = x−4

3 , and put that into
f , we get f(g(x)) = f

(
x−4

3

)
= 3

(
x−4

3

)
+ 4 = (x − 4) + 4 = x. Using the language of function

composition developed in Section 5.1, the statements g(f(x)) = x and f(g(x)) = x can be written
as (g ◦ f)(x) = x and (f ◦ g)(x) = x, respectively. Abstractly, we can visualize the relationship
between f and g in the diagram below.

f

g

x = g(f(x)) y = f(x)
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The main idea to get from the diagram is that g takes the outputs from f and returns them to
their respective inputs, and conversely, f takes outputs from g and returns them to their respective
inputs. We now have enough background to state the central definition of the section.

Definition 5.2. Suppose f and g are two functions such that

1. (g ◦ f)(x) = x for all x in the domain of f and

2. (f ◦ g)(x) = x for all x in the domain of g

then f and g are inverses of each other and the functions f and g are said to be invertible.

We now formalize the concept that inverse functions exchange inputs and outputs.

Theorem 5.2. Properties of Inverse Functions: Suppose f and g are inverse functions.

� The rangea of f is the domain of g and the domain of f is the range of g

� f(a) = b if and only if g(b) = a

� (a, b) is on the graph of f if and only if (b, a) is on the graph of g

aRecall this is the set of all outputs of a function.

Theorem 5.2 is a consequence of Definition 5.2 and the Fundamental Graphing Principle for Func-
tions. We note the third property in Theorem 5.2 tells us that the graphs of inverse functions are
reflections about the line y = x. For a proof of this, see Example 1.1.7 in Section 1.1 and Exercise
72 in Section 2.1. For example, we plot the inverse functions f(x) = 3x+ 4 and g(x) = x−4

3 below.

x

y

y = f(x)

y = g(x)

y = x

−2 −1 1 2

−1

−2

1

2

If we abstract one step further, we can express the sentiment in Definition 5.2 by saying that f and
g are inverses if and only if g ◦ f = I1 and f ◦ g = I2 where I1 is the identity function restricted1

to the domain of f and I2 is the identity function restricted to the domain of g. In other words,
I1(x) = x for all x in the domain of f and I2(x) = x for all x in the domain of g. Using this
description of inverses along with the properties of function composition listed in Theorem 5.1,
we can show that function inverses are unique.2 Suppose g and h are both inverses of a function

1The identity function I, which was introduced in Section 2.1 and mentioned in Theorem 5.1, has a domain of all
real numbers. Since the domains of f and g may not be all real numbers, we need the restrictions listed here.

2In other words, invertible functions have exactly one inverse.
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f . By Theorem 5.2, the domain of g is equal to the domain of h, since both are the range of f .
This means the identity function I2 applies both to the domain of h and the domain of g. Thus
h = h ◦ I2 = h ◦ (f ◦ g) = (h ◦ f) ◦ g = I1 ◦ g = g, as required.3 We summarize the discussion of the
last two paragraphs in the following theorem.4

Theorem 5.3. Uniqueness of Inverse Functions and Their Graphs : Suppose f is an
invertible function.

� There is exactly one inverse function for f , denoted f−1 (read f -inverse)

� The graph of y = f−1(x) is the reflection of the graph of y = f(x) across the line y = x.

The notation f−1 is an unfortunate choice since you’ve been programmed since Elementary Algebra
to think of this as 1

f . This is most definitely not the case since, for instance, f(x) = 3x+ 4 has as

its inverse f−1(x) = x−4
3 , which is certainly different than 1

f(x) = 1
3x+4 . Why does this confusing

notation persist? As we mentioned in Section 5.1, the identity function I is to function composition
what the real number 1 is to real number multiplication. The choice of notation f−1 alludes to the
property that f−1 ◦ f = I1 and f ◦ f−1 = I2, in much the same way as 3−1 · 3 = 1 and 3 · 3−1 = 1.

Let’s turn our attention to the function f(x) = x2. Is f invertible? A likely candidate for the inverse
is the function g(x) =

√
x. Checking the composition yields (g◦f)(x) = g(f(x)) =

√
x2 = |x|, which

is not equal to x for all x in the domain (−∞,∞). For example, when x = −2, f(−2) = (−2)2 = 4,
but g(4) =

√
4 = 2, which means g failed to return the input −2 from its output 4. What g did,

however, is match the output 4 to a different input, namely 2, which satisfies f(2) = 4. This issue
is presented schematically in the picture below.

f

g

x = −2

x = 2

4

We see from the diagram that since both f(−2) and f(2) are 4, it is impossible to construct a
function which takes 4 back to both x = 2 and x = −2. (By definition, a function matches a
real number with exactly one other real number.) From a graphical standpoint, we know that if

3It is an excellent exercise to explain each step in this string of equalities.
4In the interests of full disclosure, the authors would like to admit that much of the discussion in the previous

paragraphs could have easily been avoided had we appealed to the description of a function as a set of ordered pairs.
We make no apology for our discussion from a function composition standpoint, however, since it exposes the reader
to more abstract ways of thinking of functions and inverses. We will revisit this concept again in Chapter 8.
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y = f−1(x) exists, its graph can be obtained by reflecting y = x2 about the line y = x, in accordance
with Theorem 5.3. Doing so produces

(−2, 4) (2, 4)

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = f(x) = x2

reflect across y = x
−−−−−−−−−−−−−−−→
switch x and y coordinates

(4,−2)

(4, 2)

x

y

1 2 3 4 5 6 7

−2

−1

1

2

y = f−1(x) ?

We see that the line x = 4 intersects the graph of the supposed inverse twice - meaning the graph
fails the Vertical Line Test, Theorem 1.1, and as such, does not represent y as a function of x. The
vertical line x = 4 on the graph on the right corresponds to the horizontal line y = 4 on the graph
of y = f(x). The fact that the horizontal line y = 4 intersects the graph of f twice means two
different inputs, namely x = −2 and x = 2, are matched with the same output, 4, which is the
cause of all of the trouble. In general, for a function to have an inverse, different inputs must go to
different outputs, or else we will run into the same problem we did with f(x) = x2. We give this
property a name.

Definition 5.3. A function f is said to be one-to-one if f matches different inputs to different
outputs. Equivalently, f is one-to-one if and only if whenever f(c) = f(d), then c = d.

Graphically, we detect one-to-one functions using the test below.

Theorem 5.4. The Horizontal Line Test: A function f is one-to-one if and only if no
horizontal line intersects the graph of f more than once.

We say that the graph of a function passes the Horizontal Line Test if no horizontal line intersects
the graph more than once; otherwise, we say the graph of the function fails the Horizontal Line
Test. We have argued that if f is invertible, then f must be one-to-one, otherwise the graph given
by reflecting the graph of y = f(x) about the line y = x will fail the Vertical Line Test. It turns
out that being one-to-one is also enough to guarantee invertibility. To see this, we think of f as
the set of ordered pairs which constitute its graph. If switching the x- and y-coordinates of the
points results in a function, then f is invertible and we have found f−1. This is precisely what the
Horizontal Line Test does for us: it checks to see whether or not a set of points describes x as a
function of y. We summarize these results below.
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Theorem 5.5. Equivalent Conditions for Invertibility: Suppose f is a function. The
following statements are equivalent.

� f is invertible

� f is one-to-one

� The graph of f passes the Horizontal Line Test

We put this result to work in the next example.

Example 5.2.1. Determine if the following functions are one-to-one in two ways: (a) analytically
using Definition 5.3 and (b) graphically using the Horizontal Line Test.

1. f(x) =
1− 2x

5
2. g(x) =

2x

1− x

3. h(x) = x2 − 2x+ 4 4. F = {(−1, 1), (0, 2), (2, 1)}

Solution.

1. (a) To determine if f is one-to-one analytically, we assume f(c) = f(d) and attempt to
deduce that c = d.

f(c) = f(d)

1− 2c

5
=

1− 2d

5
1− 2c = 1− 2d
−2c = −2d
c = d X

Hence, f is one-to-one.

(b) To check if f is one-to-one graphically, we look to see if the graph of y = f(x) passes the
Horizontal Line Test. We have that f is a non-constant linear function, which means its
graph is a non-horizontal line. Thus the graph of f passes the Horizontal Line Test.

2. (a) We begin with the assumption that g(c) = g(d) and try to show c = d.

g(c) = g(d)

2c

1− c
=

2d

1− d
2c(1− d) = 2d(1− c)
2c− 2cd = 2d− 2dc

2c = 2d
c = d X

We have shown that g is one-to-one.
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(b) We can graph g using the six step procedure outlined in Section 4.2. We get the sole
intercept at (0, 0), a vertical asymptote x = 1 and a horizontal asymptote (which the
graph never crosses) y = −2. We see from that the graph of g passes the Horizontal
Line Test.

x

y

−2 −1 1 2

−1

−2

1

2

y = f(x)

x

y

−2 −1 1 2−1

−2

−3

−4

−5

−6

1

2

3

4

y = g(x)

3. (a) We begin with h(c) = h(d). As we work our way through the problem, we encounter a
nonlinear equation. We move the non-zero terms to the left, leave a 0 on the right and
factor accordingly.

h(c) = h(d)
c2 − 2c+ 4 = d2 − 2d+ 4

c2 − 2c = d2 − 2d
c2 − d2 − 2c+ 2d = 0

(c+ d)(c− d)− 2(c− d) = 0
(c− d)((c+ d)− 2) = 0 factor by grouping

c− d = 0 or c+ d− 2 = 0
c = d or c = 2− d

We get c = d as one possibility, but we also get the possibility that c = 2 − d. This
suggests that f may not be one-to-one. Taking d = 0, we get c = 0 or c = 2. With
f(0) = 4 and f(2) = 4, we have produced two different inputs with the same output
meaning f is not one-to-one.

(b) We note that h is a quadratic function and we graph y = h(x) using the techniques
presented in Section 2.3. The vertex is (1, 3) and the parabola opens upwards. We see
immediately from the graph that h is not one-to-one, since there are several horizontal
lines which cross the graph more than once.

4. (a) The function F is given to us as a set of ordered pairs. The condition F (c) = F (d)
means the outputs from the function (the y-coordinates of the ordered pairs) are the
same. We see that the points (−1, 1) and (2, 1) are both elements of F with F (−1) = 1
and F (2) = 1. Since −1 6= 2, we have established that F is not one-to-one.

(b) Graphically, we see the horizontal line y = 1 crosses the graph more than once. Hence,
the graph of F fails the Horizontal Line Test.
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y = h(x)

x

y

−2 −1 1 2

1
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y = F (x)

We have shown that the functions f and g in Example 5.2.1 are one-to-one. This means they are
invertible, so it is natural to wonder what f−1(x) and g−1(x) would be. For f(x) = 1−2x

5 , we can
think our way through the inverse since there is only one occurrence of x. We can track step-by-step
what is done to x and reverse those steps as we did at the beginning of the chapter. The function
g(x) = 2x

1−x is a bit trickier since x occurs in two places. When one evaluates g(x) for a specific
value of x, which is first, the 2x or the 1 − x? We can imagine functions more complicated than
these so we need to develop a general methodology to attack this problem. Theorem 5.2 tells us
equation y = f−1(x) is equivalent to f(y) = x and this is the basis of our algorithm.

Steps for finding the Inverse of a One-to-one Function

1. Write y = f(x)

2. Interchange x and y

3. Solve x = f(y) for y to obtain y = f−1(x)

Note that we could have simply written ‘Solve x = f(y) for y’ and be done with it. The act of
interchanging the x and y is there to remind us that we are finding the inverse function by switching
the inputs and outputs.

Example 5.2.2. Find the inverse of the following one-to-one functions. Check your answers
analytically using function composition and graphically.

1. f(x) =
1− 2x

5
2. g(x) =

2x

1− x

Solution.

1. As we mentioned earlier, it is possible to think our way through the inverse of f by recording
the steps we apply to x and the order in which we apply them and then reversing those steps
in the reverse order. We encourage the reader to do this. We, on the other hand, will practice
the algorithm. We write y = f(x) and proceed to switch x and y
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y = f(x)

y =
1− 2x

5

x =
1− 2y

5
switch x and y

5x = 1− 2y
5x− 1 = −2y
5x− 1

−2
= y

y = −5

2
x+

1

2

We have f−1(x) = −5
2x+1

2 . To check this answer analytically, we first check that
(
f−1 ◦ f

)
(x) =

x for all x in the domain of f , which is all real numbers.(
f−1 ◦ f

)
(x) = f−1(f(x))

= −5

2
f(x) +

1

2

= −5

2

(
1− 2x

5

)
+

1

2

= −1

2
(1− 2x) +

1

2

= −1

2
+ x+

1

2
= x X

We now check that
(
f ◦ f−1

)
(x) = x for all x in the range of f which is also all real numbers.

(Recall that the domain of f−1) is the range of f .)(
f ◦ f−1

)
(x) = f(f−1(x))

=
1− 2f−1(x)

5

=
1− 2

(
−5

2x+ 1
2

)
5

=
1 + 5x− 1

5

=
5x

5
= x X

To check our answer graphically, we graph y = f(x) and y = f−1(x) on the same set of axes.5

They appear to be reflections across the line y = x.

5Note that if you perform your check on a calculator for more sophisticated functions, you’ll need to take advantage
of the ‘ZoomSquare’ feature to get the correct geometric perspective.
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x

y

y = f(x)

y = f−1(x)

y = x

−4 −3 −2 −1 1 2 3 4

−1

−2

1

2

2. To find g−1(x), we start with y = g(x). We note that the domain of g is (−∞, 1) ∪ (1,∞).

y = g(x)

y =
2x

1− x
x =

2y

1− y
switch x and y

x(1− y) = 2y

x− xy = 2y

x = xy + 2y

x = y(x+ 2) factor

y =
x

x+ 2

We obtain g−1(x) = x
x+2 . To check this analytically, we first check

(
g−1 ◦ g

)
(x) = x for all x

in the domain of g, that is, for all x 6= 1.(
g−1 ◦ g

)
(x) = g−1(g(x))

= g−1

(
2x

1− x

)

=

(
2x

1− x

)
(

2x

1− x

)
+ 2

=

(
2x

1− x

)
(

2x

1− x

)
+ 2

· (1− x)

(1− x)
clear denominators
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=
2x

2x+ 2(1− x)

=
2x

2x+ 2− 2x

=
2x

2
= x X

Next, we check g
(
g−1(x)

)
= x for all x in the range of g. From the graph of g in Example

5.2.1, we have that the range of g is (−∞,−2) ∪ (−2,∞). This matches the domain we get
from the formula g−1(x) = x

x+2 , as it should.

(
g ◦ g−1

)
(x) = g

(
g−1(x)

)
= g

(
x

x+ 2

)

=

2

(
x

x+ 2

)
1−

(
x

x+ 2

)

=

2

(
x

x+ 2

)
1−

(
x

x+ 2

) · (x+ 2)

(x+ 2)
clear denominators

=
2x

(x+ 2)− x

=
2x

2

= x X

Graphing y = g(x) and y = g−1(x) on the same set of axes is busy, but we can see the sym-
metric relationship if we thicken the curve for y = g−1(x). Note that the vertical asymptote
x = 1 of the graph of g corresponds to the horizontal asymptote y = 1 of the graph of g−1,
as it should since x and y are switched. Similarly, the horizontal asymptote y = −2 of the
graph of g corresponds to the vertical asymptote x = −2 of the graph of g−1.
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y = g(x) and y = g−1(x)

We now return to f(x) = x2. We know that f is not one-to-one, and thus, is not invertible.
However, if we restrict the domain of f , we can produce a new function g which is one-to-one. If
we define g(x) = x2, x ≥ 0, then we have

x

y

−2 −1 1 2

1
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6

7

y = f(x) = x2
restrict domain to x ≥ 0
−−−−−−−−−−−−−−−→

x

y

−2 −1 1 2

1

2

3

4

5

6

7

y = g(x) = x2, x ≥ 0

The graph of g passes the Horizontal Line Test. To find an inverse of g, we proceed as usual

y = g(x)
y = x2, x ≥ 0
x = y2, y ≥ 0 switch x and y
y = ±

√
x

y =
√
x since y ≥ 0



5.2 Inverse Functions 389

We get g−1(x) =
√
x. At first it looks like we’ll run into the same trouble as before, but when

we check the composition, the domain restriction on g saves the day. We get
(
g−1 ◦ g

)
(x) =

g−1(g(x)) = g−1
(
x2
)

=
√
x2 = |x| = x, since x ≥ 0. Checking

(
g ◦ g−1

)
(x) = g

(
g−1(x)

)
=

g (
√
x) = (

√
x)

2
= x. Graphing6 g and g−1 on the same set of axes shows that they are reflections

about the line y = x.

y = x

y = g(x)

y = g−1(x)

x

y

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Our next example continues the theme of domain restriction.

Example 5.2.3. Graph the following functions to show they are one-to-one and find their inverses.
Check your answers analytically using function composition and graphically.

1. j(x) = x2 − 2x+ 4, x ≤ 1. 2. k(x) =
√
x+ 2− 1

Solution.

1. The function j is a restriction of the function h from Example 5.2.1. Since the domain of j
is restricted to x ≤ 1, we are selecting only the ‘left half’ of the parabola. We see that the
graph of j passes the Horizontal Line Test and thus j is invertible.

x

y

1 2

−1

1

2

3

4

5

6

y = j(x)

6We graphed y =
√
x in Section 1.7.
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We now use our algorithm7 to find j−1(x).

y = j(x)
y = x2 − 2x+ 4, x ≤ 1
x = y2 − 2y + 4, y ≤ 1 switch x and y
0 = y2 − 2y + 4− x

y =
2±

√
(−2)2 − 4(1)(4− x)

2(1)
quadratic formula, c = 4− x

y =
2±
√

4x− 12

2

y =
2±

√
4(x− 3)

2

y =
2± 2

√
x− 3

2

y =
2
(
1±
√
x− 3

)
2

y = 1±
√
x− 3

y = 1−
√
x− 3 since y ≤ 1.

We have j−1(x) = 1 −
√
x− 3. When we simplify

(
j−1 ◦ j

)
(x), we need to remember that

the domain of j is x ≤ 1.

(
j−1 ◦ j

)
(x) = j−1(j(x))

= j−1
(
x2 − 2x+ 4

)
, x ≤ 1

= 1−
√

(x2 − 2x+ 4)− 3

= 1−
√
x2 − 2x+ 1

= 1−
√

(x− 1)2

= 1− |x− 1|
= 1− (−(x− 1)) since x ≤ 1
= x X

Checking j ◦ j−1, we get

(
j ◦ j−1

)
(x) = j

(
j−1(x)

)
= j

(
1−
√
x− 3

)
=

(
1−
√
x− 3

)2 − 2
(
1−
√
x− 3

)
+ 4

= 1− 2
√
x− 3 +

(√
x− 3

)2 − 2 + 2
√
x− 3 + 4

= 3 + x− 3
= x X

7Here, we use the Quadratic Formula to solve for y. For ‘completeness,’ we note you can (and should!) also
consider solving for y by ‘completing’ the square.
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Using what we know from Section 1.7, we graph y = j−1(x) and y = j(x) below.

y = j(x)

y = j−1(x)

y = x

x

y

1 2 3 4 5 6

−1

1

2

3

4

5

6

2. We graph y = k(x) =
√
x+ 2−1 using what we learned in Section 1.7 and see k is one-to-one.

x

y

−2 −1 1 2

−2

−1

1

2

y = k(x)

We now try to find k−1.

y = k(x)
y =

√
x+ 2− 1

x =
√
y + 2− 1 switch x and y

x+ 1 =
√
y + 2

(x+ 1)2 =
(√
y + 2

)2
x2 + 2x+ 1 = y + 2

y = x2 + 2x− 1

We have k−1(x) = x2 +2x−1. Based on our experience, we know something isn’t quite right.
We determined k−1 is a quadratic function, and we have seen several times in this section
that these are not one-to-one unless their domains are suitably restricted. Theorem 5.2 tells
us that the domain of k−1 is the range of k. From the graph of k, we see that the range
is [−1,∞), which means we restrict the domain of k−1 to x ≥ −1. We now check that this
works in our compositions.
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(
k−1 ◦ k

)
(x) = k−1(k(x))

= k−1
(√
x+ 2− 1

)
, x ≥ −2

=
(√
x+ 2− 1

)2
+ 2

(√
x+ 2− 1

)
− 1

=
(√
x+ 2

)2 − 2
√
x+ 2 + 1 + 2

√
x+ 2− 2− 1

= x+ 2− 2
= x X

and

(
k ◦ k−1

)
(x) = k

(
x2 + 2x− 1

)
x ≥ −1

=
√

(x2 + 2x− 1) + 2− 1

=
√
x2 + 2x+ 1− 1

=
√

(x+ 1)2 − 1
= |x+ 1| − 1
= x+ 1− 1 since x ≥ −1
= x X

Graphically, everything checks out as well, provided that we remember the domain restriction
on k−1 means we take the right half of the parabola.

y = k(x)

y = k−1(x)

x

y

−2 −1 1 2

−2

−1

1

2

Our last example of the section gives an application of inverse functions.

Example 5.2.4. Recall from Section 2.1 that the price-demand equation for the PortaBoy game
system is p(x) = −1.5x + 250 for 0 ≤ x ≤ 166, where x represents the number of systems sold
weekly and p is the price per system in dollars.
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1. Explain why p is one-to-one and find a formula for p−1(x). State the restricted domain.

2. Find and interpret p−1(220).

3. Recall from Section 2.3 that the weekly profit P , in dollars, as a result of selling x systems is
given by P (x) = −1.5x2 + 170x− 150. Find and interpret

(
P ◦ p−1

)
(x).

4. Use your answer to part 3 to determine the price per PortaBoy which would yield the maxi-
mum profit. Compare with Example 2.3.3.

Solution.

1. We leave to the reader to show the graph of p(x) = −1.5x + 250, 0 ≤ x ≤ 166, is a line
segment from (0, 250) to (166, 1), and as such passes the Horizontal Line Test. Hence, p is
one-to-one. We find the expression for p−1(x) as usual and get p−1(x) = 500−2x

3 . The domain
of p−1 should match the range of p, which is [1, 250], and as such, we restrict the domain of
p−1 to 1 ≤ x ≤ 250.

2. We find p−1(220) = 500−2(220)
3 = 20. Since the function p took as inputs the weekly sales and

furnished the price per system as the output, p−1 takes the price per system and returns the
weekly sales as its output. Hence, p−1(220) = 20 means 20 systems will be sold in a week if
the price is set at $220 per system.

3. We compute
(
P ◦ p−1

)
(x) = P

(
p−1(x)

)
= P

(
500−2x

3

)
= −1.5

(
500−2x

3

)2
+170

(
500−2x

3

)
−150.

After a hefty amount of Elementary Algebra,8 we obtain
(
P ◦ p−1

)
(x) = −2

3x
2 +220x− 40450

3 .
To understand what this means, recall that the original profit function P gave us the weekly
profit as a function of the weekly sales. The function p−1 gives us the weekly sales as a
function of the price. Hence, P ◦ p−1 takes as its input a price. The function p−1 returns the
weekly sales, which in turn is fed into P to return the weekly profit. Hence,

(
P ◦ p−1

)
(x)

gives us the weekly profit (in dollars) as a function of the price per system, x, using the weekly
sales p−1(x) as the ‘middle man’.

4. We know from Section 2.3 that the graph of y =
(
P ◦ p−1

)
(x) is a parabola opening down-

wards. The maximum profit is realized at the vertex. Since we are concerned only with the
price per system, we need only find the x-coordinate of the vertex. Identifying a = −2

3 and

b = 220, we get, by the Vertex Formula, Equation 2.4, x = − b
2a = 165. Hence, weekly profit

is maximized if we set the price at $165 per system. Comparing this with our answer from
Example 2.3.3, there is a slight discrepancy to the tune of $0.50. We leave it to the reader to
balance the books appropriately.

8It is good review to actually do this!
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5.2.1 Exercises

In Exercises 1 - 20, show that the given function is one-to-one and find its inverse. Check your
answers algebraically and graphically. Verify that the range of f is the domain of f−1 and vice-versa.

1. f(x) = 6x− 2 2. f(x) = 42− x

3. f(x) =
x− 2

3
+ 4 4. f(x) = 1− 4 + 3x

5

5. f(x) =
√

3x− 1 + 5 6. f(x) = 2−
√
x− 5

7. f(x) = 3
√
x− 1− 4 8. f(x) = 1− 2

√
2x+ 5

9. f(x) = 5
√

3x− 1 10. f(x) = 3− 3
√
x− 2

11. f(x) = x2 − 10x, x ≥ 5 12. f(x) = 3(x+ 4)2 − 5, x ≤ −4

13. f(x) = x2 − 6x+ 5, x ≤ 3 14. f(x) = 4x2 + 4x+ 1, x < −1

15. f(x) =
3

4− x
16. f(x) =

x

1− 3x

17. f(x) =
2x− 1

3x+ 4
18. f(x) =

4x+ 2

3x− 6

19. f(x) =
−3x− 2

x+ 3
20. f(x) =

x− 2

2x− 1

With help from your classmates, find the inverses of the functions in Exercises 21 - 24.

21. f(x) = ax+ b, a 6= 0 22. f(x) = a
√
x− h+ k, a 6= 0, x ≥ h

23. f(x) = ax2 +bx+c where a 6= 0, x ≥ − b

2a
. 24. f(x) =

ax+ b

cx+ d
, (See Exercise 33 below.)

25. In Example 1.5.3, the price of a dOpi media player, in dollars per dOpi, is given as a function
of the weekly sales x according to the formula p(x) = 450− 15x for 0 ≤ x ≤ 30.

(a) Find p−1(x) and state its domain.

(b) Find and interpret p−1(105).

(c) In Example 1.5.3, we determined that the profit (in dollars) made from producing and
selling x dOpis per week is P (x) = −15x2 + 350x − 2000, for 0 ≤ x ≤ 30. Find(
P ◦ p−1

)
(x) and determine what price per dOpi would yield the maximum profit. What

is the maximum profit? How many dOpis need to be produced and sold to achieve the
maximum profit?
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26. Show that the Fahrenheit to Celsius conversion function found in Exercise 35 in Section 2.1
is invertible and that its inverse is the Celsius to Fahrenheit conversion function.

27. Analytically show that the function f(x) = x3 + 3x+ 1 is one-to-one. Since finding a formula
for its inverse is beyond the scope of this textbook, use Theorem 5.2 to help you compute
f−1(1), f−1(5), and f−1(−3).

28. Let f(x) = 2x
x2−1

. Using the techniques in Section 4.2, graph y = f(x). Verify that f is one-
to-one on the interval (−1, 1). Use the procedure outlined on Page 384 and your graphing
calculator to find the formula for f−1(x). Note that since f(0) = 0, it should be the case that
f−1(0) = 0. What goes wrong when you attempt to substitute x = 0 into f−1(x)? Discuss
with your classmates how this problem arose and possible remedies.

29. With the help of your classmates, explain why a function which is either strictly increasing
or strictly decreasing on its entire domain would have to be one-to-one, hence invertible.

30. If f is odd and invertible, prove that f−1 is also odd.

31. Let f and g be invertible functions. With the help of your classmates show that (f ◦ g) is
one-to-one, hence invertible, and that (f ◦ g)−1(x) = (g−1 ◦ f−1)(x).

32. What graphical feature must a function f possess for it to be its own inverse?

33. What conditions must you place on the values of a, b, c and d in Exercise 24 in order to
guarantee that the function is invertible?
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5.2.2 Answers

1. f−1(x) =
x+ 2

6
2. f−1(x) = 42− x

3. f−1(x) = 3x− 10 4. f−1(x) = −5
3x+ 1

3

5. f−1(x) = 1
3(x− 5)2 + 1

3 , x ≥ 5 6. f−1(x) = (x− 2)2 + 5, x ≤ 2

7. f−1(x) = 1
9(x+ 4)2 + 1, x ≥ −4 8. f−1(x) = 1

8(x− 1)2 − 5
2 , x ≤ 1

9. f−1(x) = 1
3x

5 + 1
3 10. f−1(x) = −(x− 3)3 + 2

11. f−1(x) = 5 +
√
x+ 25 12. f−1(x) = −

√
x+5

3 − 4

13. f−1(x) = 3−
√
x+ 4 14. f−1(x) = −

√
x+1
2 , x > 1

15. f−1(x) =
4x− 3

x
16. f−1(x) =

x

3x+ 1

17. f−1(x) =
4x+ 1

2− 3x
18. f−1(x) =

6x+ 2

3x− 4

19. f−1(x) =
−3x− 2

x+ 3
20. f−1(x) =

x− 2

2x− 1

25. (a) p−1(x) = 450−x
15 . The domain of p−1 is the range of p which is [0, 450]

(b) p−1(105) = 23. This means that if the price is set to $105 then 23 dOpis will be sold.

(c)
(
P ◦ p−1

)
(x) = − 1

15x
2 + 110

3 x − 5000, 0 ≤ x ≤ 450. The graph of y =
(
P ◦ p−1

)
(x)

is a parabola opening downwards with vertex
(
275, 125

3

)
≈ (275, 41.67). This means

that the maximum profit is a whopping $41.67 when the price per dOpi is set to $275.
At this price, we can produce and sell p−1(275) = 11.6 dOpis. Since we cannot sell
part of a system, we need to adjust the price to sell either 11 dOpis or 12 dOpis. We
find p(11) = 285 and p(12) = 270, which means we set the price per dOpi at either
$285 or $270, respectively. The profits at these prices are

(
P ◦ p−1

)
(285) = 35 and(

P ◦ p−1
)

(270) = 40, so it looks as if the maximum profit is $40 and it is made by
producing and selling 12 dOpis a week at a price of $270 per dOpi.

27. Given that f(0) = 1, we have f−1(1) = 0. Similarly f−1(5) = 1 and f−1(−3) = −1
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5.3 Other Algebraic Functions

This section serves as a watershed for functions which are combinations of polynomial, and more
generally, rational functions, with the operations of radicals. It is business of Calculus to discuss
these functions in all the detail they demand so our aim in this section is to help shore up the
requisite skills needed so that the reader can answer Calculus’s call when the time comes. We
briefly recall the definition and some of the basic properties of radicals from Intermediate Algebra.1

Definition 5.4. Let x be a real number and n a natural number.a If n is odd, the principal
nth root of x, denoted n

√
x is the unique real number satisfying ( n

√
x)
n

= x. If n is even, n
√
x is

defined similarlyb provided x ≥ 0 and n
√
x ≥ 0. The index is the number n and the radicand

is the number x. For n = 2, we write
√
x instead of 2

√
x.

aRecall this means n = 1, 2, 3, . . ..
bRecall both x = −2 and x = 2 satisfy x4 = 16, but 4

√
16 = 2, not −2.

It is worth remarking that, in light of Section 5.2, we could define f(x) = n
√
x functionally as the

inverse of g(x) = xn with the stipulation that when n is even, the domain of g is restricted to [0,∞).
From what we know about g(x) = xn from Section 3.1 along with Theorem 5.3, we can produce
the graphs of f(x) = n

√
x by reflecting the graphs of g(x) = xn across the line y = x. Below are the

graphs of y =
√
x, y = 4

√
x and y = 6

√
x. The point (0, 0) is indicated as a reference. The axes are

hidden so we can see the vertical steepening near x = 0 and the horizontal flattening as x→∞.

y =
√
x y = 4

√
x y = 6

√
x

The odd-indexed radical functions also follow a predictable trend - steepening near x = 0 and
flattening as x→ ±∞. In the exercises, you’ll have a chance to graph some basic radical functions
using the techniques presented in Section 1.7.

y = 3
√
x y = 5

√
x y = 7

√
x

We have used all of the following properties at some point in the textbook for the case n = 2 (the
square root), but we list them here in generality for completeness.

1Although we discussed imaginary numbers in Section 3.4, we restrict our attention to real numbers in this section.
See the epilogue on page 294 for more details.
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Theorem 5.6. Properties of Radicals: Let x and y be real numbers and m and n be natural
numbers. If n

√
x, n
√
y are real numbers, then

� Product Rule: n
√
xy = n

√
x n
√
y

� Powers of Radicals: n
√
xm = ( n

√
x)
m

� Quotient Rule: n

√
x

y
=

n
√
x

n
√
y

, provided y 6= 0.

� If n is odd, n
√
xn = x; if n is even, n

√
xn = |x|.

The proof of Theorem 5.6 is based on the definition of the principal roots and properties of expo-
nents. To establish the product rule, consider the following. If n is odd, then by definition n

√
xy

is the unique real number such that ( n
√
xy)n = xy. Given that

(
n
√
x n
√
y
)n

= ( n
√
x)
n (

n
√
y
)n

= xy,
it must be the case that n

√
xy = n

√
x n
√
y. If n is even, then n

√
xy is the unique non-negative real

number such that ( n
√
xy)n = xy. Also note that since n is even, n

√
x and n

√
y are also non-negative

and hence so is n
√
x n
√
y. Proceeding as above, we find that n

√
xy = n

√
x n
√
y. The quotient rule is

proved similarly and is left as an exercise. The power rule results from repeated application of the
product rule, so long as n

√
x is a real number to start with.2 The last property is an application of

the power rule when n is odd, and the occurrence of the absolute value when n is even is due to
the requirement that n

√
x ≥ 0 in Definition 5.4. For instance, 4

√
(−2)4 = 4

√
16 = 2 = | − 2|, not −2.

It’s this last property which makes compositions of roots and powers delicate. This is especially
true when we use exponential notation for radicals. Recall the following definition.

Definition 5.5. Let x be a real number, m an integera and n a natural number.

� x
1
n = n

√
x and is defined whenever n

√
x is defined.

� x
m
n = ( n

√
x)
m

= n
√
xm, whenever ( n

√
x)
m

is defined.

aRecall this means m = 0,±1,±2, . . .

The rational exponents defined in Definition 5.5 behave very similarly to the usual integer exponents

from Elementary Algebra with one critical exception. Consider the expression
(
x2/3

)3/2
. Applying

the usual laws of exponents, we’d be tempted to simplify this as
(
x2/3

)3/2
= x

2
3
· 3
2 = x1 = x.

However, if we substitute x = −1 and apply Definition 5.5, we find (−1)2/3 =
(

3
√
−1
)2

= (−1)2 = 1

so that
(
(−1)2/3

)3/2
= 13/2 =

(√
1
)3

= 13 = 1. We see in this case that
(
x2/3

)3/2 6= x. If we take

the time to rewrite
(
x2/3

)3/2
with radicals, we see

(
x2/3

)3/2
=
((

3
√
x
)2)3/2

=

(√(
3
√
x
)2)3

=
(∣∣ 3
√
x
∣∣)3 =

∣∣∣( 3
√
x
)3∣∣∣ = |x|

2Otherwise we’d run into the same paradox we did in Section 3.4.
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In the play-by-play analysis, we see that when we canceled the 2’s in multiplying 2
3 ·

3
2 , we were,

in fact, attempting to cancel a square with a square root. The fact that
√
x2 = |x| and not

simply x is the root3 of the trouble. It may amuse the reader to know that
(
x3/2

)2/3
= x, and

this verification is left as an exercise. The moral of the story is that when simplifying fractional
exponents, it’s usually best to rewrite them as radicals.4 The last major property we will state,
and leave to Calculus to prove, is that radical functions are continuous on their domains, so the
Intermediate Value Theorem, Theorem 3.1, applies. This means that if we take combinations of
radical functions with polynomial and rational functions to form what the authors consider the
algebraic functions,5 we can make sign diagrams using the procedure set forth in Section 4.2.

Steps for Constructing a Sign Diagram for an Algebraic Function

Suppose f is an algebraic function.

1. Place any values excluded from the domain of f on the number line with an ‘�’ above
them.

2. Find the zeros of f and place them on the number line with the number 0 above them.

3. Choose a test value in each of the intervals determined in steps 1 and 2.

4. Determine the sign of f(x) for each test value in step 3, and write that sign above the
corresponding interval.

Our next example reviews quite a bit of Intermediate Algebra and demonstrates some of the new
features of these graphs.

Example 5.3.1. For the following functions, state their domains and create sign diagrams. Check
your answer graphically using your calculator.

1. f(x) = 3x 3
√

2− x 2. g(x) =
√

2− 4
√
x+ 3

3. h(x) = 3

√
8x

x+ 1
4. k(x) =

2x√
x2 − 1

Solution.

1. As far as domain is concerned, f(x) has no denominators and no even roots, which means its
domain is (−∞,∞). To create the sign diagram, we find the zeros of f .

3Did you like that pun?
4In most other cases, though, rational exponents are preferred.
5As mentioned in Section 2.2, f(x) =

√
x2 = |x| so that absolute value is also considered an algebraic function.
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f(x) = 0
3x 3
√

2− x = 0
3x = 0 or 3

√
2− x = 0

x = 0 or
(

3
√

2− x
)3

= 03

x = 0 or 2− x = 0
x = 0 or x = 2

The zeros 0 and 2 divide the real number line into three test intervals. The sign diagram
and accompanying graph are below. Note that the intervals on which f is (+) correspond
to where the graph of f is above the x-axis, and where the graph of f is below the x-axis
we have that f is (−). The calculator suggests something mysterious happens near x = 2.
Zooming in shows the graph becomes nearly vertical there. You’ll have to wait until Calculus
to fully understand this phenomenon.

(−)

0

0 (+)

2

0 (−)

y = f(x) y = f(x) near x = 2.

2. In g(x) =
√

2− 4
√
x+ 3, we have two radicals both of which are even indexed. To satisfy

4
√
x+ 3, we require x+ 3 ≥ 0 or x ≥ −3. To satisfy

√
2− 4
√
x+ 3, we need 2− 4

√
x+ 3 ≥ 0.

While it may be tempting to write this as 2 ≥ 4
√
x+ 3 and take both sides to the fourth

power, there are times when this technique will produce erroneous results.6 Instead, we solve
2 − 4
√
x+ 3 ≥ 0 using a sign diagram. If we let r(x) = 2 − 4

√
x+ 3, we know x ≥ −3, so we

concern ourselves with only this portion of the number line. To find the zeros of r we set
r(x) = 0 and solve 2− 4

√
x+ 3 = 0. We get 4

√
x+ 3 = 2 so that

(
4
√
x+ 3

)4
= 24 from which

we obtain x+ 3 = 16 or x = 13. Since we raised both sides of an equation to an even power,
we need to check to see if x = 13 is an extraneous solution.7 We find x = 13 does check since
2− 4
√
x+ 3 = 2− 4

√
13 + 3 = 2− 4

√
16 = 2− 2 = 0. Below is our sign diagram for r.

−3

(+)

13

0 (−)

We find 2− 4
√
x+ 3 ≥ 0 on [−3, 13] so this is the domain of g. To find a sign diagram for g,

we look for the zeros of g. Setting g(x) = 0 is equivalent to
√

2− 4
√
x+ 3 = 0. After squaring

6For instance, −2 ≥ 4
√
x+ 3, which has no solution or −2 ≤ 4

√
x+ 3 whose solution is [−3,∞).

7Recall, this means we have produced a candidate which doesn’t satisfy the original equation. Do you remember
how raising both sides of an equation to an even power could cause this?
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both sides, we get 2 − 4
√
x+ 3 = 0, whose solution we have found to be x = 13. Since we

squared both sides, we double check and find g(13) is, in fact, 0. Our sign diagram and graph
of g are below. Since the domain of g is [−3, 13], what we have below is not just a portion
of the graph of g, but the complete graph. It is always above or on the x-axis, which verifies
our sign diagram.

−3

(+)

13

The complete graph of y = g(x).

3. The radical in h(x) is odd, so our only concern is the denominator. Setting x + 1 = 0 gives
x = −1, so our domain is (−∞,−1) ∪ (−1,∞). To find the zeros of h, we set h(x) = 0. To

solve 3

√
8x
x+1 = 0, we cube both sides to get 8x

x+1 = 0. We get 8x = 0, or x = 0. Below is

the resulting sign diagram and corresponding graph. From the graph, it appears as though
x = −1 is a vertical asymptote. Carrying out an analysis as x→ −1 as in Section 4.2 confirms
this. (We leave the details to the reader.) Near x = 0, we have a situation similar to x = 2
in the graph of f in number 1 above. Finally, it appears as if the graph of h has a horizontal
asymptote y = 2. Using techniques from Section 4.2, we find as x → ±∞, 8x

x+1 → 8. From

this, it is hardly surprising that as x→ ±∞, h(x) = 3

√
8x
x+1 ≈

3
√

8 = 2.

(+)

−1

� (−)

0

0 (+)

y = h(x)

4. To find the domain of k, we have both an even root and a denominator to concern ourselves
with. To satisfy the square root, x2 − 1 ≥ 0. Setting r(x) = x2 − 1, we find the zeros of r to
be x = ±1, and we find the sign diagram of r to be

(+)

−1

0 (−)

1

0 (+)
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We find x2 − 1 ≥ 0 for (−∞,−1] ∪ [1,∞). To keep the denominator of k(x) away from zero,
we set

√
x2 − 1 = 0. We leave it to the reader to verify the solutions are x = ±1, both of

which must be excluded from the domain. Hence, the domain of k is (−∞,−1) ∪ (1,∞). To
build the sign diagram for k, we need the zeros of k. Setting k(x) = 0 results in 2x√

x2−1
= 0.

We get 2x = 0 or x = 0. However, x = 0 isn’t in the domain of k, which means k has no zeros.
We construct our sign diagram on the domain of k below alongside the graph of k. It appears
that the graph of k has two vertical asymptotes, one at x = −1 and one at x = 1. The gap
in the graph between the asymptotes is because of the gap in the domain of k. Concerning
end behavior, there appear to be two horizontal asymptotes, y = 2 and y = −2. To see why
this is the case, we think of x→ ±∞. The radicand of the denominator x2 − 1 ≈ x2, and as
such, k(x) = 2x√

x2−1
≈ 2x√

x2
= 2x
|x| . As x→∞, we have |x| = x so k(x) ≈ 2x

x = 2. On the other

hand, as x → −∞, |x| = −x, and as such k(x) ≈ 2x
−x = −2. Finally, it appears as though

the graph of k passes the Horizontal Line Test which means k is one to one and k−1 exists.
Computing k−1 is left as an exercise.

(−)

−1

�

1

� (+)

y = k(x)

As the previous example illustrates, the graphs of general algebraic functions can have features
we’ve seen before, like vertical and horizontal asymptotes, but they can occur in new and exciting
ways. For example, k(x) = 2x√

x2−1
had two distinct horizontal asymptotes. You’ll recall that

rational functions could have at most one horizontal asymptote. Also some new characteristics like
‘unusual steepness’8 and cusps9 can appear in the graphs of arbitrary algebraic functions. Our next
example first demonstrates how we can use sign diagrams to solve nonlinear inequalities. (Don’t
panic. The technique is very similar to the ones used in Chapters 2, 3 and 4.) We then check our
answers graphically with a calculator and see some of the new graphical features of the functions
in this extended family.

Example 5.3.2. Solve the following inequalities. Check your answers graphically with a calculator.

8The proper Calculus term for this is ‘vertical tangent’, but for now we’ll be okay calling it ‘unusual steepness’.
9See page 241 for the first reference to this feature.
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1. x2/3 < x4/3 − 6 2. 3(2− x)1/3 ≤ x(2− x)−2/3

Solution.

1. To solve x2/3 < x4/3 − 6, we get 0 on one side and attempt to solve x4/3 − x2/3 − 6 > 0. We
set r(x) = x4/3 − x2/3 − 6 and note that since the denominators in the exponents are 3, they
correspond to cube roots, which means the domain of r is (−∞,∞). To find the zeros for
the sign diagram, we set r(x) = 0 and attempt to solve x4/3 − x2/3 − 6 = 0. At this point,
it may be unclear how to proceed. We could always try as a last resort converting back to
radical notation, but in this case we can take a cue from Example 3.3.4. Since there are
three terms, and the exponent on one of the variable terms, x4/3, is exactly twice that of the
other, x2/3, we have ourselves a ‘quadratic in disguise’ and we can rewrite x4/3−x2/3− 6 = 0

as
(
x2/3

)2 − x2/3 − 6 = 0. If we let u = x2/3, then in terms of u, we get u2 − u − 6 = 0.

Solving for u, we obtain u = −2 or u = 3. Replacing x2/3 back in for u, we get x2/3 = −2
or x2/3 = 3. To avoid the trouble we encountered in the discussion following Definition 5.5,
we now convert back to radical notation. By interpreting x2/3 as

3
√
x2 we have

3
√
x2 = −2

or
3
√
x2 = 3. Cubing both sides of these equations results in x2 = −8, which admits no

real solution, or x2 = 27, which gives x = ±3
√

3. We construct a sign diagram and find
x4/3 − x2/3 − 6 > 0 on

(
−∞,−3

√
3
)
∪
(
3
√

3,∞
)
. To check our answer graphically, we set

f(x) = x2/3 and g(x) = x4/3 − 6. The solution to x2/3 < x4/3 − 6 corresponds to the
inequality f(x) < g(x), which means we are looking for the x values for which the graph of
f is below the graph of g. Using the ‘Intersect’ command we confirm10 that the graphs cross
at x = ±3

√
3. We see that the graph of f is below the graph of g (the thicker curve) on(

−∞,−3
√

3
)
∪
(
3
√

3,∞
)
.

(+)

−3
√

3

0 (−)

3
√

3

0 (+)

y = f(x) and y = g(x)

As a point of interest, if we take a closer look at the graphs of f and g near x = 0 with
the axes off, we see that despite the fact they both involve cube roots, they exhibit different
behavior near x = 0. The graph of f has a sharp turn, or cusp, while g does not.11

10Or at least confirm to several decimal places
11Again, we introduced this feature on page 241 as a feature which makes the graph of a function ‘not smooth’.
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y = f(x) near x = 0 y = g(x) near x = 0

2. To solve 3(2− x)1/3 ≤ x(2− x)−2/3, we gather all the nonzero terms on one side and obtain
3(2 − x)1/3 − x(2 − x)−2/3 ≤ 0. We set r(x) = 3(2 − x)1/3 − x(2 − x)−2/3. As in number
1, the denominators of the rational exponents are odd, which means there are no domain
concerns there. However, the negative exponent on the second term indicates a denominator.
Rewriting r(x) with positive exponents, we obtain

r(x) = 3(2− x)1/3 − x

(2− x)2/3

Setting the denominator equal to zero we get (2− x)2/3 = 0, or 3
√

(2− x)2 = 0. After cubing
both sides, and subsequently taking square roots, we get 2 − x = 0, or x = 2. Hence, the
domain of r is (−∞, 2)∪ (2,∞). To find the zeros of r, we set r(x) = 0. There are two school
of thought on how to proceed and we demonstrate both.

� Factoring Approach. From r(x) = 3(2− x)1/3 − x(2− x)−2/3, we note that the quantity
(2−x) is common to both terms. When we factor out common factors, we factor out the
quantity with the smaller exponent. In this case, since −2

3 <
1
3 , we factor (2 − x)−2/3

from both quantities. While it may seem odd to do so, we need to factor (2 − x)−2/3

from (2−x)1/3, which results in subtracting the exponent −2
3 from 1

3 . We proceed using
the usual properties of exponents.12

r(x) = 3(2− x)1/3 − x(2− x)−2/3

= (2− x)−2/3
[
3(2− x)

1
3
−(− 2

3) − x
]

= (2− x)−2/3
[
3(2− x)3/3 − x

]
= (2− x)−2/3

[
3(2− x)1 − x

]
since

3
√
u3 = ( 3

√
u)

3
= u

= (2− x)−2/3 (6− 4x)

= (2− x)−2/3 (6− 4x)

To solve r(x) = 0, we set (2− x)−2/3 (6− 4x) = 0, or 6−4x
(2−x)2/3 = 0. We have 6− 4x = 0

or x = 3
2 .

12And we exercise special care when reducing the 3
3

power to 1.
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� Common Denominator Approach. We rewrite

r(x) = 3(2− x)1/3 − x(2− x)−2/3

= 3(2− x)1/3 − x

(2− x)2/3

=
3(2− x)1/3(2− x)2/3

(2− x)2/3
− x

(2− x)2/3
common denominator

=
3(2− x)

1
3

+ 2
3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)3/3

(2− x)2/3
− x

(2− x)2/3

=
3(2− x)1

(2− x)2/3
− x

(2− x)2/3
since

3
√
u3 = ( 3

√
u)

3
= u

=
3(2− x)− x
(2− x)2/3

=
6− 4x

(2− x)2/3

As before, when we set r(x) = 0 we obtain x = 3
2 .

We now create our sign diagram and find 3(2−x)1/3−x(2−x)−2/3 ≤ 0 on
[

3
2 , 2
)
∪ (2,∞). To

check this graphically, we set f(x) = 3(2− x)1/3 and g(x) = x(2− x)−2/3 (the thicker curve).
We confirm that the graphs intersect at x = 3

2 and the graph of f is below the graph of g for
x ≥ 3

2 , with the exception of x = 2 where it appears the graph of g has a vertical asymptote.

(+)

3
2

0 (−)

2

� (−)

y = f(x) and y = g(x)

One application of algebraic functions was given in Example 1.6.6 in Section 1.1. Our last example
is a more sophisticated application of distance.

Example 5.3.3. Carl wishes to get high speed internet service installed in his remote Sasquatch
observation post located 30 miles from Route 117. The nearest junction box is located 50 miles
downroad from the post, as indicated in the diagram below. Suppose it costs $15 per mile to run
cable along the road and $20 per mile to run cable off of the road.
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Outpost

Junction Box
xy

z

Route 117

50 miles

3
0

m
il
es

1. Express the total cost C of connecting the Junction Box to the Outpost as a function of x,
the number of miles the cable is run along Route 117 before heading off road directly towards
the Outpost. Determine a reasonable applied domain for the problem.

2. Use your calculator to graph y = C(x) on its domain. What is the minimum cost? How far
along Route 117 should the cable be run before turning off of the road?

Solution.

1. The cost is broken into two parts: the cost to run cable along Route 117 at $15 per mile, and
the cost to run it off road at $20 per mile. Since x represents the miles of cable run along
Route 117, the cost for that portion is 15x. From the diagram, we see that the number of
miles the cable is run off road is z, so the cost of that portion is 20z. Hence, the total cost is
C = 15x+ 20z. Our next goal is to determine z as a function of x. The diagram suggests we
can use the Pythagorean Theorem to get y2 + 302 = z2. But we also see x + y = 50 so that
y = 50 − x. Hence, z2 = (50 − x)2 + 900. Solving for z, we obtain z = ±

√
(50− x)2 + 900.

Since z represents a distance, we choose z =
√

(50− x)2 + 900 so that our cost as a function
of x only is given by

C(x) = 15x+ 20
√

(50− x)2 + 900

From the context of the problem, we have 0 ≤ x ≤ 50.

2. Graphing y = C(x) on a calculator and using the ‘Minimum’ feature, we find the relative
minimum (which is also the absolute minimum in this case) to two decimal places to be
(15.98, 1146.86). Here the x-coordinate tells us that in order to minimize cost, we should run
15.98 miles of cable along Route 117 and then turn off of the road and head towards the
outpost. The y-coordinate tells us that the minimum cost, in dollars, to do so is $1146.86.
The ability to stream live SasquatchCasts? Priceless.
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5.3.1 Exercises

For each function in Exercises 1 - 10 below

� Find its domain.

� Create a sign diagram.

� Use your calculator to help you sketch its graph and identify any vertical or horizontal asymp-
totes, ‘unusual steepness’ or cusps.

1. f(x) =
√

1− x2 2. f(x) =
√
x2 − 1

3. f(x) = x
√

1− x2 4. f(x) = x
√
x2 − 1

5. f(x) = 4

√
16x

x2 − 9
6. f(x) =

5x
3
√
x3 + 8

7. f(x) = x
2
3 (x− 7)

1
3 8. f(x) = x

3
2 (x− 7)

1
3

9. f(x) =
√
x(x+ 5)(x− 4) 10. f(x) = 3

√
x3 + 3x2 − 6x− 8

In Exercises 11 - 16, sketch the graph of y = g(x) by starting with the graph of y = f(x) and using
the transformations presented in Section 1.7.

11. f(x) = 3
√
x, g(x) = 3

√
x− 1− 2 12. f(x) = 3

√
x, g(x) = −2 3

√
x+ 1 + 4

13. f(x) = 4
√
x, g(x) = 4

√
x− 1− 2 14. f(x) = 4

√
x, g(x) = 3 4

√
x− 7− 1

15. f(x) = 5
√
x, g(x) = 5

√
x+ 2 + 3 16. f(x) = 8

√
x, g(x) = 8

√
−x− 2

In Exercises 17 - 35, solve the equation or inequality.

17. x+ 1 =
√

3x+ 7 18. 2x+ 1 =
√

3− 3x

19. x+
√

3x+ 10 = −2 20. 3x+
√

6− 9x = 2

21. 2x− 1 =
√
x+ 3 22. x

3
2 = 8

23. x
2
3 = 4 24.

√
x− 2 +

√
x− 5 = 3

25.
√

2x+ 1 = 3 +
√

4− x 26. 5− (4− 2x)
2
3 = 1

27. 10−
√
x− 2 ≤ 11 28. 3

√
x ≤ x
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29. 2(x− 2)−
1
3 − 2

3x(x− 2)−
4
3 ≤ 0 30. −4

3(x− 2)−
4
3 + 8

9x(x− 2)−
7
3 ≥ 0

31. 2x−
1
3 (x− 3)

1
3 + x

2
3 (x− 3)−

2
3 ≥ 0 32. 3

√
x3 + 3x2 − 6x− 8 > x+ 1

33. 1
3x

3
4 (x− 3)−

2
3 + 3

4x
− 1

4 (x− 3)
1
3 < 0

34. x−
1
3 (x− 3)−

2
3 − x−

4
3 (x− 3)−

5
3 (x2 − 3x+ 2) ≥ 0

35. 2
3(x+ 4)

3
5 (x− 2)−

1
3 + 3

5(x+ 4)−
2
5 (x− 2)

2
3 ≥ 0

36. Rework Example 5.3.3 so that the outpost is 10 miles from Route 117 and the nearest junction
box is 30 miles down the road for the post.

37. The volume V of a right cylindrical cone depends on the radius of its base r and its height h
and is given by the formula V = 1

3πr
2h. The surface area S of a right cylindrical cone also

depends on r and h according to the formula S = πr
√
r2 + h2. Suppose a cone is to have a

volume of 100 cubic centimeters.

(a) Use the formula for volume to find the height h as a function of r.

(b) Use the formula for surface area and your answer to 37a to find the surface area S as a
function of r.

(c) Use your calculator to find the values of r and h which minimize the surface area. What
is the minimum surface area? Round your answers to two decimal places.

38. The National Weather Service uses the following formula to calculate the wind chill:

W = 35.74 + 0.6215Ta − 35.75V 0.16 + 0.4275Ta V
0.16

where W is the wind chill temperature in ◦F, Ta is the air temperature in ◦F, and V is the
wind speed in miles per hour. Note that W is defined only for air temperatures at or lower
than 50◦F and wind speeds above 3 miles per hour.

(a) Suppose the air temperature is 42◦ and the wind speed is 7 miles per hour. Find the
wind chill temperature. Round your answer to two decimal places.

(b) Suppose the air temperature is 37◦F and the wind chill temperature is 30◦F. Find the
wind speed. Round your answer to two decimal places.

39. As a follow-up to Exercise 38, suppose the air temperature is 28◦F.

(a) Use the formula from Exercise 38 to find an expression for the wind chill temperature
as a function of the wind speed, W (V ).

(b) Solve W (V ) = 0, round your answer to two decimal places, and interpret.

(c) Graph the function W using your calculator and check your answer to part 39b.

http://www.nws.noaa.gov/om/windchill/windchillglossary.shtml
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40. The period of a pendulum in seconds is given by

T = 2π

√
L

g

(for small displacements) where L is the length of the pendulum in meters and g = 9.8
meters per second per second is the acceleration due to gravity. My Seth-Thomas antique
schoolhouse clock needs T = 1

2 second and I can adjust the length of the pendulum via a
small dial on the bottom of the bob. At what length should I set the pendulum?

41. The Cobb-Douglas production model states that the yearly total dollar value of the production
output P in an economy is a function of labor x (the total number of hours worked in a year)
and capital y (the total dollar value of all of the stuff purchased in order to make things).
Specifically, P = axby1−b. By fixing P , we create what’s known as an ‘isoquant’ and we can
then solve for y as a function of x. Let’s assume that the Cobb-Douglas production model
for the country of Sasquatchia is P = 1.23x0.4y0.6.

(a) Let P = 300 and solve for y in terms of x. If x = 100, what is y?

(b) Graph the isoquant 300 = 1.23x0.4y0.6. What information does an ordered pair (x, y)
which makes P = 300 give you? With the help of your classmates, find several different
combinations of labor and capital all of which yield P = 300. Discuss any patterns you
may see.

42. According to Einstein’s Theory of Special Relativity, the observed mass m of an object is a
function of how fast the object is traveling. Specifically,

m(x) =
mr√

1− x2

c2

where m(0) = mr is the mass of the object at rest, x is the speed of the object and c is the
speed of light.

(a) Find the applied domain of the function.

(b) Compute m(.1c), m(.5c), m(.9c) and m(.999c).

(c) As x→ c−, what happens to m(x)?

(d) How slowly must the object be traveling so that the observed mass is no greater than
100 times its mass at rest?

43. Find the inverse of k(x) =
2x√
x2 − 1

.
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44. Suppose Fritzy the Fox, positioned at a point (x, y) in the first quadrant, spots Chewbacca
the Bunny at (0, 0). Chewbacca begins to run along a fence (the positive y-axis) towards his
warren. Fritzy, of course, takes chase and constantly adjusts his direction so that he is always
running directly at Chewbacca. If Chewbacca’s speed is v1 and Fritzy’s speed is v2, the path
Fritzy will take to intercept Chewbacca, provided v2 is directly proportional to, but not equal
to, v1 is modeled by

y =
1

2

(
x1+v1/v2

1 + v1/v2

− x1−v1/v2

1− v1/v2

)
+

v1v2

v2
2 − v2

1

(a) Determine the path that Fritzy will take if he runs exactly twice as fast as Chewbacca;
that is, v2 = 2v1. Use your calculator to graph this path for x ≥ 0. What is the
significance of the y-intercept of the graph?

(b) Determine the path Fritzy will take if Chewbacca runs exactly twice as fast as he does;
that is, v1 = 2v2. Use your calculator to graph this path for x > 0. Describe the behavior
of y as x→ 0+ and interpret this physically.

(c) With the help of your classmates, generalize parts (a) and (b) to two cases: v2 > v1 and
v2 < v1. We will discuss the case of v1 = v2 in Exercise 32 in Section 6.5.

45. Verify the Quotient Rule for Radicals in Theorem 5.6.

46. Show that
(
x

3
2

) 2
3

= x for all x ≥ 0.

47. Show that 3
√

2 is an irrational number by first showing that it is a zero of p(x) = x3 − 2 and
then showing p has no rational zeros. (You’ll need the Rational Zeros Theorem, Theorem 3.9,
in order to show this last part.)

48. With the help of your classmates, generalize Exercise 47 to show that n
√
c is an irrational

number for any natural numbers c ≥ 2 and n ≥ 2 provided that c 6= pn for some natural
number p.
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5.3.2 Answers

1. f(x) =
√

1− x2

Domain: [−1, 1]

−1

(+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−1 1

1

2. f(x) =
√
x2 − 1

Domain: (−∞,−1] ∪ [1,∞)

−1

(+) (+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−3 −2 −1 1 2 3

1

2

3

3. f(x) = x
√

1− x2

Domain: [−1, 1]

−1

0 (−)

0

(+)0

1

0

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−1 1

1

−1

4. f(x) = x
√
x2 − 1

Domain: (−∞,−1] ∪ [1,∞)

−1

(−) (+)0 0

1

No asymptotes
Unusual steepness at x = −1 and x = 1
No cusps

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
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5. f(x) = 4

√
16x

x2 − 9
Domain: (−3, 0] ∪ (3,∞)

(+)

−3

�

0

0 �

3

(+)

Vertical asymptotes: x = −3 and x = 3
Horizontal asymptote: y = 0
Unusual steepness at x = 0
No cusps

x

y

−3 −2 −1 1 2 3 4 5 6 7 8

1

2

3

4

5

6. f(x) =
5x

3
√
x3 + 8

Domain: (−∞,−2) ∪ (−2,∞)
(+)

−2

� (−)

0

0 (+)

Vertical asymptote x = −2
Horizontal asymptote y = 5
No unusual steepness or cusps

x

y

−4−3−2−1 1 2 3 4

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

7. f(x) = x
2
3 (x− 7)

1
3

Domain: (−∞,∞)
(−)

0

0 (−)

7

0 (+)

No vertical or horizontal asymptotes13

Unusual steepness at x = 7
Cusp at x = 0

x

y

−3−2−1 1 2 3 4 5 6 7 8 9

−4

−3

−2

−1

1

2

3

4

5

8. f(x) = x
3
2 (x− 7)

1
3

Domain: [0,∞)

0

0 (−)

7

0 (+)

No asymptotes
Unusual steepness at x = 7
No cusps

x

y

1 2 3 4 5 6 7 8

−15

−10

−5

5

10

15

20

25

13Using Calculus it can be shown that y = x− 7
3

is a slant asymptote of this graph.
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9. f(x) =
√
x(x+ 5)(x− 4)

Domain: [−5, 0] ∪ [4,∞)

−5

0 (+)

0

0

4

0 (+)

No asymptotes
Unusual steepness at x = −5, x = 0 and x = 4
No cusps

x

y

−5−4−3−2−1 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10. f(x) = 3
√
x3 + 3x2 − 6x− 8

Domain: (−∞,∞)
(−)

−4

0 (+)

−1

0 (−)

2

0 (+)

No vertical or horizontal asymptotes14

Unusual steepness at x = −4, x = −1 and
x = 2
No cusps

x

y

−5−4−3−2−1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4

5

6

11. g(x) = 3
√
x− 1− 2

x

y

−4

−3

−2

−1
−9 −7 −5 −3 −1 1 3 5 7 9 11

12. g(x) = −2 3
√
x+ 1 + 4

x

y

−5 −3 −1 1 3 5 7

1

2

3

4

5

6

7

13. g(x) = 4
√
x− 1− 2

x

y

−2

−1

1 3 5 7 9 11 13 15 17 19 21

14. g(x) = 3 4
√
x− 7− 1

x

y

7 8 23
−1

1

2

3

4

5

14Using Calculus it can be shown that y = x+ 1 is a slant asymptote of this graph.



414 Further Topics in Functions

15. g(x) = 5
√
x+ 2 + 3

x

y

−34 −2 30

1

2

3

4

5

16. g(x) = 8
√
−x− 2

x

y

−40 −30 −20 −10

−2

−1

17. x = 3 18. x = 1
4 19. x = −3

20. x = −1
3 ,

2
3 21. x = 5+

√
57

8
22. x = 4

23. x = ±8 24. x = 6 25. x = 4

26. x = −2, 6 27. [2,∞) 28. [−1, 0] ∪ [1,∞)

29. (−∞, 2) ∪ (2, 3] 30. (2, 6] 31. (−∞, 0) ∪ [2, 3) ∪ (3,∞)

32. (−∞,−1) 33.
(
0, 27

13

)
34. (−∞, 0) ∪ (0, 3)

35. (−∞,−4) ∪
(
−4,−22

19

]
∪ (2,∞)

36. C(x) = 15x + 20
√

100 + (30− x)2, 0 ≤ x ≤ 30. The calculator gives the absolute minimum
at ≈ (18.66, 582.29). This means to minimize the cost, approximately 18.66 miles of cable
should be run along Route 117 before turning off the road and heading towards the outpost.
The minimum cost to run the cable is approximately $582.29.

37. (a) h(r) = 300
πr2 , r > 0.

(b) S(r) = πr
√
r2 +

(
300
πr2

)2
=
√
π2r6+90000

r , r > 0

(c) The calculator gives the absolute minimum at the point ≈ (4.07, 90.23). This means
the radius should be (approximately) 4.07 centimeters and the height should be 5.76
centimeters to give a minimum surface area of 90.23 square centimeters.

38. (a) W ≈ 37.55◦F.

(b) V ≈ 9.84 miles per hour.

39. (a) W (V ) = 53.142 − 23.78V 0.16. Since we are told in Exercise 38 that wind chill is only
effect for wind speeds of more than 3 miles per hour, we restrict the domain to V > 3.

(b) W (V ) = 0 when V ≈ 152.29. This means, according to the model, for the wind chill
temperature to be 0◦F, the wind speed needs to be 152.29 miles per hour.
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(c) The graph is below.

40. 9.8

(
1

4π

)2

≈ 0.062 meters or 6.2 centimeters

41. (a) First rewrite the model as P = 1.23x
2
5 y

3
5 . Then 300 = 1.23x

2
5 y

3
5 yields y =

(
300

1.23x
2
5

) 5
3

.

If x = 100 then y ≈ 441.93687.

42. (a) [0, c)

(b)

m(.1c) =
mr√
.99
≈ 1.005mr m(.5c) =

mr√
.75
≈ 1.155mr

m(.9c) =
mr√
.19
≈ 2.294mr m(.999c) =

mr√
.0.001999

≈ 22.366mr

(c) As x→ c−, m(x)→∞
(d) If the object is traveling no faster than approximately 0.99995 times the speed of light,

then its observed mass will be no greater than 100mr.

43. k−1(x) =
x√

x2 − 4

44. (a) y = 1
3x

3/2 −
√
x+ 2

3 . The point
(
0, 2

3

)
is when Fritzy’s path crosses Chewbacca’s path -

in other words, where Fritzy catches Chewbacca.

(b) y = 1
6x

3 + 1
2x −

2
3 . Using the techniques from Chapter 4, we find as x → 0+, y → ∞

which means, in this case, Fritzy’s pursuit never ends; he never catches Chewbacca. This
makes sense since Chewbacca has a head start and is running faster than Fritzy.

y = 1
3x

3/2 −
√
x+ 2

3 y = 1
6x

3 + 1
2x −

2
3
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Chapter 6

Exponential and Logarithmic
Functions

6.1 Introduction to Exponential and Logarithmic Functions

Of all of the functions we study in this text, exponential and logarithmic functions are possibly the
ones which impact everyday life the most.1 This section introduces us to these functions while the
rest of the chapter will more thoroughly explore their properties. Up to this point, we have dealt
with functions which involve terms like x2 or x2/3, in other words, terms of the form xp where the
base of the term, x, varies but the exponent of each term, p, remains constant. In this chapter,
we study functions of the form f(x) = bx where the base b is a constant and the exponent x is
the variable. We start our exploration of these functions with f(x) = 2x. (Apparently this is a
tradition. Every College Algebra book we have ever read starts with f(x) = 2x.) We make a table
of values, plot the points and connect the dots in a pleasing fashion.

x f(x) (x, f(x))

−3 2−3 = 1
8

(
−3, 1

8

)
−2 2−2 = 1

4

(
−2, 1

4

)
−1 2−1 = 1

2

(
−1, 1

2

)
0 20 = 1 (0, 1)

1 21 = 2 (1, 2)

2 22 = 4 (2, 4)

3 23 = 8 (3, 8)
x

y

−3 −2 −1 1 2 3

1

2

3

4

5

6

7

8

y = f(x) = 2x

A few remarks about the graph of f(x) = 2x which we have constructed are in order. As x→ −∞
1Take a class in Differential Equations and you’ll see why.
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and attains values like x = −100 or x = −1000, the function f(x) = 2x takes on values like
f(−100) = 2−100 = 1

2100 or f(−1000) = 2−1000 = 1
21000 . In other words, as x→ −∞,

2x ≈ 1

very big (+)
≈ very small (+)

So as x → −∞, 2x → 0+. This is represented graphically using the x-axis (the line y = 0) as a
horizontal asymptote. On the flip side, as x→∞, we find f(100) = 2100, f(1000) = 21000, and so
on, thus 2x →∞. As a result, our graph suggests the range of f is (0,∞). The graph of f passes
the Horizontal Line Test which means f is one-to-one and hence invertible. We also note that when
we ‘connected the dots in a pleasing fashion’, we have made the implicit assumption that f(x) = 2x

is continuous2 and has a domain of all real numbers. In particular, we have suggested that things
like 2

√
3 exist as real numbers. We should take a moment to discuss what something like 2

√
3 might

mean, and refer the interested reader to a solid course in Calculus for a more rigorous explanation.
The number

√
3 = 1.73205 . . . is an irrational number3 and as such, its decimal representation

neither repeats nor terminates. We can, however, approximate
√

3 by terminating decimals, and
it stands to reason4 we can use these to approximate 2

√
3. For example, if we approximate

√
3

by 1.73, we can approximate 2
√

3 ≈ 21.73 = 2
173
100 =

100
√

2173. It is not, by any means, a pleasant
number, but it is at least a number that we understand in terms of powers and roots. It also stands
to reason that better and better approximations of

√
3 yield better and better approximations of

2
√

3, so the value of 2
√

3 should be the result of this sequence of approximations.5

Suppose we wish to study the family of functions f(x) = bx. Which bases b make sense to study?
We find that we run into difficulty if b < 0. For example, if b = −2, then the function f(x) = (−2)x

has trouble, for instance, at x = 1
2 since (−2)1/2 =

√
−2 is not a real number. In general, if x

is any rational number with an even denominator, then (−2)x is not defined, so we must restrict
our attention to bases b ≥ 0. What about b = 0? The function f(x) = 0x is undefined for x ≤ 0
because we cannot divide by 0 and 00 is an indeterminant form. For x > 0, 0x = 0 so the function
f(x) = 0x is the same as the function f(x) = 0, x > 0. We know everything we can possibly know
about this function, so we exclude it from our investigations. The only other base we exclude is
b = 1, since the function f(x) = 1x = 1 is, once again, a function we have already studied. We are
now ready for our definition of exponential functions.

Definition 6.1. A function of the form f(x) = bx where b is a fixed real number, b > 0, b 6= 1
is called a base b exponential function.

We leave it to the reader to verify6 that if b > 1, then the exponential function f(x) = bx will share
the same basic shape and characteristics as f(x) = 2x. What if 0 < b < 1? Consider g(x) =

(
1
2

)x
.

We could certainly build a table of values and connect the points, or we could take a step back and

2Recall that this means there are no holes or other kinds of breaks in the graph.
3You can actually prove this by considering the polynomial p(x) = x2 − 3 and showing it has no rational zeros by

applying Theorem 3.9.
4This is where Calculus and continuity come into play.
5Want more information? Look up “convergent sequences” on the Internet.
6Meaning, graph some more examples on your own.
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note that g(x) =
(

1
2

)x
=
(
2−1
)x

= 2−x = f(−x), where f(x) = 2x. Thinking back to Section 1.7,
the graph of f(−x) is obtained from the graph of f(x) by reflecting it across the y-axis. We get

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = f(x) = 2x

reflect across y-axis
−−−−−−−−−−−−→

multiply each x-coordinate by −1

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = g(x) = 2−x =
(

1
2

)x
We see that the domain and range of g match that of f , namely (−∞,∞) and (0,∞), respectively.
Like f , g is also one-to-one. Whereas f is always increasing, g is always decreasing. As a result,
as x→ −∞, g(x)→∞, and on the flip side, as x→∞, g(x)→ 0+. It shouldn’t be too surprising
that for all choices of the base 0 < b < 1, the graph of y = bx behaves similarly to the graph of g.
We summarize the basic properties of exponential functions in the following theorem.7

Theorem 6.1. Properties of Exponential Functions: Suppose f(x) = bx.

� The domain of f is (−∞,∞) and the range of f is (0,∞).

� (0, 1) is on the graph of f and y = 0 is a horizontal asymptote to the graph of f .

� f is one-to-one, continuous and smootha

� If b > 1:

– f is always increasing

– As x→ −∞, f(x)→ 0+

– As x→∞, f(x)→∞
– The graph of f resembles:

y = bx, b > 1

� If 0 < b < 1:

– f is always decreasing

– As x→ −∞, f(x)→∞
– As x→∞, f(x)→ 0+

– The graph of f resembles:

y = bx, 0 < b < 1

aRecall that this means the graph of f has no sharp turns or corners.

7The proof of which, like many things discussed in the text, requires Calculus.
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Of all of the bases for exponential functions, two occur the most often in scientific circles. The first,
base 10, is often called the common base. The second base is an irrational number, e ≈ 2.718,
called the natural base. We will more formally discuss the origins of this number in Section 6.5.
For now, it is enough to know that since e > 1, f(x) = ex is an increasing exponential function.
The following examples give us an idea how these functions are used in the wild.

Example 6.1.1. The value of a car can be modeled by V (x) = 25
(

4
5

)x
, where x ≥ 0 is age of the

car in years and V (x) is the value in thousands of dollars.

1. Find and interpret V (0).

2. Sketch the graph of y = V (x) using transformations.

3. Find and interpret the horizontal asymptote of the graph you found in 2.

Solution.

1. To find V (0), we replace x with 0 to obtain V (0) = 25
(

4
5

)0
= 25. Since x represents the age

of the car in years, x = 0 corresponds to the car being brand new. Since V (x) is measured
in thousands of dollars, V (0) = 25 corresponds to a value of $25,000. Putting it all together,
we interpret V (0) = 25 to mean the purchase price of the car was $25,000.

2. To graph y = 25
(

4
5

)x
, we start with the basic exponential function f(x) =

(
4
5

)x
. Since the

base b = 4
5 is between 0 and 1, the graph of y = f(x) is decreasing. We plot the y-intercept

(0, 1) and two other points,
(
−1, 5

4

)
and

(
1, 4

5

)
, and label the horizontal asymptote y = 0.

To obtain V (x) = 25
(

4
5

)x
, x ≥ 0, we multiply the output from f by 25, in other words,

V (x) = 25f(x). In accordance with Theorem 1.5, this results in a vertical stretch by a factor
of 25. We multiply all of the y values in the graph by 25 (including the y value of the
horizontal asymptote) and obtain the points

(
−1, 125

4

)
, (0, 25) and (1, 20). The horizontal

asymptote remains y = 0. Finally, we restrict the domain to [0,∞) to fit with the applied
domain given to us. We have the result below.

(0, 1)

H.A. y = 0

x

y

−3−2−1 1 2 3

2

y = f(x) =
(

4
5

)x vertical scale by a factor of 25
−−−−−−−−−−−−−−−−−−−−−→

multiply each y-coordinate by 25

(0, 25)

H.A. y = 0

x

y

1 2 3 4 5 6

5

10

15

20

30

y = V (x) = 25f(x), x ≥ 0

3. We see from the graph of V that its horizontal asymptote is y = 0. (We leave it to reader to
verify this analytically by thinking about what happens as we take larger and larger powers
of 4

5 .) This means as the car gets older, its value diminishes to 0.
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The function in the previous example is often called a ‘decay curve’. Increasing exponential func-
tions are used to model ‘growth curves’ and we shall see several different examples of those in
Section 6.5. For now, we present another common decay curve which will serve as the basis for
further study of exponential functions. Although it may look more complicated than the previ-
ous example, it is actually just a basic exponential function which has been modified by a few
transformations from Section 1.7.

Example 6.1.2. According to Newton’s Law of Cooling8 the temperature of coffee T (in degrees
Fahrenheit) t minutes after it is served can be modeled by T (t) = 70 + 90e−0.1t.

1. Find and interpret T (0).

2. Sketch the graph of y = T (t) using transformations.

3. Find and interpret the horizontal asymptote of the graph.

Solution.

1. To find T (0), we replace every occurrence of the independent variable t with 0 to obtain
T (0) = 70 + 90e−0.1(0) = 160. This means that the coffee was served at 160◦F.

2. To graph y = T (t) using transformations, we start with the basic function, f(t) = et. As we
have already remarked, e ≈ 2.718 > 1 so the graph of f is an increasing exponential with
y-intercept (0, 1) and horizontal asymptote y = 0. The points

(
−1, e−1

)
≈ (−1, 0.37) and

(1, e) ≈ (1, 2.72) are also on the graph. Since the formula T (t) looks rather complicated, we
rewrite T (t) in the form presented in Theorem 1.7 and use that result to track the changes
to our three points and the horizontal asymptote. We have

T (t) = 70 + 90e−0.1t = 90e−0.1t + 70 = 90f(−0.1t) + 70

Multiplication of the input to f , t, by −0.1 results in a horizontal expansion by a factor of 10
as well as a reflection about the y-axis. We divide each of the x values of our points by −0.1
(which amounts to multiplying them by −10) to obtain

(
10, e−1

)
, (0, 1), and (−10, e). Since

none of these changes affected the y values, the horizontal asymptote remains y = 0. Next,
we see that the output from f is being multiplied by 90. This results in a vertical stretch
by a factor of 90. We multiply the y-coordinates by 90 to obtain

(
10, 90e−1

)
, (0, 90), and

(−10, 90e). We also multiply the y value of the horizontal asymptote y = 0 by 90, and it
remains y = 0. Finally, we add 70 to all of the y-coordinates, which shifts the graph upwards to
obtain

(
10, 90e−1 + 70

)
≈ (10, 103.11), (0, 160), and (−10, 90e+ 70) ≈ (−10, 314.64). Adding

70 to the horizontal asymptote shifts it upwards as well to y = 70. We connect these three
points using the same shape in the same direction as in the graph of f and, last but not least,
we restrict the domain to match the applied domain [0,∞). The result is below.

8We will discuss this in greater detail in Section 6.5.

http://en.wikipedia.org/wiki/Heat_transfer#Newton.27s_law_of_cooling
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3. From the graph, we see that the horizontal asymptote is y = 70. It is worth a moment or two
of our time to see how this happens analytically and to review some of the ‘number sense’
developed in Chapter 4. As t → ∞, We get T (t) = 70 + 90e−0.1t ≈ 70 + 90every big (−). Since
e > 1,

every big (−) =
1

every big (+)
≈ 1

very big (+)

≈ very small (+)

The larger t becomes, the smaller e−0.1t becomes, so the term 90e−0.1t ≈ very small (+).
Hence, T (t) ≈ 70 + very small (+) which means the graph is approaching the horizontal line
y = 70 from above. This means that as time goes by, the temperature of the coffee is cooling
to 70◦F, presumably room temperature.

As we have already remarked, the graphs of f(x) = bx all pass the Horizontal Line Test. Thus the
exponential functions are invertible. We now turn our attention to these inverses, the logarithmic
functions, which are called ‘logs’ for short.

Definition 6.2. The inverse of the exponential function f(x) = bx is called the base b loga-
rithm function, and is denoted f−1(x) = logb(x) We read ‘logb(x)’ as ‘log base b of x.’

We have special notations for the common base, b = 10, and the natural base, b = e.

Definition 6.3. The common logarithm of a real number x is log10(x) and is usually written
log(x). The natural logarithm of a real number x is loge(x) and is usually written ln(x).

Since logs are defined as the inverses of exponential functions, we can use Theorems 5.2 and 5.3 to
tell us about logarithmic functions. For example, we know that the domain of a log function is the
range of an exponential function, namely (0,∞), and that the range of a log function is the domain
of an exponential function, namely (−∞,∞). Since we know the basic shapes of y = f(x) = bx for
the different cases of b, we can obtain the graph of y = f−1(x) = logb(x) by reflecting the graph of
f across the line y = x as shown below. The y-intercept (0, 1) on the graph of f corresponds to
an x-intercept of (1, 0) on the graph of f−1. The horizontal asymptotes y = 0 on the graphs of the
exponential functions become vertical asymptotes x = 0 on the log graphs.
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y = bx, b > 1
y = logb(x), b > 1

y = bx, 0 < b < 1
y = logb(x), 0 < b < 1

On a procedural level, logs undo the exponentials. Consider the function f(x) = 2x. When we
evaluate f(3) = 23 = 8, the input 3 becomes the exponent on the base 2 to produce the real
number 8. The function f−1(x) = log2(x) then takes the number 8 as its input and returns the
exponent 3 as its output. In symbols, log2(8) = 3. More generally, log2(x) is the exponent you
put on 2 to get x. Thus, log2(16) = 4, because 24 = 16. The following theorem summarizes the
basic properties of logarithmic functions, all of which come from the fact that they are inverses of
exponential functions.

Theorem 6.2. Properties of Logarithmic Functions: Suppose f(x) = logb(x).

� The domain of f is (0,∞) and the range of f is (−∞,∞).

� (1, 0) is on the graph of f and x = 0 is a vertical asymptote of the graph of f .

� f is one-to-one, continuous and smooth

� ba = c if and only if logb(c) = a. That is, logb(c) is the exponent you put on b to obtain c.

� logb (bx) = x for all x and blogb(x) = x for all x > 0

� If b > 1:

– f is always increasing

– As x→ 0+, f(x)→ −∞
– As x→∞, f(x)→∞
– The graph of f resembles:

y = logb(x), b > 1

� If 0 < b < 1:

– f is always decreasing

– As x→ 0+, f(x)→∞
– As x→∞, f(x)→ −∞
– The graph of f resembles:

y = logb(x), 0 < b < 1
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As we have mentioned, Theorem 6.2 is a consequence of Theorems 5.2 and 5.3. However, it is worth
the reader’s time to understand Theorem 6.2 from an exponential perspective. For instance, we
know that the domain of g(x) = log2(x) is (0,∞). Why? Because the range of f(x) = 2x is (0,∞).
In a way, this says everything, but at the same time, it doesn’t. For example, if we try to find
log2(−1), we are trying to find the exponent we put on 2 to give us −1. In other words, we are
looking for x that satisfies 2x = −1. There is no such real number, since all powers of 2 are positive.
While what we have said is exactly the same thing as saying ‘the domain of g(x) = log2(x) is (0,∞)
because the range of f(x) = 2x is (0,∞)’, we feel it is in a student’s best interest to understand
the statements in Theorem 6.2 at this level instead of just merely memorizing the facts.

Example 6.1.3. Simplify the following.

1. log3(81) 2. log2

(
1

8

)
3. log√5(25) 4. ln

(
3
√
e2
)

5. log(0.001) 6. 2log2(8) 7. 117− log117(6)

Solution.

1. The number log3(81) is the exponent we put on 3 to get 81. As such, we want to write 81 as
a power of 3. We find 81 = 34, so that log3(81) = 4.

2. To find log2

(
1
8

)
, we need rewrite 1

8 as a power of 2. We find 1
8 = 1

23 = 2−3, so log2

(
1
8

)
= −3.

3. To determine log√5(25), we need to express 25 as a power of
√

5. We know 25 = 52, and

5 =
(√

5
)2

, so we have 25 =
((√

5
)2)2

=
(√

5
)4

. We get log√5(25) = 4.

4. First, recall that the notation ln
(

3
√
e2
)

means loge

(
3
√
e2
)

, so we are looking for the exponent

to put on e to obtain
3
√
e2. Rewriting

3
√
e2 = e2/3, we find ln

(
3
√
e2
)

= ln
(
e2/3

)
= 2

3 .

5. Rewriting log(0.001) as log10(0.001), we see that we need to write 0.001 as a power of 10. We
have 0.001 = 1

1000 = 1
103 = 10−3. Hence, log(0.001) = log

(
10−3

)
= −3.

6. We can use Theorem 6.2 directly to simplify 2log2(8) = 8. We can also understand this problem
by first finding log2(8). By definition, log2(8) is the exponent we put on 2 to get 8. Since
8 = 23, we have log2(8) = 3. We now substitute to find 2log2(8) = 23 = 8.

7. From Theorem 6.2, we know 117log117(6) = 6, but we cannot directly apply this formula to the
expression 117− log117(6). (Can you see why?) At this point, we use a property of exponents
followed by Theorem 6.2 to get9

117− log117(6) =
1

117log117(6)
=

1

6

9It is worth a moment of your time to think your way through why 117log117(6) = 6. By definition, log117(6) is the
exponent we put on 117 to get 6. What are we doing with this exponent? We are putting it on 117. By definition
we get 6. In other words, the exponential function f(x) = 117x undoes the logarithmic function g(x) = log117(x).
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Up until this point, restrictions on the domains of functions came from avoiding division by zero
and keeping negative numbers from beneath even radicals. With the introduction of logs, we now
have another restriction. Since the domain of f(x) = logb(x) is (0,∞), the argument10 of the log
must be strictly positive.

Example 6.1.4. Find the domain of the following functions. Check your answers graphically using
the calculator.

1. f(x) = 2 log(3− x)− 1 2. g(x) = ln

(
x

x− 1

)
Solution.

1. We set 3−x > 0 to obtain x < 3, or (−∞, 3). The graph from the calculator below verifies this.
Note that we could have graphed f using transformations. Taking a cue from Theorem 1.7, we
rewrite f(x) = 2 log10(−x+3)−1 and find the main function involved is y = h(x) = log10(x).
We select three points to track,

(
1
10 ,−1

)
, (1, 0) and (10, 1), along with the vertical asymptote

x = 0. Since f(x) = 2h(−x+ 3)− 1, Theorem 1.7 tells us that to obtain the destinations of
these points, we first subtract 3 from the x-coordinates (shifting the graph left 3 units), then
divide (multiply) by the x-coordinates by −1 (causing a reflection across the y-axis). These
transformations apply to the vertical asymptote x = 0 as well. Subtracting 3 gives us x = −3
as our asymptote, then multplying by −1 gives us the vertical asymptote x = 3. Next, we
multiply the y-coordinates by 2 which results in a vertical stretch by a factor of 2, then we
finish by subtracting 1 from the y-coordinates which shifts the graph down 1 unit. We leave
it to the reader to perform the indicated arithmetic on the points themselves and to verify
the graph produced by the calculator below.

2. To find the domain of g, we need to solve the inequality x
x−1 > 0. As usual, we proceed using

a sign diagram. If we define r(x) = x
x−1 , we find r is undefined at x = 1 and r(x) = 0 when

x = 0. Choosing some test values, we generate the sign diagram below.

(+)

0

0 (−)

1

� (+)

We find x
x−1 > 0 on (−∞, 0)∪ (1,∞) to get the domain of g. The graph of y = g(x) confirms

this. We can tell from the graph of g that it is not the result of Section 1.7 transformations
being applied to the graph y = ln(x), so barring a more detailed analysis using Calculus, the
calculator graph is the best we can do. One thing worthy of note, however, is the end behavior
of g. The graph suggests that as x→ ±∞, g(x)→ 0. We can verify this analytically. Using
results from Chapter 4 and continuity, we know that as x→ ±∞, x

x−1 ≈ 1. Hence, it makes

sense that g(x) = ln
(

x
x−1

)
≈ ln(1) = 0.

10See page 55 if you’ve forgotten what this term means.



426 Exponential and Logarithmic Functions

y = f(x) = 2 log(3− x)− 1 y = g(x) = ln

(
x

x− 1

)
While logarithms have some interesting applications of their own which you’ll explore in the exer-
cises, their primary use to us will be to undo exponential functions. (This is, after all, how they
were defined.) Our last example solidifies this and reviews all of the material in the section.

Example 6.1.5. Let f(x) = 2x−1 − 3.

1. Graph f using transformations and state the domain and range of f .

2. Explain why f is invertible and find a formula for f−1(x).

3. Graph f−1 using transformations and state the domain and range of f−1.

4. Verify
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and

(
f ◦ f−1

)
(x) = x for all x in the

domain of f−1.

5. Graph f and f−1 on the same set of axes and check the symmetry about the line y = x.

Solution.

1. If we identify g(x) = 2x, we see f(x) = g(x − 1) − 3. We pick the points
(
−1, 1

2

)
, (0, 1)

and (1, 2) on the graph of g along with the horizontal asymptote y = 0 to track through
the transformations. By Theorem 1.7 we first add 1 to the x-coordinates of the points on
the graph of g (shifting g to the right 1 unit) to get

(
0, 1

2

)
, (1, 1) and (2, 2). The horizontal

asymptote remains y = 0. Next, we subtract 3 from the y-coordinates, shifting the graph
down 3 units. We get the points

(
0,−5

2

)
, (1,−2) and (2,−1) with the horizontal asymptote

now at y = −3. Connecting the dots in the order and manner as they were on the graph of
g, we get the graph below. We see that the domain of f is the same as g, namely (−∞,∞),
but that the range of f is (−3,∞).
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y = f(x) = 2x−1 − 3
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2. The graph of f passes the Horizontal Line Test so f is one-to-one, hence invertible. To find
a formula for f−1(x), we normally set y = f(x), interchange the x and y, then proceed to
solve for y. Doing so in this situation leads us to the equation x = 2y−1 − 3. We have yet
to discuss how to solve this kind of equation, so we will attempt to find the formula for f−1

from a procedural perspective. If we break f(x) = 2x−1 − 3 into a series of steps, we find f
takes an input x and applies the steps

(a) subtract 1

(b) put as an exponent on 2

(c) subtract 3

Clearly, to undo subtracting 1, we will add 1, and similarly we undo subtracting 3 by adding
3. How do we undo the second step? The answer is we use the logarithm. By definition,
log2(x) undoes exponentiation by 2. Hence, f−1 should

(a) add 3

(b) take the logarithm base 2

(c) add 1

In symbols, f−1(x) = log2(x+ 3) + 1.

3. To graph f−1(x) = log2(x + 3) + 1 using transformations, we start with j(x) = log2(x). We
track the points

(
1
2 ,−1

)
, (1, 0) and (2, 1) on the graph of j along with the vertical asymptote

x = 0 through the transformations using Theorem 1.7. Since f−1(x) = j(x+ 3) + 1, we first
subtract 3 from each of the x values (including the vertical asymptote) to obtain

(
−5

2 ,−1
)
,

(−2, 0) and (−1, 1) with a vertical asymptote x = −3. Next, we add 1 to the y values on the
graph and get

(
−5

2 , 0
)
, (−2, 1) and (−1, 2). If you are experiencing déjà vu, there is a good

reason for it but we leave it to the reader to determine the source of this uncanny familiarity.
We obtain the graph below. The domain of f−1 is (−3,∞), which matches the range of f ,
and the range of f−1 is (−∞,∞), which matches the domain of f .
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y = j(x) = log2(x) −−−−−−−−−−−−→
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y
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4

−2−1 1 2 3 4 5 6 7 8

y = f−1(x) = log2(x+ 3) + 1

4. We now verify that f(x) = 2x−1 − 3 and f−1(x) = log2(x + 3) + 1 satisfy the composition
requirement for inverses. For all real numbers x,
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(
f−1 ◦ f

)
(x) = f−1(f(x))

= f−1
(
2x−1 − 3

)
= log2

([
2x−1 − 3

]
+ 3
)

+ 1

= log2

(
2x−1

)
+ 1

= (x− 1) + 1 Since log2 (2u) = u for all real numbers u

= x X

For all real numbers x > −3, we have11

(
f ◦ f−1

)
(x) = f

(
f−1(x)

)
= f (log2(x+ 3) + 1)

= 2(log2(x+3)+1)−1 − 3

= 2log2(x+3) − 3

= (x+ 3)− 3 Since 2log2(u) = u for all real numbers u > 0

= x X

5. Last, but certainly not least, we graph y = f(x) and y = f−1(x) on the same set of axes and
see the symmetry about the line y = x.

x

y

y = f(x) = 2x−1 − 3
y = f−1(x) = log2(x+ 3) + 1

−3 −2 −1 1 2 3 4 5 6 7 8

−2

−1

1

2

3

4

5

6

7

8

11Pay attention - can you spot in which step below we need x > −3?
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6.1.1 Exercises

In Exercises 1 - 15, use the property: ba = c if and only if logb(c) = a from Theorem 6.2 to rewrite
the given equation in the other form. That is, rewrite the exponential equations as logarithmic
equations and rewrite the logarithmic equations as exponential equations.

1. 23 = 8 2. 5−3 = 1
125 3. 45/2 = 32

4.
(

1
3

)−2
= 9 5.

(
4
25

)−1/2
= 5

2
6. 10−3 = 0.001

7. e0 = 1 8. log5(25) = 2 9. log25(5) = 1
2

10. log3

(
1
81

)
= −4 11. log 4

3

(
3
4

)
= −1 12. log(100) = 2

13. log(0.1) = −1 14. ln(e) = 1 15. ln
(

1√
e

)
= −1

2

In Exercises 16 - 42, evaluate the expression.

16. log3(27) 17. log6(216) 18. log2(32)

19. log6

(
1
36

)
20. log8(4) 21. log36(216)

22. log 1
5
(625) 23. log 1

6
(216) 24. log36(36)

25. log
(

1
1000000

)
26. log(0.01) 27. ln

(
e3
)

28. log4(8) 29. log6(1) 30. log13

(√
13
)

31. log36

(
4
√

36
)

32. 7log7(3) 33. 36log36(216)

34. log36

(
36216

)
35. ln

(
e5
)

36. log
(

9
√

1011
)

37. log
(

3
√

105
)

38. ln
(

1√
e

)
39. log5

(
3log3(5)

)
40. log

(
eln(100)

)
41. log2

(
3− log3(2)

)
42. ln

(
426 log(1)

)
In Exercises 43 - 57, find the domain of the function.

43. f(x) = ln(x2 + 1) 44. f(x) = log7(4x+ 8)

45. f(x) = ln(4x− 20) 46. f(x) = log
(
x2 + 9x+ 18

)
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47. f(x) = log

(
x+ 2

x2 − 1

)
48. f(x) = log

(
x2 + 9x+ 18

4x− 20

)
49. f(x) = ln(7− x) + ln(x− 4) 50. f(x) = ln(4x− 20) + ln

(
x2 + 9x+ 18

)
51. f(x) = log

(
x2 + x+ 1

)
52. f(x) = 4

√
log4(x)

53. f(x) = log9(|x+ 3| − 4) 54. f(x) = ln(
√
x− 4− 3)

55. f(x) =
1

3− log5(x) 56. f(x) =

√
−1− x

log 1
2
(x)

57. f(x) = ln(−2x3 − x2 + 13x− 6)

In Exercises 58 - 63, sketch the graph of y = g(x) by starting with the graph of y = f(x) and using
transformations. Track at least three points of your choice and the horizontal asymptote through
the transformations. State the domain and range of g.

58. f(x) = 2x, g(x) = 2x − 1 59. f(x) =
(

1
3

)x
, g(x) =

(
1
3

)x−1

60. f(x) = 3x, g(x) = 3−x + 2 61. f(x) = 10x, g(x) = 10
x+1

2 − 20

62. f(x) = ex, g(x) = 8− e−x 63. f(x) = ex, g(x) = 10e−0.1x

In Exercises 64 - 69, sketch the graph of y = g(x) by starting with the graph of y = f(x) and using
transformations. Track at least three points of your choice and the vertical asymptote through the
transformations. State the domain and range of g.

64. f(x) = log2(x), g(x) = log2(x+ 1) 65. f(x) = log 1
3
(x), g(x) = log 1

3
(x) + 1

66. f(x) = log3(x), g(x) = − log3(x− 2) 67. f(x) = log(x), g(x) = 2 log(x+ 20)− 1

68. f(x) = ln(x), g(x) = − ln(8− x) 69. f(x) = ln(x), g(x) = −10 ln
(
x
10

)
70. Verify that each function in Exercises 64 - 69 is the inverse of the corresponding function in

Exercises 58 - 63. (Match up #58 and #64, and so on.)

In Exercises 71 - 74, find the inverse of the function from the ‘procedural perspective’ discussed in
Example 6.1.5 and graph the function and its inverse on the same set of axes.

71. f(x) = 3x+2 − 4 72. f(x) = log4(x− 1)

73. f(x) = −2−x + 1 74. f(x) = 5 log(x)− 2
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(Logarithmic Scales) In Exercises 75 - 77, we introduce three widely used measurement scales which
involve common logarithms: the Richter scale, the decibel scale and the pH scale. The computations
involved in all three scales are nearly identical so pay attention to the subtle differences.

75. Earthquakes are complicated events and it is not our intent to provide a complete discussion
of the science involved in them. Instead, we refer the interested reader to a solid course in Ge-
ology12 or the U.S. Geological Survey’s Earthquake Hazards Program found here and present
only a simplified version of the Richter scale. The Richter scale measures the magnitude of an
earthquake by comparing the amplitude of the seismic waves of the given earthquake to those
of a “magnitude 0 event”, which was chosen to be a seismograph reading of 0.001 millimeters
recorded on a seismometer 100 kilometers from the earthquake’s epicenter. Specifically, the
magnitude of an earthquake is given by

M(x) = log
( x

0.001

)
where x is the seismograph reading in millimeters of the earthquake recorded 100 kilometers
from the epicenter.

(a) Show that M(0.001) = 0.

(b) Compute M(80, 000).

(c) Show that an earthquake which registered 6.7 on the Richter scale had a seismograph
reading ten times larger than one which measured 5.7.

(d) Find two news stories about recent earthquakes which give their magnitudes on the
Richter scale. How many times larger was the seismograph reading of the earthquake
with larger magnitude?

76. While the decibel scale can be used in many disciplines,13 we shall restrict our attention to
its use in acoustics, specifically its use in measuring the intensity level of sound.14 The Sound
Intensity Level L (measured in decibels) of a sound intensity I (measured in watts per square
meter) is given by

L(I) = 10 log

(
I

10−12

)
.

Like the Richter scale, this scale compares I to baseline: 10−12 W
m2 is the threshold of human

hearing.

(a) Compute L(10−6).

12Rock-solid, perhaps?
13See this webpage for more information.
14As of the writing of this exercise, the Wikipedia page given here states that it may not meet the “general notability

guideline” nor does it cite any references or sources. I find this odd because it is this very usage of the decibel scale
which shows up in every College Algebra book I have read. Perhaps those other books have been wrong all along
and we’re just blindly following tradition.

http://earthquake.usgs.gov/
http://en.wikipedia.org/wiki/Richter_scale
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Sound_intensity_level
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(b) Damage to your hearing can start with short term exposure to sound levels around 115
decibels. What intensity I is needed to produce this level?

(c) Compute L(1). How does this compare with the threshold of pain which is around 140
decibels?

77. The pH of a solution is a measure of its acidity or alkalinity. Specifically, pH = − log[H+]
where [H+] is the hydrogen ion concentration in moles per liter. A solution with a pH less
than 7 is an acid, one with a pH greater than 7 is a base (alkaline) and a pH of 7 is regarded
as neutral.

(a) The hydrogen ion concentration of pure water is [H+] = 10−7. Find its pH.

(b) Find the pH of a solution with [H+] = 6.3× 10−13.

(c) The pH of gastric acid (the acid in your stomach) is about 0.7. What is the corresponding
hydrogen ion concentration?

78. Show that logb 1 = 0 and logb b = 1 for every b > 0, b 6= 1.

79. (Crazy bonus question) Without using your calculator, determine which is larger: eπ or πe.
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6.1.2 Answers

1. log2(8) = 3 2. log5

(
1

125

)
= −3 3. log4(32) = 5

2

4. log 1
3
(9) = −2 5. log 4

25

(
5
2

)
= −1

2 6. log(0.001) = −3

7. ln(1) = 0 8. 52 = 25 9. (25)
1
2 = 5

10. 3−4 = 1
81 11.

(
4
3

)−1
= 3

4
12. 102 = 100

13. 10−1 = 0.1 14. e1 = e 15. e−
1
2 = 1√

e

16. log3(27) = 3 17. log6(216) = 3 18. log2(32) = 5

19. log6

(
1
36

)
= −2 20. log8(4) = 2

3 21. log36(216) = 3
2

22. log 1
5
(625) = −4 23. log 1

6
(216) = −3 24. log36(36) = 1

25. log 1
1000000 = −6 26. log(0.01) = −2 27. ln

(
e3
)

= 3

28. log4(8) = 3
2 29. log6(1) = 0 30. log13

(√
13
)

= 1
2

31. log36

(
4
√

36
)

= 1
4 32. 7log7(3) = 3 33. 36log36(216) = 216

34. log36

(
36216

)
= 216 35. ln(e5) = 5 36. log

(
9
√

1011
)

= 11
9

37. log
(

3
√

105
)

= 5
3 38. ln

(
1√
e

)
= −1

2
39. log5

(
3log3 5

)
= 1

40. log
(
eln(100)

)
= 2 41. log2

(
3− log3(2)

)
= −1 42. ln

(
426 log(1)

)
= 0

43. (−∞,∞) 44. (−2,∞) 45. (5,∞)

46. (−∞,−6) ∪ (−3,∞) 47. (−2,−1) ∪ (1,∞) 48. (−6,−3) ∪ (5,∞)

49. (4, 7) 50. (5,∞) 51. (−∞,∞)

52. [1,∞) 53. (−∞,−7) ∪ (1,∞) 54. (13,∞)

55. (0, 125) ∪ (125,∞) 56. No domain 57. (−∞,−3) ∪
(

1
2 , 2
)
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58. Domain of g: (−∞,∞)
Range of g: (−1,∞)

x

y

−3−2−1

H.A. y = −1

1 2 3

1

2

3

4

5

6

7

8

y = g(x) = 2x − 1

59. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

y = g(x) =
(

1
3

)x−1

60. Domain of g: (−∞,∞)
Range of g: (2,∞)

x

y

H.A. y = 2

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

10

11

y = g(x) = 3−x + 2

61. Domain of g: (−∞,∞)
Range of g: (−20,∞)

x

y

H.A. y = −20

−3−2 1 2 3−10

10

20

30

40

50

60

70

80

y = g(x) = 10
x+1
2 − 20

62. Domain of g: (−∞,∞)
Range of g: (−∞, 8)

x

y

H.A. y = 8

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

y = g(x) = 8− e−x

63. Domain of g: (−∞,∞)
Range of g: (0,∞)

x

y

−10 10 20 30

10

20

30

40

50

60

70

80

y = g(x) = 10e−0.1x
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64. Domain of g: (−1,∞)
Range of g: (−∞,∞)

y

x

−3

−2

−1

V.A. x = −1

1

2

3

1 2 3 4 5 6 7 8

y = g(x) = log2(x+ 1)

65. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x

−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8 9

y = g(x) = log 1
3

(x) + 1

66. Domain of g: (2,∞)
Range of g: (−∞,∞)

y

x

V.A. x = 2

−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8 9 10 11

y = g(x) = − log3(x− 2)

67. Domain of g: (−20,∞)
Range of g: (−∞,∞)

y

x

V.A. x = −20−3

−2

1

2

3

−10 10 20 30 40 50 60 70 80 90100

y = g(x) = 2 log(x+ 20)− 1

68. Domain of g: (−∞, 8)
Range of g:(−∞,∞)

y

x

V.A. x = 8−3

−2

−1

1

2

3

1 2 3 4 5 6 7 8

y = g(x) = − ln(8− x)

69. Domain of g: (0,∞)
Range of g: (−∞,∞)

y

x
−10

10

20

30

10 20 30 40 50 60 70 80

y = g(x) = −10 ln
(
x
10

)
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71. f(x) = 3x+2 − 4
f−1(x) = log3(x+ 4)− 2

x

y

y = f(x) = 3x+2 − 4

y = f−1(x) = log3(x+ 4)− 2

−4−3−2−1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5

6

72. f(x) = log4(x− 1)
f−1(x) = 4x + 1

x

y

y = f(x) = log4(x− 1)

y = f−1(x) = 4x + 1

−2 −1 1 2 3 4 5 6

−2

−1

1

2

3

4

5

6

73. f(x) = −2−x + 1
f−1(x) = − log2(1− x)

x

y

y = f(x) = −2−x + 1
y = f−1(x) = − log2(1− x)

−2 −1 1 2

−2

−1

1

2

74. f(x) = 5 log(x)− 2

f−1(x) = 10
x+2

5

x

y

y = f(x) = 5 log(x)− 2

y = f−1(x) = 10
x+2

5

−4−3−2−1 1 2 3 4 5

−4

−3

−2

−1

1

2

3

4

5

75. (a) M(0.001) = log
(

0.001
0.001

)
= log(1) = 0.

(b) M(80, 000) = log
(

80,000
0.001

)
= log(80, 000, 000) ≈ 7.9.

76. (a) L(10−6) = 60 decibels.

(b) I = 10−.5 ≈ 0.316 watts per square meter.

(c) Since L(1) = 120 decibels and L(100) = 140 decibels, a sound with intensity level 140
decibels has an intensity 100 times greater than a sound with intensity level 120 decibels.

77. (a) The pH of pure water is 7.

(b) If [H+] = 6.3× 10−13 then the solution has a pH of 12.2.

(c) [H+] = 10−0.7 ≈ .1995 moles per liter.
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6.2 Properties of Logarithms

In Section 6.1, we introduced the logarithmic functions as inverses of exponential functions and
discussed a few of their functional properties from that perspective. In this section, we explore
the algebraic properties of logarithms. Historically, these have played a huge role in the scientific
development of our society since, among other things, they were used to develop analog computing
devices called slide rules which enabled scientists and engineers to perform accurate calculations
leading to such things as space travel and the moon landing. As we shall see shortly, logs inherit
analogs of all of the properties of exponents you learned in Elementary and Intermediate Algebra.
We first extract two properties from Theorem 6.2 to remind us of the definition of a logarithm as
the inverse of an exponential function.

Theorem 6.3. (Inverse Properties of Exponential and Logarithmic Functions)
Let b > 0, b 6= 1.

� ba = c if and only if logb(c) = a

� logb (bx) = x for all x and blogb(x) = x for all x > 0

Next, we spell out what it means for exponential and logarithmic functions to be one-to-one.

Theorem 6.4. (One-to-one Properties of Exponential and Logarithmic Functions)
Let f(x) = bx and g(x) = logb(x) where b > 0, b 6= 1. Then f and g are one-to-one and

� bu = bw if and only if u = w for all real numbers u and w.

� logb(u) = logb(w) if and only if u = w for all real numbers u > 0, w > 0.

We now state the algebraic properties of exponential functions which will serve as a basis for the
properties of logarithms. While these properties may look identical to the ones you learned in
Elementary and Intermediate Algebra, they apply to real number exponents, not just rational
exponents. Note that in the theorem that follows, we are interested in the properties of exponential
functions, so the base b is restricted to b > 0, b 6= 1. An added benefit of this restriction is that it

eliminates the pathologies discussed in Section 5.3 when, for example, we simplified
(
x2/3

)3/2
and

obtained |x| instead of what we had expected from the arithmetic in the exponents, x1 = x.

Theorem 6.5. (Algebraic Properties of Exponential Functions) Let f(x) = bx be an
exponential function (b > 0, b 6= 1) and let u and w be real numbers.

� Product Rule: f(u+ w) = f(u)f(w). In other words, bu+w = bubw

� Quotient Rule: f(u− w) =
f(u)

f(w)
. In other words, bu−w =

bu

bw

� Power Rule: (f(u))w = f(uw). In other words, (bu)w = buw

While the properties listed in Theorem 6.5 are certainly believable based on similar properties of
integer and rational exponents, the full proofs require Calculus. To each of these properties of

http://en.wikipedia.org/wiki/Slide_rule
http://www.redorbit.com/news/space/73297/nasa_marks_35th_anniversary_of_first_moon_landing/
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exponential functions corresponds an analogous property of logarithmic functions. We list these
below in our next theorem.

Theorem 6.6. (Algebraic Properties of Logarithmic Functions) Let g(x) = logb(x) be a
logarithmic function (b > 0, b 6= 1) and let u > 0 and w > 0 be real numbers.

� Product Rule: g(uw) = g(u) + g(w). In other words, logb(uw) = logb(u) + logb(w)

� Quotient Rule: g
( u
w

)
= g(u)− g(w). In other words, logb

( u
w

)
= logb(u)− logb(w)

� Power Rule: g (uw) = wg(u). In other words, logb (uw) = w logb(u)

There are a couple of different ways to understand why Theorem 6.6 is true. Consider the product
rule: logb(uw) = logb(u) + logb(w). Let a = logb(uw), c = logb(u), and d = logb(w). Then, by
definition, ba = uw, bc = u and bd = w. Hence, ba = uw = bcbd = bc+d, so that ba = bc+d. By
the one-to-one property of bx, we have a = c + d. In other words, logb(uw) = logb(u) + logb(w).
The remaining properties are proved similarly. From a purely functional approach, we can see
the properties in Theorem 6.6 as an example of how inverse functions interchange the roles of
inputs in outputs. For instance, the Product Rule for exponential functions given in Theorem 6.5,
f(u+w) = f(u)f(w), says that adding inputs results in multiplying outputs. Hence, whatever f−1

is, it must take the products of outputs from f and return them to the sum of their respective inputs.
Since the outputs from f are the inputs to f−1 and vice-versa, we have that that f−1 must take
products of its inputs to the sum of their respective outputs. This is precisely what the Product Rule
for Logarithmic functions states in Theorem 6.6: g(uw) = g(u)+g(w). The reader is encouraged to
view the remaining properties listed in Theorem 6.6 similarly. The following examples help build
familiarity with these properties. In our first example, we are asked to ‘expand’ the logarithms.
This means that we read the properties in Theorem 6.6 from left to right and rewrite products
inside the log as sums outside the log, quotients inside the log as differences outside the log, and
powers inside the log as factors outside the log.1

Example 6.2.1. Expand the following using the properties of logarithms and simplify. Assume
when necessary that all quantities represent positive real numbers.

1. log2

(
8

x

)
2. log0.1

(
10x2

)
3. ln

(
3

ex

)2

4. log 3

√
100x2

yz5
5. log117

(
x2 − 4

)
Solution.

1. To expand log2

(
8
x

)
, we use the Quotient Rule identifying u = 8 and w = x and simplify.

1Interestingly enough, it is the exact opposite process (which we will practice later) that is most useful in Algebra,
the utility of expanding logarithms becomes apparent in Calculus.
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log2

(
8

x

)
= log2(8)− log2(x) Quotient Rule

= 3− log2(x) Since 23 = 8

= − log2(x) + 3

2. In the expression log0.1

(
10x2

)
, we have a power (the x2) and a product. In order to use the

Product Rule, the entire quantity inside the logarithm must be raised to the same exponent.
Since the exponent 2 applies only to the x, we first apply the Product Rule with u = 10 and
w = x2. Once we get the x2 by itself inside the log, we may apply the Power Rule with u = x
and w = 2 and simplify.

log0.1

(
10x2

)
= log0.1(10) + log0.1

(
x2
)

Product Rule

= log0.1(10) + 2 log0.1(x) Power Rule

= −1 + 2 log0.1(x) Since (0.1)−1 = 10

= 2 log0.1(x)− 1

3. We have a power, quotient and product occurring in ln
(

3
ex

)2
. Since the exponent 2 applies

to the entire quantity inside the logarithm, we begin with the Power Rule with u = 3
ex and

w = 2. Next, we see the Quotient Rule is applicable, with u = 3 and w = ex, so we replace
ln
(

3
ex

)
with the quantity ln(3) − ln(ex). Since ln

(
3
ex

)
is being multiplied by 2, the entire

quantity ln(3)− ln(ex) is multiplied by 2. Finally, we apply the Product Rule with u = e and
w = x, and replace ln(ex) with the quantity ln(e) + ln(x), and simplify, keeping in mind that
the natural log is log base e.

ln

(
3

ex

)2

= 2 ln

(
3

ex

)
Power Rule

= 2 [ln(3)− ln(ex)] Quotient Rule

= 2 ln(3)− 2 ln(ex)

= 2 ln(3)− 2 [ln(e) + ln(x)] Product Rule

= 2 ln(3)− 2 ln(e)− 2 ln(x)

= 2 ln(3)− 2− 2 ln(x) Since e1 = e

= −2 ln(x) + 2 ln(3)− 2

4. In Theorem 6.6, there is no mention of how to deal with radicals. However, thinking back to
Definition 5.5, we can rewrite the cube root as a 1

3 exponent. We begin by using the Power
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Rule2, and we keep in mind that the common log is log base 10.

log 3

√
100x2

yz5
= log

(
100x2

yz5

)1/3

= 1
3 log

(
100x2

yz5

)
Power Rule

= 1
3

[
log
(
100x2

)
− log

(
yz5
)]

Quotient Rule

= 1
3 log

(
100x2

)
− 1

3 log
(
yz5
)

= 1
3

[
log(100) + log

(
x2
)]
− 1

3

[
log(y) + log

(
z5
)]

Product Rule

= 1
3 log(100) + 1

3 log
(
x2
)
− 1

3 log(y)− 1
3 log

(
z5
)

= 1
3 log(100) + 2

3 log(x)− 1
3 log(y)− 5

3 log(z) Power Rule

= 2
3 + 2

3 log(x)− 1
3 log(y)− 5

3 log(z) Since 102 = 100

= 2
3 log(x)− 1

3 log(y)− 5
3 log(z) + 2

3

5. At first it seems as if we have no means of simplifying log117

(
x2 − 4

)
, since none of the

properties of logs addresses the issue of expanding a difference inside the logarithm. However,
we may factor x2 − 4 = (x + 2)(x − 2) thereby introducing a product which gives us license
to use the Product Rule.

log117

(
x2 − 4

)
= log117 [(x+ 2)(x− 2)] Factor

= log117(x+ 2) + log117(x− 2) Product Rule

A couple of remarks about Example 6.2.1 are in order. First, while not explicitly stated in the above
example, a general rule of thumb to determine which log property to apply first to a complicated
problem is ‘reverse order of operations.’ For example, if we were to substitute a number for x into
the expression log0.1

(
10x2

)
, we would first square the x, then multiply by 10. The last step is the

multiplication, which tells us the first log property to apply is the Product Rule. In a multi-step
problem, this rule can give the required guidance on which log property to apply at each step.
The reader is encouraged to look through the solutions to Example 6.2.1 to see this rule in action.
Second, while we were instructed to assume when necessary that all quantities represented positive
real numbers, the authors would be committing a sin of omission if we failed to point out that, for
instance, the functions f(x) = log117

(
x2 − 4

)
and g(x) = log117(x+2)+log117(x−2) have different

domains, and, hence, are different functions. We leave it to the reader to verify the domain of f
is (−∞,−2) ∪ (2,∞) whereas the domain of g is (2,∞). In general, when using log properties to

2At this point in the text, the reader is encouraged to carefully read through each step and think of which quantity
is playing the role of u and which is playing the role of w as we apply each property.
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expand a logarithm, we may very well be restricting the domain as we do so. One last comment
before we move to reassembling logs from their various bits and pieces. The authors are well aware
of the propensity for some students to become overexcited and invent their own properties of logs
like log117

(
x2 − 4

)
= log117

(
x2
)
− log117(4), which simply isn’t true, in general. The unwritten3

property of logarithms is that if it isn’t written in a textbook, it probably isn’t true.

Example 6.2.2. Use the properties of logarithms to write the following as a single logarithm.

1. log3(x− 1)− log3(x+ 1) 2. log(x) + 2 log(y)− log(z)

3. 4 log2(x) + 3 4. − ln(x)− 1
2

Solution. Whereas in Example 6.2.1 we read the properties in Theorem 6.6 from left to right to
expand logarithms, in this example we read them from right to left.

1. The difference of logarithms requires the Quotient Rule: log3(x−1)−log3(x+1) = log3

(
x−1
x+1

)
.

2. In the expression, log(x) + 2 log(y)− log(z), we have both a sum and difference of logarithms.
However, before we use the product rule to combine log(x) + 2 log(y), we note that we need
to somehow deal with the coefficient 2 on log(y). This can be handled using the Power Rule.
We can then apply the Product and Quotient Rules as we move from left to right. Putting it
all together, we have

log(x) + 2 log(y)− log(z) = log(x) + log
(
y2
)
− log(z) Power Rule

= log
(
xy2
)
− log(z) Product Rule

= log

(
xy2

z

)
Quotient Rule

3. We can certainly get started rewriting 4 log2(x) + 3 by applying the Power Rule to 4 log2(x)
to obtain log2

(
x4
)
, but in order to use the Product Rule to handle the addition, we need to

rewrite 3 as a logarithm base 2. From Theorem 6.3, we know 3 = log2

(
23
)
, so we get

4 log2(x) + 3 = log2

(
x4
)

+ 3 Power Rule

= log2

(
x4
)

+ log2

(
23
)

Since 3 = log2

(
23
)

= log2

(
x4
)

+ log2(8)

= log2

(
8x4
)

Product Rule

3The authors relish the irony involved in writing what follows.



442 Exponential and Logarithmic Functions

4. To get started with − ln(x)− 1
2 , we rewrite − ln(x) as (−1) ln(x). We can then use the Power

Rule to obtain (−1) ln(x) = ln
(
x−1

)
. In order to use the Quotient Rule, we need to write 1

2

as a natural logarithm. Theorem 6.3 gives us 1
2 = ln

(
e1/2

)
= ln (

√
e). We have

− ln(x)− 1
2 = (−1) ln(x)− 1

2

= ln
(
x−1

)
− 1

2 Power Rule

= ln
(
x−1

)
− ln

(
e1/2

)
Since 1

2 = ln
(
e1/2

)
= ln

(
x−1

)
− ln (

√
e)

= ln

(
x−1

√
e

)
Quotient Rule

= ln

(
1

x
√
e

)

As we would expect, the rule of thumb for re-assembling logarithms is the opposite of what it
was for dismantling them. That is, if we are interested in rewriting an expression as a single
logarithm, we apply log properties following the usual order of operations: deal with multiples of
logs first with the Power Rule, then deal with addition and subtraction using the Product and
Quotient Rules, respectively. Additionally, we find that using log properties in this fashion can
increase the domain of the expression. For example, we leave it to the reader to verify the domain

of f(x) = log3(x−1)−log3(x+1) is (1,∞) but the domain of g(x) = log3

(
x−1
x+1

)
is (−∞,−1)∪(1,∞).

We will need to keep this in mind when we solve equations involving logarithms in Section 6.4 - it
is precisely for this reason we will have to check for extraneous solutions.

The two logarithm buttons commonly found on calculators are the ‘LOG’ and ‘LN’ buttons which
correspond to the common and natural logs, respectively. Suppose we wanted an approximation to
log2(7). The answer should be a little less than 3, (Can you explain why?) but how do we coerce
the calculator into telling us a more accurate answer? We need the following theorem.

Theorem 6.7. (Change of Base Formulas) Let a, b > 0, a, b 6= 1.

� ax = bx logb(a) for all real numbers x.

� loga(x) =
logb(x)

logb(a)
for all real numbers x > 0.

The proofs of the Change of Base formulas are a result of the other properties studied in this
section. If we start with bx logb(a) and use the Power Rule in the exponent to rewrite x logb(a) as
logb (ax) and then apply one of the Inverse Properties in Theorem 6.3, we get

bx logb(a) = blogb(a
x) = ax,
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as required. To verify the logarithmic form of the property, we also use the Power Rule and an
Inverse Property. We note that

loga(x) · logb(a) = logb

(
aloga(x)

)
= logb(x),

and we get the result by dividing through by logb(a). Of course, the authors can’t help but point
out the inverse relationship between these two change of base formulas. To change the base of
an exponential expression, we multiply the input by the factor logb(a). To change the base of a
logarithmic expression, we divide the output by the factor logb(a). While, in the grand scheme
of things, both change of base formulas are really saying the same thing, the logarithmic form is
the one usually encountered in Algebra while the exponential form isn’t usually introduced until
Calculus.4 What Theorem 6.7 really tells us is that all exponential and logarithmic functions are
just scalings of one another. Not only does this explain why their graphs have similar shapes, but
it also tells us that we could do all of mathematics with a single base - be it 10, e, 42, or 117. Your
Calculus teacher will have more to say about this when the time comes.

Example 6.2.3. Use an appropriate change of base formula to convert the following expressions
to ones with the indicated base. Verify your answers using a calculator, as appropriate.

1. 32 to base 10 2. 2x to base e

3. log4(5) to base e 4. ln(x) to base 10

Solution.

1. We apply the Change of Base formula with a = 3 and b = 10 to obtain 32 = 102 log(3). Typing
the latter in the calculator produces an answer of 9 as required.

2. Here, a = 2 and b = e so we have 2x = ex ln(2). To verify this on our calculator, we can graph
f(x) = 2x and g(x) = ex ln(2). Their graphs are indistinguishable which provides evidence
that they are the same function.

y = f(x) = 2x and y = g(x) = ex ln(2)

4The authors feel so strongly about showing students that every property of logarithms comes from and corresponds
to a property of exponents that we have broken tradition with the vast majority of other authors in this field. This
isn’t the first time this happened, and it certainly won’t be the last.
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3. Applying the change of base with a = 4 and b = e leads us to write log4(5) = ln(5)
ln(4) . Evaluating

this in the calculator gives ln(5)
ln(4) ≈ 1.16. How do we check this really is the value of log4(5)?

By definition, log4(5) is the exponent we put on 4 to get 5. The calculator confirms this.5

4. We write ln(x) = loge(x) = log(x)
log(e) . We graph both f(x) = ln(x) and g(x) = log(x)

log(e) and find
both graphs appear to be identical.

y = f(x) = ln(x) and y = g(x) = log(x)
log(e)

5Which means if it is lying to us about the first answer it gave us, at least it is being consistent.
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6.2.1 Exercises

In Exercises 1 - 15, expand the given logarithm and simplify. Assume when necessary that all
quantities represent positive real numbers.

1. ln(x3y2) 2. log2

(
128

x2 + 4

)
3. log5

( z
25

)3

4. log(1.23× 1037) 5. ln

(√
z

xy

)
6. log5

(
x2 − 25

)
7. log√2

(
4x3
)

8. log 1
3
(9x(y3 − 8)) 9. log

(
1000x3y5

)

10. log3

(
x2

81y4

)
11. ln

(
4

√
xy

ez

)
12. log6

(
216

x3y

)4

13. log

(
100x

√
y

3
√

10

)
14. log 1

2

(
4

3
√
x2

y
√
z

)
15. ln

(
3
√
x

10
√
yz

)

In Exercises 16 - 29, use the properties of logarithms to write the expression as a single logarithm.

16. 4 ln(x) + 2 ln(y) 17. log2(x) + log2(y)− log2(z)

18. log3(x)− 2 log3(y) 19. 1
2 log3(x)− 2 log3(y)− log3(z)

20. 2 ln(x)− 3 ln(y)− 4 ln(z) 21. log(x)− 1
3 log(z) + 1

2 log(y)

22. −1
3 ln(x)− 1

3 ln(y) + 1
3 ln(z) 23. log5(x)− 3

24. 3− log(x) 25. log7(x) + log7(x− 3)− 2

26. ln(x) + 1
2 27. log2(x) + log4(x)

28. log2(x) + log4(x− 1) 29. log2(x) + log 1
2
(x− 1)



446 Exponential and Logarithmic Functions

In Exercises 30 - 33, use the appropriate change of base formula to convert the given expression to
an expression with the indicated base.

30. 7x−1 to base e 31. log3(x+ 2) to base 10

32.

(
2

3

)x
to base e 33. log(x2 + 1) to base e

In Exercises 34 - 39, use the appropriate change of base formula to approximate the logarithm.

34. log3(12) 35. log5(80) 36. log6(72)

37. log4

(
1

10

)
38. log 3

5
(1000) 39. log 2

3
(50)

40. Compare and contrast the graphs of y = ln(x2) and y = 2 ln(x).

41. Prove the Quotient Rule and Power Rule for Logarithms.

42. Give numerical examples to show that, in general,

(a) logb(x+ y) 6= logb(x) + logb(y)

(b) logb(x− y) 6= logb(x)− logb(y)

(c) logb

(
x

y

)
6= logb(x)

logb(y)

43. The Henderson-Hasselbalch Equation: Suppose HA represents a weak acid. Then we have a
reversible chemical reaction

HA
 H+ +A−.

The acid disassociation constant, Ka, is given by

Kα =
[H+][A−]

[HA]
= [H+]

[A−]

[HA]
,

where the square brackets denote the concentrations just as they did in Exercise 77 in Section
6.1. The symbol pKa is defined similarly to pH in that pKa = − log(Ka). Using the definition
of pH from Exercise 77 and the properties of logarithms, derive the Henderson-Hasselbalch
Equation which states

pH = pKa + log
[A−]

[HA]

44. Research the history of logarithms including the origin of the word ‘logarithm’ itself. Why is
the abbreviation of natural log ‘ln’ and not ‘nl’?

45. There is a scene in the movie ‘Apollo 13’ in which several people at Mission Control use slide
rules to verify a computation. Was that scene accurate? Look for other pop culture references
to logarithms and slide rules.
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6.2.2 Answers

1. 3 ln(x) + 2 ln(y) 2. 7− log2(x2 + 4)

3. 3 log5(z)− 6 4. log(1.23) + 37

5. 1
2 ln(z)− ln(x)− ln(y) 6. log5(x− 5) + log5(x+ 5)

7. 3 log√2(x) + 4 8. −2 + log 1
3
(x) + log 1

3
(y− 2) + log 1

3
(y2 + 2y+ 4)

9. 3 + 3 log(x) + 5 log(y) 10. 2 log3(x)− 4− 4 log3(y)

11. 1
4 ln(x) + 1

4 ln(y)− 1
4 −

1
4 ln(z) 12. 12− 12 log6(x)− 4 log6(y)

13. 5
3 + log(x) + 1

2 log(y) 14. −2 + 2
3 log 1

2
(x)− log 1

2
(y)− 1

2 log 1
2
(z)

15. 1
3 ln(x)− ln(10)− 1

2 ln(y)− 1
2 ln(z) 16. ln(x4y2)

17. log2

(xy
z

)
18. log3

(
x
y2

)
19. log3

(√
x

y2z

)
20. ln

(
x2

y3z4

)
21. log

(
x
√
y

3√z

)
22. ln

(
3

√
z
xy

)
23. log5

(
x

125

)
24. log

(
1000
x

)
25. log7

(
x(x−3)

49

)
26. ln (x

√
e) 27. log2

(
x3/2

)
28. log2

(
x
√
x− 1

)
29. log2

(
x
x−1

)
30. 7x−1 = e(x−1) ln(7) 31. log3(x+ 2) = log(x+2)

log(3)

32.
(

2
3

)x
= ex ln( 2

3
) 33. log(x2 + 1) = ln(x2+1)

ln(10)

34. log3(12) ≈ 2.26186 35. log5(80) ≈ 2.72271

36. log6(72) ≈ 2.38685 37. log4

(
1
10

)
≈ −1.66096

38. log 3
5
(1000) ≈ −13.52273 39. log 2

3
(50) ≈ −9.64824
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6.3 Exponential Equations and Inequalities

In this section we will develop techniques for solving equations involving exponential functions.
Suppose, for instance, we wanted to solve the equation 2x = 128. After a moment’s calculation, we
find 128 = 27, so we have 2x = 27. The one-to-one property of exponential functions, detailed in
Theorem 6.4, tells us that 2x = 27 if and only if x = 7. This means that not only is x = 7 a solution
to 2x = 27, it is the only solution. Now suppose we change the problem ever so slightly to 2x = 129.
We could use one of the inverse properties of exponentials and logarithms listed in Theorem 6.3 to
write 129 = 2log2(129). We’d then have 2x = 2log2(129), which means our solution is x = log2(129).
This makes sense because, after all, the definition of log2(129) is ‘the exponent we put on 2 to get
129.’ Indeed we could have obtained this solution directly by rewriting the equation 2x = 129 in
its logarithmic form log2(129) = x. Either way, in order to get a reasonable decimal approximation
to this number, we’d use the change of base formula, Theorem 6.7, to give us something more
calculator friendly,1 say log2(129) = ln(129)

ln(2) . Another way to arrive at this answer is as follows

2x = 129
ln (2x) = ln(129) Take the natural log of both sides.
x ln(2) = ln(129) Power Rule

x =
ln(129)

ln(2)

‘Taking the natural log’ of both sides is akin to squaring both sides: since f(x) = ln(x) is a function,
as long as two quantities are equal, their natural logs are equal.2 Also note that we treat ln(2) as
any other non-zero real number and divide it through3 to isolate the variable x. We summarize
below the two common ways to solve exponential equations, motivated by our examples.

Steps for Solving an Equation involving Exponential Functions

1. Isolate the exponential function.

2. (a) If convenient, express both sides with a common base and equate the exponents.

(b) Otherwise, take the natural log of both sides of the equation and use the Power Rule.

Example 6.3.1. Solve the following equations. Check your answer graphically using a calculator.

1. 23x = 161−x 2. 2000 = 1000 · 3−0.1t 3. 9 · 3x = 72x

4. 75 = 100
1+3e−2t 5. 25x = 5x + 6 6. ex−e−x

2 = 5

Solution.

1You can use natural logs or common logs. We choose natural logs. (In Calculus, you’ll learn these are the most
‘mathy’ of the logarithms.)

2This is also the ‘if’ part of the statement logb(u) = logb(w) if and only if u = w in Theorem 6.4.
3Please resist the temptation to divide both sides by ‘ln’ instead of ln(2). Just like it wouldn’t make sense to

divide both sides by the square root symbol ‘
√

’ when solving x
√

2 = 5, it makes no sense to divide by ‘ln’.
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1. Since 16 is a power of 2, we can rewrite 23x = 161−x as 23x =
(
24
)1−x

. Using properties of

exponents, we get 23x = 24(1−x). Using the one-to-one property of exponential functions, we
get 3x = 4(1−x) which gives x = 4

7 . To check graphically, we set f(x) = 23x and g(x) = 161−x

and see that they intersect at x = 4
7 ≈ 0.5714.

2. We begin solving 2000 = 1000 ·3−0.1t by dividing both sides by 1000 to isolate the exponential
which yields 3−0.1t = 2. Since it is inconvenient to write 2 as a power of 3, we use the natural
log to get ln

(
3−0.1t

)
= ln(2). Using the Power Rule, we get −0.1t ln(3) = ln(2), so we

divide both sides by −0.1 ln(3) to get t = − ln(2)
0.1 ln(3) = −10 ln(2)

ln(3) . On the calculator, we graph

f(x) = 2000 and g(x) = 1000 · 3−0.1x and find that they intersect at x = −10 ln(2)
ln(3) ≈ −6.3093.

y = f(x) = 23x and y = f(x) = 2000 and
y = g(x) = 161−x y = g(x) = 1000 · 3−0.1x

3. We first note that we can rewrite the equation 9·3x = 72x as 32 ·3x = 72x to obtain 3x+2 = 72x.
Since it is not convenient to express both sides as a power of 3 (or 7 for that matter) we use
the natural log: ln

(
3x+2

)
= ln

(
72x
)
. The power rule gives (x + 2) ln(3) = 2x ln(7). Even

though this equation appears very complicated, keep in mind that ln(3) and ln(7) are just
constants. The equation (x+ 2) ln(3) = 2x ln(7) is actually a linear equation and as such we
gather all of the terms with x on one side, and the constants on the other. We then divide
both sides by the coefficient of x, which we obtain by factoring.

(x+ 2) ln(3) = 2x ln(7)
x ln(3) + 2 ln(3) = 2x ln(7)

2 ln(3) = 2x ln(7)− x ln(3)
2 ln(3) = x(2 ln(7)− ln(3)) Factor.

x = 2 ln(3)
2 ln(7)−ln(3)

Graphing f(x) = 9·3x and g(x) = 72x on the calculator, we see that these two graphs intersect

at x = 2 ln(3)
2 ln(7)−ln(3) ≈ 0.7866.

4. Our objective in solving 75 = 100
1+3e−2t is to first isolate the exponential. To that end, we

clear denominators and get 75
(
1 + 3e−2t

)
= 100. From this we get 75 + 225e−2t = 100,

which leads to 225e−2t = 25, and finally, e−2t = 1
9 . Taking the natural log of both sides
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gives ln
(
e−2t

)
= ln

(
1
9

)
. Since natural log is log base e, ln

(
e−2t

)
= −2t. We can also use

the Power Rule to write ln
(

1
9

)
= − ln(9). Putting these two steps together, we simplify

ln
(
e−2t

)
= ln

(
1
9

)
to −2t = − ln(9). We arrive at our solution, t = ln(9)

2 which simplifies to
t = ln(3). (Can you explain why?) The calculator confirms the graphs of f(x) = 75 and
g(x) = 100

1+3e−2x intersect at x = ln(3) ≈ 1.099.

y = f(x) = 9 · 3x and y = f(x) = 75 and

y = g(x) = 72x y = g(x) = 100
1+3e−2x

5. We start solving 25x = 5x + 6 by rewriting 25 = 52 so that we have
(
52
)x

= 5x + 6, or
52x = 5x + 6. Even though we have a common base, having two terms on the right hand side
of the equation foils our plan of equating exponents or taking logs. If we stare at this long
enough, we notice that we have three terms with the exponent on one term exactly twice that
of another. To our surprise and delight, we have a ‘quadratic in disguise’. Letting u = 5x,
we have u2 = (5x)2 = 52x so the equation 52x = 5x + 6 becomes u2 = u + 6. Solving this as
u2 − u − 6 = 0 gives u = −2 or u = 3. Since u = 5x, we have 5x = −2 or 5x = 3. Since
5x = −2 has no real solution, (Why not?) we focus on 5x = 3. Since it isn’t convenient to
express 3 as a power of 5, we take natural logs and get ln (5x) = ln(3) so that x ln(5) = ln(3)

or x = ln(3)
ln(5) . On the calculator, we see the graphs of f(x) = 25x and g(x) = 5x + 6 intersect

at x = ln(3)
ln(5) ≈ 0.6826.

6. At first, it’s unclear how to proceed with ex−e−x
2 = 5, besides clearing the denominator to

obtain ex− e−x = 10. Of course, if we rewrite e−x = 1
ex , we see we have another denominator

lurking in the problem: ex − 1
ex = 10. Clearing this denominator gives us e2x − 1 = 10ex,

and once again, we have an equation with three terms where the exponent on one term is
exactly twice that of another - a ‘quadratic in disguise.’ If we let u = ex, then u2 = e2x so the
equation e2x − 1 = 10ex can be viewed as u2 − 1 = 10u. Solving u2 − 10u− 1 = 0, we obtain
by the quadratic formula u = 5±

√
26. From this, we have ex = 5±

√
26. Since 5−

√
26 < 0,

we get no real solution to ex = 5−
√

26, but for ex = 5 +
√

26, we take natural logs to obtain
x = ln

(
5 +
√

26
)
. If we graph f(x) = ex−e−x

2 and g(x) = 5, we see that the graphs intersect

at x = ln
(
5 +
√

26
)
≈ 2.312
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y = f(x) = 25x and y = f(x) = ex−e−x
2 and

y = g(x) = 5x + 6 y = g(x) = 5

The authors would be remiss not to mention that Example 6.3.1 still holds great educational
value. Much can be learned about logarithms and exponentials by verifying the solutions obtained
in Example 6.3.1 analytically. For example, to verify our solution to 2000 = 1000 · 3−0.1t, we
substitute t = −10 ln(2)

ln(3) and obtain

2000
?
= 1000 · 3−0.1

(
− 10 ln(2)

ln(3)

)
2000

?
= 1000 · 3

ln(2)
ln(3)

2000
?
= 1000 · 3log3(2) Change of Base

2000
?
= 1000 · 2 Inverse Property

2000
X
= 2000

The other solutions can be verified by using a combination of log and inverse properties. Some fall
out quite quickly, while others are more involved. We leave them to the reader.

Since exponential functions are continuous on their domains, the Intermediate Value Theorem 3.1
applies. As with the algebraic functions in Section 5.3, this allows us to solve inequalities using
sign diagrams as demonstrated below.

Example 6.3.2. Solve the following inequalities. Check your answer graphically using a calculator.

1. 2x
2−3x − 16 ≥ 0 2.

ex

ex − 4
≤ 3 3. xe2x < 4x

Solution.

1. Since we already have 0 on one side of the inequality, we set r(x) = 2x
2−3x− 16. The domain

of r is all real numbers, so in order to construct our sign diagram, we need to find the zeros of
r. Setting r(x) = 0 gives 2x

2−3x− 16 = 0 or 2x
2−3x = 16. Since 16 = 24 we have 2x

2−3x = 24,
so by the one-to-one property of exponential functions, x2 − 3x = 4. Solving x2 − 3x− 4 = 0
gives x = 4 and x = −1. From the sign diagram, we see r(x) ≥ 0 on (−∞,−1]∪ [4,∞), which
corresponds to where the graph of y = r(x) = 2x

2−3x − 16, is on or above the x-axis.
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(+)

−1

0 (−)

4

0 (+)

y = r(x) = 2x
2−3x − 16

2. The first step we need to take to solve ex

ex−4 ≤ 3 is to get 0 on one side of the inequality. To
that end, we subtract 3 from both sides and get a common denominator

ex

ex − 4
≤ 3

ex

ex − 4
− 3 ≤ 0

ex

ex − 4
− 3 (ex − 4)

ex − 4
≤ 0 Common denomintors.

12− 2ex

ex − 4
≤ 0

We set r(x) = 12−2ex

ex−4 and we note that r is undefined when its denominator ex − 4 = 0, or
when ex = 4. Solving this gives x = ln(4), so the domain of r is (−∞, ln(4)) ∪ (ln(4),∞). To
find the zeros of r, we solve r(x) = 0 and obtain 12− 2ex = 0. Solving for ex, we find ex = 6,
or x = ln(6). When we build our sign diagram, finding test values may be a little tricky since
we need to check values around ln(4) and ln(6). Recall that the function ln(x) is increasing4

which means ln(3) < ln(4) < ln(5) < ln(6) < ln(7). While the prospect of determining the
sign of r (ln(3)) may be very unsettling, remember that eln(3) = 3, so

r (ln(3)) =
12− 2eln(3)

eln(3) − 4
=

12− 2(3)

3− 4
= −6

We determine the signs of r (ln(5)) and r (ln(7)) similarly.5 From the sign diagram, we
find our answer to be (−∞, ln(4)) ∪ [ln(6),∞). Using the calculator, we see the graph of
f(x) = ex

ex−4 is below the graph of g(x) = 3 on (−∞, ln(4)) ∪ (ln(6),∞), and they intersect
at x = ln(6) ≈ 1.792.

4This is because the base of ln(x) is e > 1. If the base b were in the interval 0 < b < 1, then logb(x) would
decreasing.

5We could, of course, use the calculator, but what fun would that be?
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(−)

ln(4)

� (+)

ln(6)

0 (−)

y = f(x) = ex

ex−4

y = g(x) = 3

3. As before, we start solving xe2x < 4x by getting 0 on one side of the inequality, xe2x−4x < 0.
We set r(x) = xe2x − 4x and since there are no denominators, even-indexed radicals, or logs,
the domain of r is all real numbers. Setting r(x) = 0 produces xe2x − 4x = 0. We factor
to get x

(
e2x − 4

)
= 0 which gives x = 0 or e2x − 4 = 0. To solve the latter, we isolate the

exponential and take logs to get 2x = ln(4), or x = ln(4)
2 = ln(2). (Can you explain the last

equality using properties of logs?) As in the previous example, we need to be careful about
choosing test values. Since ln(1) = 0, we choose ln

(
1
2

)
, ln

(
3
2

)
and ln(3). Evaluating,6 we get

r
(
ln
(

1
2

))
= ln

(
1
2

)
e2 ln( 1

2) − 4 ln
(

1
2

)
= ln

(
1
2

)
eln( 1

2)
2

− 4 ln
(

1
2

)
Power Rule

= ln
(

1
2

)
eln( 1

4) − 4 ln
(

1
2

)
= 1

4 ln
(

1
2

)
− 4 ln

(
1
2

)
= −15

4 ln
(

1
2

)
Since 1

2 < 1, ln
(

1
2

)
< 0 and we get r(ln

(
1
2

)
) is (+), so r(x) < 0 on (0, ln(2)). The calculator

confirms that the graph of f(x) = xe2x is below the graph of g(x) = 4x on these intervals.7

(+)

0

0 (−)

ln(2)

0 (+)

y = f(x) = xe2x and y = g(x) = 4x

6A calculator can be used at this point. As usual, we proceed without apologies, with the analytical method.
7Note: ln(2) ≈ 0.693.
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Example 6.3.3. Recall from Example 6.1.2 that the temperature of coffee T (in degrees Fahren-
heit) t minutes after it is served can be modeled by T (t) = 70 + 90e−0.1t. When will the coffee be
warmer than 100◦F?

Solution. We need to find when T (t) > 100, or in other words, we need to solve the inequality
70 + 90e−0.1t > 100. Getting 0 on one side of the inequality, we have 90e−0.1t − 30 > 0, and
we set r(t) = 90e−0.1t − 30. The domain of r is artificially restricted due to the context of the
problem to [0,∞), so we proceed to find the zeros of r. Solving 90e−0.1t − 30 = 0 results in
e−0.1t = 1

3 so that t = −10 ln
(

1
3

)
which, after a quick application of the Power Rule leaves us with

t = 10 ln(3). If we wish to avoid using the calculator to choose test values, we note that since 1 < 3,
0 = ln(1) < ln(3) so that 10 ln(3) > 0. So we choose t = 0 as a test value in [0, 10 ln(3)). Since
3 < 4, 10 ln(3) < 10 ln(4), so the latter is our choice of a test value for the interval (10 ln(3),∞).
Our sign diagram is below, and next to it is our graph of y = T (t) from Example 6.1.2 with the
horizontal line y = 100.

0

(+)

10 ln(3)

0 (−)

H.A. y = 70

y = 100

t

y

2 4 6 8 10 12 14 16 18 20

20

40

60

80

120

140

160

180

y = T (t)

In order to interpret what this means in the context of the real world, we need a reasonable
approximation of the number 10 ln(3) ≈ 10.986. This means it takes approximately 11 minutes for
the coffee to cool to 100◦F. Until then, the coffee is warmer than that.8

We close this section by finding the inverse of a function which is a composition of a rational
function with an exponential function.

Example 6.3.4. The function f(x) =
5ex

ex + 1
is one-to-one. Find a formula for f−1(x) and check

your answer graphically using your calculator.

Solution. We start by writing y = f(x), and interchange the roles of x and y. To solve for y, we
first clear denominators and then isolate the exponential function.

8Critics may point out that since we needed to use the calculator to interpret our answer anyway, why not use it
earlier to simplify the computations? It is a fair question which we answer unfairly: it’s our book.
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y =
5ex

ex + 1

x =
5ey

ey + 1
Switch x and y

x (ey + 1) = 5ey

xey + x = 5ey

x = 5ey − xey

x = ey(5− x)

ey =
x

5− x

ln (ey) = ln

(
x

5− x

)
y = ln

(
x

5− x

)
We claim f−1(x) = ln

(
x

5−x

)
. To verify this analytically, we would need to verify the compositions(

f−1 ◦ f
)

(x) = x for all x in the domain of f and that
(
f ◦ f−1

)
(x) = x for all x in the domain

of f−1. We leave this to the reader. To verify our solution graphically, we graph y = f(x) = 5ex

ex+1

and y = g(x) = ln
(

x
5−x

)
on the same set of axes and observe the symmetry about the line y = x.

Note the domain of f is the range of g and vice-versa.

y = f(x) = 5ex

ex+1 and y = g(x) = ln
(

x
5−x

)
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6.3.1 Exercises

In Exercises 1 - 33, solve the equation analytically.

1. 24x = 8 2. 3(x−1) = 27 3. 52x−1 = 125

4. 42x = 1
2 5. 8x = 1

128 6. 2(x3−x) = 1

7. 37x = 814−2x 8. 9 · 37x =
(

1
9

)2x
9. 32x = 5

10. 5−x = 2 11. 5x = −2 12. 3(x−1) = 29

13. (1.005)12x = 3 14. e−5730k = 1
2 15. 2000e0.1t = 4000

16. 500
(
1− e2x

)
= 250 17. 70 + 90e−0.1t = 75 18. 30− 6e−0.1x = 20

19.
100ex

ex + 2
= 50 20.

5000

1 + 2e−3t
= 2500 21.

150

1 + 29e−0.8t
= 75

22. 25
(

4
5

)x
= 10 23. e2x = 2ex 24. 7e2x = 28e−6x

25. 3(x−1) = 2x 26. 3(x−1) =
(

1
2

)(x+5) 27. 73+7x = 34−2x

28. e2x − 3ex − 10 = 0 29. e2x = ex + 6 30. 4x + 2x = 12

31. ex − 3e−x = 2 32. ex + 15e−x = 8 33. 3x + 25 · 3−x = 10

In Exercises 34 - 39, solve the inequality analytically.

34. ex > 53 35. 1000 (1.005)12t ≥ 3000

36. 2(x3−x) < 1 37. 25
(

4
5

)x ≥ 10

38.
150

1 + 29e−0.8t
≤ 130 39. 70 + 90e−0.1t ≤ 75

In Exercises 40 - 45, use your calculator to help you solve the equation or inequality.

40. 2x = x2 41. ex = ln(x) + 5 42. e
√
x = x+ 1

43. e−x − xe−x ≥ 0 44. 3(x−1) < 2x 45. ex < x3 − x

46. Since f(x) = ln(x) is a strictly increasing function, if 0 < a < b then ln(a) < ln(b). Use this
fact to solve the inequality e(3x−1) > 6 without a sign diagram. Use this technique to solve
the inequalities in Exercises 34 - 39. (NOTE: Isolate the exponential function first!)

47. Compute the inverse of f(x) =
ex − e−x

2
. State the domain and range of both f and f−1.
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48. In Example 6.3.4, we found that the inverse of f(x) =
5ex

ex + 1
was f−1(x) = ln

(
x

5− x

)
but

we left a few loose ends for you to tie up.

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and that

(
f ◦ f−1

)
(x) = x for

all x in the domain of f−1.

(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) =
5x

x+ 1
and h(x) = ex. Show that f = g ◦ h and that (g ◦ h)−1 = h−1 ◦ g−1.

(We know this is true in general by Exercise 31 in Section 5.2, but it’s nice to see a
specific example of the property.)

49. With the help of your classmates, solve the inequality ex > xn for a variety of natural
numbers n. What might you conjecture about the “speed” at which f(x) = ex grows versus
any polynomial?
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6.3.2 Answers

1. x = 3
4 2. x = 4 3. x = 2

4. x = −1
4 5. x = −7

3 6. x = −1, 0, 1

7. x = 16
15 8. x = − 2

11 9. x = ln(5)
2 ln(3)

10. x = − ln(2)
ln(5)

11. No solution. 12. x = ln(29)+ln(3)
ln(3)

13. x = ln(3)
12 ln(1.005) 14. k =

ln( 1
2)

−5730 = ln(2)
5730

15. t = ln(2)
0.1 = 10 ln(2)

16. x = 1
2 ln

(
1
2

)
= −1

2 ln(2) 17. t =
ln( 1

18)
−0.1 = 10 ln(18)

18. x = −10 ln
(

5
3

)
= 10 ln

(
3
5

)
19. x = ln(2)

20. t = 1
3 ln(2) 21. t =

ln( 1
29)

−0.8 = 5
4 ln(29)

22. x =
ln( 2

5)
ln( 4

5)
= ln(2)−ln(5)

ln(4)−ln(5)
23. x = ln(2)

24. x = −1
8 ln

(
1
4

)
= 1

4 ln(2) 25. x = ln(3)
ln(3)−ln(2)

26. x =
ln(3)+5 ln( 1

2)
ln(3)−ln( 1

2)
= ln(3)−5 ln(2)

ln(3)+ln(2)
27. x = 4 ln(3)−3 ln(7)

7 ln(7)+2 ln(3)

28. x = ln(5) 29. x = ln(3) 30. x = ln(3)
ln(2)

31. x = ln(3) 32. x = ln(3), ln(5) 33. x = ln(5)
ln(3)

34. (ln(53),∞) 35.
[

ln(3)
12 ln(1.005) ,∞

)
36. (−∞,−1) ∪ (0, 1) 37.

(
−∞, ln( 2

5)
ln( 4

5)

]
=
(
−∞, ln(2)−ln(5)

ln(4)−ln(5)

]
38.

(
−∞, ln( 2

377)
−0.8

]
=
(
−∞, 5

4 ln
(

377
2

)]
39.

[
ln( 1

18)
−0.1 ,∞

)
= [10 ln(18),∞)

40. x ≈ −0.76666, x = 2, x = 4 41. x ≈ 0.01866, x ≈ 1.7115

42. x = 0 43. (−∞, 1]

44. ≈ (−∞, 2.7095) 45. ≈ (2.3217, 4.3717)

46. x > 1
3(ln(6) + 1)

47. f−1 = ln
(
x+
√
x2 + 1

)
. Both f and f−1 have domain (−∞,∞) and range (−∞,∞).
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6.4 Logarithmic Equations and Inequalities

In Section 6.3 we solved equations and inequalities involving exponential functions using one of
two basic strategies. We now turn our attention to equations and inequalities involving logarithmic
functions, and not surprisingly, there are two basic strategies to choose from. For example, suppose
we wish to solve log2(x) = log2(5). Theorem 6.4 tells us that the only solution to this equation
is x = 5. Now suppose we wish to solve log2(x) = 3. If we want to use Theorem 6.4, we need to
rewrite 3 as a logarithm base 2. We can use Theorem 6.3 to do just that: 3 = log2

(
23
)

= log2(8).
Our equation then becomes log2(x) = log2(8) so that x = 8. However, we could have arrived at the
same answer, in fewer steps, by using Theorem 6.3 to rewrite the equation log2(x) = 3 as 23 = x,
or x = 8. We summarize the two common ways to solve log equations below.

Steps for Solving an Equation involving Logarithmic Functions

1. Isolate the logarithmic function.

2. (a) If convenient, express both sides as logs with the same base and equate the arguments
of the log functions.

(b) Otherwise, rewrite the log equation as an exponential equation.

Example 6.4.1. Solve the following equations. Check your solutions graphically using a calculator.

1. log117(1− 3x) = log117

(
x2 − 3

)
2. 2− ln(x− 3) = 1

3. log6(x+ 4) + log6(3− x) = 1 4. log7(1− 2x) = 1− log7(3− x)

5. log2(x+ 3) = log2(6− x) + 3 6. 1 + 2 log4(x+ 1) = 2 log2(x)

Solution.

1. Since we have the same base on both sides of the equation log117(1 − 3x) = log117

(
x2 − 3

)
,

we equate what’s inside the logs to get 1 − 3x = x2 − 3. Solving x2 + 3x − 4 = 0 gives
x = −4 and x = 1. To check these answers using the calculator, we make use of the change

of base formula and graph f(x) = ln(1−3x)
ln(117) and g(x) =

ln(x2−3)
ln(117) and we see they intersect only

at x = −4. To see what happened to the solution x = 1, we substitute it into our original
equation to obtain log117(−2) = log117(−2). While these expressions look identical, neither
is a real number,1 which means x = 1 is not in the domain of the original equation, and is
not a solution.

2. Our first objective in solving 2−ln(x−3) = 1 is to isolate the logarithm. We get ln(x−3) = 1,
which, as an exponential equation, is e1 = x − 3. We get our solution x = e + 3. On the
calculator, we see the graph of f(x) = 2 − ln(x − 3) intersects the graph of g(x) = 1 at
x = e+ 3 ≈ 5.718.

1They do, however, represent the same family of complex numbers. We stop ourselves at this point and refer the
reader to a good course in Complex Variables.
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y = f(x) = log117(1− 3x) and y = f(x) = 2− ln(x− 3) and
y = g(x) = log117

(
x2 − 3

)
y = g(x) = 1

3. We can start solving log6(x+4)+log6(3−x) = 1 by using the Product Rule for logarithms to
rewrite the equation as log6 [(x+ 4)(3− x)] = 1. Rewriting this as an exponential equation,
we get 61 = (x + 4)(3 − x). This reduces to x2 + x − 6 = 0, which gives x = −3 and x = 2.

Graphing y = f(x) = ln(x+4)
ln(6) + ln(3−x)

ln(6) and y = g(x) = 1, we see they intersect twice, at
x = −3 and x = 2.

y = f(x) = log6(x+ 4) + log6(3− x) and y = g(x) = 1

4. Taking a cue from the previous problem, we begin solving log7(1− 2x) = 1− log7(3− x) by
first collecting the logarithms on the same side, log7(1−2x)+ log7(3−x) = 1, and then using
the Product Rule to get log7[(1− 2x)(3− x)] = 1. Rewriting this as an exponential equation
gives 71 = (1−2x)(3−x) which gives the quadratic equation 2x2−7x−4 = 0. Solving, we find

x = −1
2 and x = 4. Graphing, we find y = f(x) = ln(1−2x)

ln(7) and y = g(x) = 1− ln(3−x)
ln(7) intersect

only at x = −1
2 . Checking x = 4 in the original equation produces log7(−7) = 1− log7(−1),

which is a clear domain violation.

5. Starting with log2(x + 3) = log2(6 − x) + 3, we gather the logarithms to one side and get
log2(x+ 3)− log2(6− x) = 3. We then use the Quotient Rule and convert to an exponential
equation

log2

(
x+ 3

6− x

)
= 3 ⇐⇒ 23 =

x+ 3

6− x

This reduces to the linear equation 8(6− x) = x+ 3, which gives us x = 5. When we graph

f(x) = ln(x+3)
ln(2) and g(x) = ln(6−x)

ln(2) + 3, we find they intersect at x = 5.
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y = f(x) = log7(1− 2x) and y = f(x) = log2(x+ 3) and
y = g(x) = 1− log7(3− x) y = g(x) = log2(6− x) + 3

6. Starting with 1 + 2 log4(x+ 1) = 2 log2(x), we gather the logs to one side to get the equation
1 = 2 log2(x) − 2 log4(x + 1). Before we can combine the logarithms, however, we need a
common base. Since 4 is a power of 2, we use change of base to convert

log4(x+ 1) =
log2(x+ 1)

log2(4)
=

1

2
log2(x+ 1)

Hence, our original equation becomes

1 = 2 log2(x)− 2
(

1
2 log2(x+ 1)

)
1 = 2 log2(x)− log2(x+ 1)

1 = log2

(
x2
)
− log2(x+ 1) Power Rule

1 = log2

(
x2

x+ 1

)
Quotient Rule

Rewriting this in exponential form, we get x2

x+1 = 2 or x2 − 2x− 2 = 0. Using the quadratic

formula, we get x = 1 ±
√

3. Graphing f(x) = 1 + 2 ln(x+1)
ln(4) and g(x) = 2 ln(x)

ln(2) , we see the

graphs intersect only at x = 1 +
√

3 ≈ 2.732. The solution x = 1 −
√

3 < 0, which means if
substituted into the original equation, the term 2 log2

(
1−
√

3
)

is undefined.

y = f(x) = 1 + 2 log4(x+ 1) and y = g(x) = 2 log2(x)
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If nothing else, Example 6.4.1 demonstrates the importance of checking for extraneous solutions2

when solving equations involving logarithms. Even though we checked our answers graphically,
extraneous solutions are easy to spot - any supposed solution which causes a negative number
inside a logarithm needs to be discarded. As with the equations in Example 6.3.1, much can be
learned from checking all of the answers in Example 6.4.1 analytically. We leave this to the reader
and turn our attention to inequalities involving logarithmic functions. Since logarithmic functions
are continuous on their domains, we can use sign diagrams.

Example 6.4.2. Solve the following inequalities. Check your answer graphically using a calculator.

1.
1

ln(x) + 1
≤ 1 2. (log2(x))2 < 2 log2(x) + 3 3. x log(x+ 1) ≥ x

Solution.

1. We start solving 1
ln(x)+1 ≤ 1 by getting 0 on one side of the inequality: 1

ln(x)+1 − 1 ≤ 0.

Getting a common denominator yields 1
ln(x)+1 −

ln(x)+1
ln(x)+1 ≤ 0 which reduces to − ln(x)

ln(x)+1 ≤ 0,

or ln(x)
ln(x)+1 ≥ 0. We define r(x) = ln(x)

ln(x)+1 and set about finding the domain and the zeros

of r. Due to the appearance of the term ln(x), we require x > 0. In order to keep the
denominator away from zero, we solve ln(x) + 1 = 0 so ln(x) = −1, so x = e−1 = 1

e . Hence,

the domain of r is
(
0, 1

e

)
∪
(

1
e ,∞

)
. To find the zeros of r, we set r(x) = ln(x)

ln(x)+1 = 0 so that

ln(x) = 0, and we find x = e0 = 1. In order to determine test values for r without resorting
to the calculator, we need to find numbers between 0, 1

e , and 1 which have a base of e. Since
e ≈ 2.718 > 1, 0 < 1

e2
< 1

e <
1√
e
< 1 < e. To determine the sign of r

(
1
e2

)
, we use the fact that

ln
(

1
e2

)
= ln

(
e−2
)

= −2, and find r
(

1
e2

)
= −2
−2+1 = 2, which is (+). The rest of the test values

are determined similarly. From our sign diagram, we find the solution to be
(
0, 1

e

)
∪ [1,∞).

Graphing f(x) = 1
ln(x)+1 and g(x) = 1, we see the graph of f is below the graph of g on the

solution intervals, and that the graphs intersect at x = 1.

0

(+)

1
e

� (−)

1

0 (+)

y = f(x) = 1
ln(x)+1 and y = g(x) = 1

2Recall that an extraneous solution is an answer obtained analytically which does not satisfy the original equation.
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2. Moving all of the nonzero terms of (log2(x))2 < 2 log2(x) + 3 to one side of the inequality,
we have (log2(x))2 − 2 log2(x) − 3 < 0. Defining r(x) = (log2(x))2 − 2 log2(x) − 3, we get
the domain of r is (0,∞), due to the presence of the logarithm. To find the zeros of r, we
set r(x) = (log2(x))2 − 2 log2(x) − 3 = 0 which results in a ‘quadratic in disguise.’ We set
u = log2(x) so our equation becomes u2− 2u− 3 = 0 which gives us u = −1 and u = 3. Since
u = log2(x), we get log2(x) = −1, which gives us x = 2−1 = 1

2 , and log2(x) = 3, which yields
x = 23 = 8. We use test values which are powers of 2: 0 < 1

4 <
1
2 < 1 < 8 < 16, and from our

sign diagram, we see r(x) < 0 on
(

1
2 , 8
)
. Geometrically, we see the graph of f(x) =

(
ln(x)
ln(2)

)2

is below the graph of y = g(x) = 2 ln(x)
ln(2) + 3 on the solution interval.

0

(+)

1
2

0 (−)

8

0 (+)

y = f(x) = (log2(x))2 and y = g(x) = 2 log2(x) + 3

3. We begin to solve x log(x+1) ≥ x by subtracting x from both sides to get x log(x+1)−x ≥ 0.
We define r(x) = x log(x+1)−x and due to the presence of the logarithm, we require x+1 > 0,
or x > −1. To find the zeros of r, we set r(x) = x log(x + 1) − x = 0. Factoring, we get
x (log(x+ 1)− 1) = 0, which gives x = 0 or log(x+1)−1 = 0. The latter gives log(x+1) = 1,
or x + 1 = 101, which admits x = 9. We select test values x so that x + 1 is a power of 10,
and we obtain −1 < −0.9 < 0 <

√
10 − 1 < 9 < 99. Our sign diagram gives the solution to

be (−1, 0] ∪ [9,∞). The calculator indicates the graph of y = f(x) = x log(x + 1) is above
y = g(x) = x on the solution intervals, and the graphs intersect at x = 0 and x = 9.

−1

(+)

0

0 (−)

9

0 (+)

y = f(x) = x log(x+ 1) and y = g(x) = x
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Our next example revisits the concept of pH first seen in Exercise 77 in Section 6.1.

Example 6.4.3. In order to successfully breed Ippizuti fish the pH of a freshwater tank must be
at least 7.8 but can be no more than 8.5. Determine the corresponding range of hydrogen ion
concentration, and check your answer using a calculator.

Solution. Recall from Exercise 77 in Section 6.1 that pH = − log[H+] where [H+] is the hydrogen
ion concentration in moles per liter. We require 7.8 ≤ − log[H+] ≤ 8.5 or −7.8 ≥ log[H+] ≥ −8.5.
To solve this compound inequality we solve −7.8 ≥ log[H+] and log[H+] ≥ −8.5 and take the
intersection of the solution sets.3 The former inequality yields 0 < [H+] ≤ 10−7.8 and the latter
yields [H+] ≥ 10−8.5. Taking the intersection gives us our final answer 10−8.5 ≤ [H+] ≤ 10−7.8.
(Your Chemistry professor may want the answer written as 3.16 × 10−9 ≤ [H+] ≤ 1.58 × 10−8.)
After carefully adjusting the viewing window on the graphing calculator we see that the graph of
f(x) = − log(x) lies between the lines y = 7.8 and y = 8.5 on the interval [3.16×10−9, 1.58×10−8].

The graphs of y = f(x) = − log(x), y = 7.8 and y = 8.5

We close this section by finding an inverse of a one-to-one function which involves logarithms.

Example 6.4.4. The function f(x) =
log(x)

1− log(x)
is one-to-one. Find a formula for f−1(x) and

check your answer graphically using your calculator.
Solution. We first write y = f(x) then interchange the x and y and solve for y.

y = f(x)

y =
log(x)

1− log(x)

x =
log(y)

1− log(y)
Interchange x and y.

x (1− log(y)) = log(y)
x− x log(y) = log(y)

x = x log(y) + log(y)
x = (x+ 1) log(y)

x

x+ 1
= log(y)

y = 10
x
x+1 Rewrite as an exponential equation.

3Refer to page 4 for a discussion of what this means.
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We have f−1(x) = 10
x
x+1 . Graphing f and f−1 on the same viewing window yields

y = f(x) =
log(x)

1− log(x)
and y = g(x) = 10

x
x+1
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6.4.1 Exercises

In Exercises 1 - 24, solve the equation analytically.

1. log(3x− 1) = log(4− x) 2. log2

(
x3
)

= log2(x)

3. ln
(
8− x2

)
= ln(2− x) 4. log5

(
18− x2

)
= log5(6− x)

5. log3(7− 2x) = 2 6. log 1
2
(2x− 1) = −3

7. ln
(
x2 − 99

)
= 0 8. log(x2 − 3x) = 1

9. log125

(
3x− 2

2x+ 3

)
=

1

3
10. log

( x

10−3

)
= 4.7

11. − log(x) = 5.4 12. 10 log
( x

10−12

)
= 150

13. 6− 3 log5(2x) = 0 14. 3 ln(x)− 2 = 1− ln(x)

15. log3(x− 4) + log3(x+ 4) = 2 16. log5(2x+ 1) + log5(x+ 2) = 1

17. log169(3x+ 7)− log169(5x− 9) =
1

2
18. ln(x+ 1)− ln(x) = 3

19. 2 log7(x) = log7(2) + log7(x+ 12) 20. log(x)− log(2) = log(x+ 8)− log(x+ 2)

21. log3(x) = log 1
3
(x) + 8 22. ln(ln(x)) = 3

23. (log(x))2 = 2 log(x) + 15 24. ln(x2) = (ln(x))2

In Exercises 25 - 30, solve the inequality analytically.

25.
1− ln(x)

x2
< 0 26. x ln(x)− x > 0

27. 10 log
( x

10−12

)
≥ 90 28. 5.6 ≤ log

( x

10−3

)
≤ 7.1

29. 2.3 < − log(x) < 5.4 30. ln(x2) ≤ (ln(x))2

In Exercises 31 - 34, use your calculator to help you solve the equation or inequality.

31. ln(x) = e−x 32. ln(x) = 4
√
x

33. ln(x2 + 1) ≥ 5 34. ln(−2x3 − x2 + 13x− 6) < 0
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35. Since f(x) = ex is a strictly increasing function, if a < b then ea < eb. Use this fact to
solve the inequality ln(2x + 1) < 3 without a sign diagram. Use this technique to solve the
inequalities in Exercises 27 - 29. (Compare this to Exercise 46 in Section 6.3.)

36. Solve ln(3− y)− ln(y) = 2x+ ln(5) for y.

37. In Example 6.4.4 we found the inverse of f(x) =
log(x)

1− log(x)
to be f−1(x) = 10

x
x+1 .

(a) Show that
(
f−1 ◦ f

)
(x) = x for all x in the domain of f and that

(
f ◦ f−1

)
(x) = x for

all x in the domain of f−1.

(b) Find the range of f by finding the domain of f−1.

(c) Let g(x) =
x

1− x
and h(x) = log(x). Show that f = g ◦ h and (g ◦ h)−1 = h−1 ◦ g−1.

(We know this is true in general by Exercise 31 in Section 5.2, but it’s nice to see a
specific example of the property.)

38. Let f(x) =
1

2
ln

(
1 + x

1− x

)
. Compute f−1(x) and find its domain and range.

39. Explain the equation in Exercise 10 and the inequality in Exercise 28 above in terms of the
Richter scale for earthquake magnitude. (See Exercise 75 in Section 6.1.)

40. Explain the equation in Exercise 12 and the inequality in Exercise 27 above in terms of sound
intensity level as measured in decibels. (See Exercise 76 in Section 6.1.)

41. Explain the equation in Exercise 11 and the inequality in Exercise 29 above in terms of the
pH of a solution. (See Exercise 77 in Section 6.1.)

42. With the help of your classmates, solve the inequality n
√
x > ln(x) for a variety of natural

numbers n. What might you conjecture about the “speed” at which f(x) = ln(x) grows
versus any principal nth root function?



468 Exponential and Logarithmic Functions

6.4.2 Answers

1. x = 5
4 2. x = 1 3. x = −2

4. x = −3, 4 5. x = −1 6. x = 9
2

7. x = ±10 8. x = −2, 5 9. x = −17
7

10. x = 101.7 11. x = 10−5.4 12. x = 103

13. x = 25
2 14. x = e3/4 15. x = 5

16. x = 1
2 17. x = 2 18. x = 1

e3−1

19. x = 6 20. x = 4 21. x = 81

22. x = ee
3

23. x = 10−3, 105 24. x = 1, x = e2

25. (e,∞) 26. (e,∞) 27.
[
10−3,∞

)
28.

[
102.6, 104.1

]
29.

(
10−5.4, 10−2.3

)
30. (0, 1] ∪ [e2,∞)

31. x ≈ 1.3098 32. x ≈ 4.177, x ≈ 5503.665

33. ≈ (−∞,−12.1414) ∪ (12.1414,∞) 34. ≈ (−3.0281,−3)∪(0.5, 0.5991)∪(1.9299, 2)

35. −1

2
< x <

e3 − 1

2
36. y =

3

5e2x + 1

38. f−1(x) =
e2x − 1

e2x + 1
=
ex − e−x

ex + e−x
. (To see why we rewrite this in this form, see Exercise 51 in

Section 11.10.) The domain of f−1 is (−∞,∞) and its range is the same as the domain of f ,
namely (−1, 1).
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6.5 Applications of Exponential and Logarithmic Functions

As we mentioned in Section 6.1, exponential and logarithmic functions are used to model a wide
variety of behaviors in the real world. In the examples that follow, note that while the applications
are drawn from many different disciplines, the mathematics remains essentially the same. Due to
the applied nature of the problems we will examine in this section, the calculator is often used to
express our answers as decimal approximations.

6.5.1 Applications of Exponential Functions

Perhaps the most well-known application of exponential functions comes from the financial world.
Suppose you have $100 to invest at your local bank and they are offering a whopping 5 % annual
percentage interest rate. This means that after one year, the bank will pay you 5% of that $100,
or $100(0.05) = $5 in interest, so you now have $105.1 This is in accordance with the formula for
simple interest which you have undoubtedly run across at some point before.

Equation 6.1. Simple Interest The amount of interest I accrued at an annual rate r on an
investmenta P after t years is

I = Prt

The amount A in the account after t years is given by

A = P + I = P + Prt = P (1 + rt)

aCalled the principal

Suppose, however, that six months into the year, you hear of a better deal at a rival bank.2

Naturally, you withdraw your money and try to invest it at the higher rate there. Since six months
is one half of a year, that initial $100 yields $100(0.05)

(
1
2

)
= $2.50 in interest. You take your

$102.50 off to the competitor and find out that those restrictions which may apply actually do
apply to you, and you return to your bank which happily accepts your $102.50 for the remaining
six months of the year. To your surprise and delight, at the end of the year your statement reads
$105.06, not $105 as you had expected.3 Where did those extra six cents come from? For the first
six months of the year, interest was earned on the original principal of $100, but for the second
six months, interest was earned on $102.50, that is, you earned interest on your interest. This is
the basic concept behind compound interest. In the previous discussion, we would say that the
interest was compounded twice, or semiannually.4 If more money can be earned by earning interest
on interest already earned, a natural question to ask is what happens if the interest is compounded
more often, say 4 times a year, which is every three months, or ‘quarterly.’ In this case, the
money is in the account for three months, or 1

4 of a year, at a time. After the first quarter, we
have A = P (1 + rt) = $100

(
1 + 0.05 · 1

4

)
= $101.25. We now invest the $101.25 for the next three

1How generous of them!
2Some restrictions may apply.
3Actually, the final balance should be $105.0625.
4Using this convention, simple interest after one year is the same as compounding the interest only once.
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months and find that at the end of the second quarter, we haveA = $101.25
(
1 + 0.05 · 1

4

)
≈ $102.51.

Continuing in this manner, the balance at the end of the third quarter is $103.79, and, at last, we
obtain $105.08. The extra two cents hardly seems worth it, but we see that we do in fact get more
money the more often we compound. In order to develop a formula for this phenomenon, we need
to do some abstract calculations. Suppose we wish to invest our principal P at an annual rate r and
compound the interest n times per year. This means the money sits in the account 1

n

th
of a year

between compoundings. Let Ak denote the amount in the account after the kth compounding. Then
A1 = P

(
1 + r

(
1
n

))
which simplifies to A1 = P

(
1 + r

n

)
. After the second compounding, we use A1

as our new principal and get A2 = A1

(
1 + r

n

)
=
[
P
(
1 + r

n

)] (
1 + r

n

)
= P

(
1 + r

n

)2
. Continuing in

this fashion, we get A3 = P
(
1 + r

n

)3
, A4 = P

(
1 + r

n

)4
, and so on, so that Ak = P

(
1 + r

n

)k
. Since

we compound the interest n times per year, after t years, we have nt compoundings. We have just
derived the general formula for compound interest below.

Equation 6.2. Compounded Interest: If an initial principal P is invested at an annual rate
r and the interest is compounded n times per year, the amount A in the account after t years is

A(t) = P
(

1 +
r

n

)nt
If we take P = 100, r = 0.05, and n = 4, Equation 6.2 becomes A(t) = 100

(
1 + 0.05

4

)4t
which

reduces to A(t) = 100(1.0125)4t. To check this new formula against our previous calculations, we

find A
(

1
4

)
= 100(1.0125)4( 1

4) = 101.25, A
(

1
2

)
≈ $102.51, A

(
3
4

)
≈ $103.79, and A(1) ≈ $105.08.

Example 6.5.1. Suppose $2000 is invested in an account which offers 7.125% compounded monthly.

1. Express the amount A in the account as a function of the term of the investment t in years.

2. How much is in the account after 5 years?

3. How long will it take for the initial investment to double?

4. Find and interpret the average rate of change5 of the amount in the account from the end of
the fourth year to the end of the fifth year, and from the end of the thirty-fourth year to the
end of the thirty-fifth year.

Solution.

1. Substituting P = 2000, r = 0.07125, and n = 12 (since interest is compounded monthly) into

Equation 6.2 yields A(t) = 2000
(
1 + 0.07125

12

)12t
= 2000(1.0059375)12t.

2. Since t represents the length of the investment in years, we substitute t = 5 into A(t) to find
A(5) = 2000(1.0059375)12(5) ≈ 2852.92. After 5 years, we have approximately $2852.92.

5See Definition 2.3 in Section 2.1.
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3. Our initial investment is $2000, so to find the time it takes this to double, we need to find t
when A(t) = 4000. We get 2000(1.0059375)12t = 4000, or (1.0059375)12t = 2. Taking natural

logs as in Section 6.3, we get t = ln(2)
12 ln(1.0059375) ≈ 9.75. Hence, it takes approximately 9 years

9 months for the investment to double.

4. To find the average rate of change of A from the end of the fourth year to the end of the
fifth year, we compute A(5)−A(4)

5−4 ≈ 195.63. Similarly, the average rate of change of A from

the end of the thirty-fourth year to the end of the thirty-fifth year is A(35)−A(34)
35−34 ≈ 1648.21.

This means that the value of the investment is increasing at a rate of approximately $195.63
per year between the end of the fourth and fifth years, while that rate jumps to $1648.21 per
year between the end of the thirty-fourth and thirty-fifth years. So, not only is it true that
the longer you wait, the more money you have, but also the longer you wait, the faster the
money increases.6

We have observed that the more times you compound the interest per year, the more money you
will earn in a year. Let’s push this notion to the limit.7 Consider an investment of $1 invested
at 100% interest for 1 year compounded n times a year. Equation 6.2 tells us that the amount of
money in the account after 1 year is A =

(
1 + 1

n

)n
. Below is a table of values relating n and A.

n A

1 2

2 2.25

4 ≈ 2.4414

12 ≈ 2.6130

360 ≈ 2.7145

1000 ≈ 2.7169

10000 ≈ 2.7181

100000 ≈ 2.7182

As promised, the more compoundings per year, the more money there is in the account, but we
also observe that the increase in money is greatly diminishing. We are witnessing a mathematical
‘tug of war’. While we are compounding more times per year, and hence getting interest on our
interest more often, the amount of time between compoundings is getting smaller and smaller, so
there is less time to build up additional interest. With Calculus, we can show8 that as n → ∞,
A =

(
1 + 1

n

)n → e, where e is the natural base first presented in Section 6.1. Taking the number
of compoundings per year to infinity results in what is called continuously compounded interest.

Theorem 6.8. If you invest $1 at 100% interest compounded continuously, then you will have
$e at the end of one year.

6In fact, the rate of increase of the amount in the account is exponential as well. This is the quality that really
defines exponential functions and we refer the reader to a course in Calculus.

7Once you’ve had a semester of Calculus, you’ll be able to fully appreciate this very lame pun.
8Or define, depending on your point of view.
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Using this definition of e and a little Calculus, we can take Equation 6.2 and produce a formula for
continuously compounded interest.

Equation 6.3. Continuously Compounded Interest: If an initial principal P is invested
at an annual rate r and the interest is compounded continuously, the amount A in the account
after t years is

A(t) = Pert

If we take the scenario of Example 6.5.1 and compare monthly compounding to continuous com-
pounding over 35 years, we find that monthly compounding yields A(35) = 2000(1.0059375)12(35)

which is about $24,035.28, whereas continuously compounding gives A(35) = 2000e0.07125(35) which
is about $24,213.18 - a difference of less than 1%.

Equations 6.2 and 6.3 both use exponential functions to describe the growth of an investment.
Curiously enough, the same principles which govern compound interest are also used to model
short term growth of populations. In Biology, The Law of Uninhibited Growth states as
its premise that the instantaneous rate at which a population increases at any time is directly
proportional to the population at that time.9 In other words, the more organisms there are at a
given moment, the faster they reproduce. Formulating the law as stated results in a differential
equation, which requires Calculus to solve. Its solution is stated below.

Equation 6.4. Uninhibited Growth: If a population increases according to The Law of
Uninhibited Growth, the number of organisms N at time t is given by the formula

N(t) = N0e
kt,

where N(0) = N0 (read ‘N nought’) is the initial number of organisms and k > 0 is the constant
of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = kN(t)

It is worth taking some time to compare Equations 6.3 and 6.4. In Equation 6.3, we use P to denote
the initial investment; in Equation 6.4, we use N0 to denote the initial population. In Equation
6.3, r denotes the annual interest rate, and so it shouldn’t be too surprising that the k in Equation
6.4 corresponds to a growth rate as well. While Equations 6.3 and 6.4 look entirely different, they
both represent the same mathematical concept.

Example 6.5.2. In order to perform arthrosclerosis research, epithelial cells are harvested from
discarded umbilical tissue and grown in the laboratory. A technician observes that a culture of
twelve thousand cells grows to five million cells in one week. Assuming that the cells follow The
Law of Uninhibited Growth, find a formula for the number of cells, N , in thousands, after t days.

Solution. We begin with N(t) = N0e
kt. Since N is to give the number of cells in thousands,

we have N0 = 12, so N(t) = 12ekt. In order to complete the formula, we need to determine the

9The average rate of change of a function over an interval was first introduced in Section 2.1. Instantaneous rates
of change are the business of Calculus, as is mentioned on Page 161.
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growth rate k. We know that after one week, the number of cells has grown to five million. Since t
measures days and the units of N are in thousands, this translates mathematically to N(7) = 5000.

We get the equation 12e7k = 5000 which gives k = 1
7 ln

(
1250

3

)
. Hence, N(t) = 12e

t
7

ln( 1250
3 ). Of

course, in practice, we would approximate k to some desired accuracy, say k ≈ 0.8618, which we
can interpret as an 86.18% daily growth rate for the cells.

Whereas Equations 6.3 and 6.4 model the growth of quantities, we can use equations like them to
describe the decline of quantities. One example we’ve seen already is Example 6.1.1 in Section 6.1.
There, the value of a car declined from its purchase price of $25,000 to nothing at all. Another real
world phenomenon which follows suit is radioactive decay. There are elements which are unstable
and emit energy spontaneously. In doing so, the amount of the element itself diminishes. The
assumption behind this model is that the rate of decay of an element at a particular time is directly
proportional to the amount of the element present at that time. In other words, the more of the
element there is, the faster the element decays. This is precisely the same kind of hypothesis which
drives The Law of Uninhibited Growth, and as such, the equation governing radioactive decay is
hauntingly similar to Equation 6.4 with the exception that the rate constant k is negative.

Equation 6.5. Radioactive Decay The amount of a radioactive element A at time t is given
by the formula

A(t) = A0e
kt,

where A(0) = A0 is the initial amount of the element and k < 0 is the constant of proportionality
which satisfies the equation

(instantaneous rate of change of A(t) at time t) = k A(t)

Example 6.5.3. Iodine-131 is a commonly used radioactive isotope used to help detect how well
the thyroid is functioning. Suppose the decay of Iodine-131 follows the model given in Equation 6.5,
and that the half-life10 of Iodine-131 is approximately 8 days. If 5 grams of Iodine-131 is present
initially, find a function which gives the amount of Iodine-131, A, in grams, t days later.

Solution. Since we start with 5 grams initially, Equation 6.5 gives A(t) = 5ekt. Since the half-life is
8 days, it takes 8 days for half of the Iodine-131 to decay, leaving half of it behind. Hence, A(8) = 2.5

which means 5e8k = 2.5. Solving, we get k = 1
8 ln

(
1
2

)
= − ln(2)

8 ≈ −0.08664, which we can interpret

as a loss of material at a rate of 8.664% daily. Hence, A(t) = 5e−
t ln(2)

8 ≈ 5e−0.08664t.

We now turn our attention to some more mathematically sophisticated models. One such model
is Newton’s Law of Cooling, which we first encountered in Example 6.1.2 of Section 6.1. In that
example we had a cup of coffee cooling from 160◦F to room temperature 70◦F according to the
formula T (t) = 70 + 90e−0.1t, where t was measured in minutes. In this situation, we know the
physical limit of the temperature of the coffee is room temperature,11 and the differential equation

10The time it takes for half of the substance to decay.
11The Second Law of Thermodynamics states that heat can spontaneously flow from a hotter object to a colder

one, but not the other way around. Thus, the coffee could not continue to release heat into the air so as to cool below
room temperature.
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which gives rise to our formula for T (t) takes this into account. Whereas the radioactive decay
model had a rate of decay at time t directly proportional to the amount of the element which
remained at time t, Newton’s Law of Cooling states that the rate of cooling of the coffee at a given
time t is directly proportional to how much of a temperature gap exists between the coffee at time
t and room temperature, not the temperature of the coffee itself. In other words, the coffee cools
faster when it is first served, and as its temperature nears room temperature, the coffee cools ever
more slowly. Of course, if we take an item from the refrigerator and let it sit out in the kitchen,
the object’s temperature will rise to room temperature, and since the physics behind warming and
cooling is the same, we combine both cases in the equation below.

Equation 6.6. Newton’s Law of Cooling (Warming): The temperature T of an object at
time t is given by the formula

T (t) = Ta + (T0 − Ta) e−kt,

where T (0) = T0 is the initial temperature of the object, Ta is the ambient temperaturea and
k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of T (t) at time t) = k (T (t)− Ta)
aThat is, the temperature of the surroundings.

If we re-examine the situation in Example 6.1.2 with T0 = 160, Ta = 70, and k = 0.1, we get,
according to Equation 6.6, T (t) = 70+(160−70)e−0.1t which reduces to the original formula given.
The rate constant k = 0.1 indicates the coffee is cooling at a rate equal to 10% of the difference
between the temperature of the coffee and its surroundings. Note in Equation 6.6 that the constant
k is positive for both the cooling and warming scenarios. What determines if the function T (t)
is increasing or decreasing is if T0 (the initial temperature of the object) is greater than Ta (the
ambient temperature) or vice-versa, as we see in our next example.

Example 6.5.4. A 40◦F roast is cooked in a 350◦F oven. After 2 hours, the temperature of the
roast is 125◦F.

1. Assuming the temperature of the roast follows Newton’s Law of Warming, find a formula for
the temperature of the roast T as a function of its time in the oven, t, in hours.

2. The roast is done when the internal temperature reaches 165◦F. When will the roast be done?

Solution.

1. The initial temperature of the roast is 40◦F, so T0 = 40. The environment in which we
are placing the roast is the 350◦F oven, so Ta = 350. Newton’s Law of Warming tells us
T (t) = 350 + (40− 350)e−kt, or T (t) = 350− 310e−kt. To determine k, we use the fact that
after 2 hours, the roast is 125◦F, which means T (2) = 125. This gives rise to the equation
350− 310e−2k = 125 which yields k = −1

2 ln
(

45
62

)
≈ 0.1602. The temperature function is

T (t) = 350− 310e
t
2

ln( 45
62) ≈ 350− 310e−0.1602t.
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2. To determine when the roast is done, we set T (t) = 165. This gives 350− 310e−0.1602t = 165
whose solution is t = − 1

0.1602 ln
(

37
62

)
≈ 3.22. It takes roughly 3 hours and 15 minutes to cook

the roast completely.

If we had taken the time to graph y = T (t) in Example 6.5.4, we would have found the horizontal
asymptote to be y = 350, which corresponds to the temperature of the oven. We can also arrive
at this conclusion by applying a bit of ‘number sense’. As t → ∞, −0.1602t ≈ very big (−) so
that e−0.1602t ≈ very small (+). The larger the value of t, the smaller e−0.1602t becomes so that
T (t) ≈ 350 − very small (+), which indicates the graph of y = T (t) is approaching its horizontal
asymptote y = 350 from below. Physically, this means the roast will eventually warm up to 350◦F.12

The function T is sometimes called a limited growth model, since the function T remains bounded
as t → ∞. If we apply the principles behind Newton’s Law of Cooling to a biological example, it
says the growth rate of a population is directly proportional to how much room the population has
to grow. In other words, the more room for expansion, the faster the growth rate. The logistic
growth model combines The Law of Uninhibited Growth with limited growth and states that the
rate of growth of a population varies jointly with the population itself as well as the room the
population has to grow.

Equation 6.7. Logistic Growth: If a population behaves according to the assumptions of
logistic growth, the number of organisms N at time t is given by the equation

N(t) =
L

1 + Ce−kLt
,

where N(0) = N0 is the initial population, L is the limiting population,a C is a measure of how
much room there is to grow given by

C =
L

N0

− 1.

and k > 0 is the constant of proportionality which satisfies the equation

(instantaneous rate of change of N(t) at time t) = kN(t) (L−N(t))

aThat is, as t→∞, N(t)→ L

The logistic function is used not only to model the growth of organisms, but is also often used to
model the spread of disease and rumors.13

Example 6.5.5. The number of people N , in hundreds, at a local community college who have
heard the rumor ‘Carl is afraid of Virginia Woolf’ can be modeled using the logistic equation

N(t) =
84

1 + 2799e−t
,

12at which point it would be more toast than roast.
13Which can be just as damaging as diseases.
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where t ≥ 0 is the number of days after April 1, 2009.

1. Find and interpret N(0).

2. Find and interpret the end behavior of N(t).

3. How long until 4200 people have heard the rumor?

4. Check your answers to 2 and 3 using your calculator.

Solution.

1. We find N(0) = 84
1+2799e0

= 84
2800 = 3

100 . Since N(t) measures the number of people who have
heard the rumor in hundreds, N(0) corresponds to 3 people. Since t = 0 corresponds to April
1, 2009, we may conclude that on that day, 3 people have heard the rumor.14

2. We could simply note that N(t) is written in the form of Equation 6.7, and identify L = 84.
However, to see why the answer is 84, we proceed analytically. Since the domain of N is
restricted to t ≥ 0, the only end behavior of significance is t → ∞. As we’ve seen before,15

as t → ∞, we have 1997e−t → 0+ and so N(t) ≈ 84

1+very small (+)
≈ 84. Hence, as t → ∞,

N(t)→ 84. This means that as time goes by, the number of people who will have heard the
rumor approaches 8400.

3. To find how long it takes until 4200 people have heard the rumor, we set N(t) = 42. Solving
84

1+2799e−t = 42 gives t = ln(2799) ≈ 7.937. It takes around 8 days until 4200 people have
heard the rumor.

4. We graph y = N(x) using the calculator and see that the line y = 84 is the horizontal
asymptote of the graph, confirming our answer to part 2, and the graph intersects the line
y = 42 at x = ln(2799) ≈ 7.937, which confirms our answer to part 3.

y = f(x) = 84
1+2799e−x and y = f(x) = 84

1+2799e−x and

y = 84 y = 42

14Or, more likely, three people started the rumor. I’d wager Jeff, Jamie, and Jason started it. So much for telling
your best friends something in confidence!

15See, for example, Example 6.1.2.
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If we take the time to analyze the graph of y = N(x) above, we can see graphically how logistic
growth combines features of uninhibited and limited growth. The curve seems to rise steeply, then
at some point, begins to level off. The point at which this happens is called an inflection point
or is sometimes called the ‘point of diminishing returns’. At this point, even though the function is
still increasing, the rate at which it does so begins to decline. It turns out the point of diminishing
returns always occurs at half the limiting population. (In our case, when y = 42.) While these
concepts are more precisely quantified using Calculus, below are two views of the graph of y = N(x),
one on the interval [0, 8], the other on [8, 15]. The former looks strikingly like uninhibited growth;
the latter like limited growth.

y = f(x) = 84
1+2799e−x for y = f(x) = 84

1+2799e−x for

0 ≤ x ≤ 8 8 ≤ x ≤ 16

6.5.2 Applications of Logarithms

Just as many physical phenomena can be modeled by exponential functions, the same is true of
logarithmic functions. In Exercises 75, 76 and 77 of Section 6.1, we showed that logarithms are
useful in measuring the intensities of earthquakes (the Richter scale), sound (decibels) and acids and
bases (pH). We now present yet a different use of the a basic logarithm function, password strength.

Example 6.5.6. The information entropy H, in bits, of a randomly generated password consisting
of L characters is given by H = L log2(N), where N is the number of possible symbols for each
character in the password. In general, the higher the entropy, the stronger the password.

1. If a 7 character case-sensitive16 password is comprised of letters and numbers only, find the
associated information entropy.

2. How many possible symbol options per character is required to produce a 7 character password
with an information entropy of 50 bits?

Solution.

1. There are 26 letters in the alphabet, 52 if upper and lower case letters are counted as different.
There are 10 digits (0 through 9) for a total of N = 62 symbols. Since the password is to be

7 characters long, L = 7. Thus, H = 7 log2(62) = 7 ln(62)
ln(2) ≈ 41.68.

16That is, upper and lower case letters are treated as different characters.

http://en.wikipedia.org/wiki/Password_strength
http://en.wikipedia.org/wiki/Information_entropy
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2. We have L = 7 and H = 50 and we need to find N . Solving the equation 50 = 7 log2(N)
gives N = 250/7 ≈ 141.323, so we would need 142 different symbols to choose from.17

Chemical systems known as buffer solutions have the ability to adjust to small changes in acidity to
maintain a range of pH values. Buffer solutions have a wide variety of applications from maintaining
a healthy fish tank to regulating the pH levels in blood. Our next example shows how the pH in
a buffer solution is a little more complicated than the pH we first encountered in Exercise 77 in
Section 6.1.

Example 6.5.7. Blood is a buffer solution. When carbon dioxide is absorbed into the bloodstream
it produces carbonic acid and lowers the pH. The body compensates by producing bicarbonate, a
weak base to partially neutralize the acid. The equation18 which models blood pH in this situation
is pH = 6.1+log

(
800
x

)
, where x is the partial pressure of carbon dioxide in arterial blood, measured

in torr. Find the partial pressure of carbon dioxide in arterial blood if the pH is 7.4.

Solution. We set pH = 7.4 and get 7.4 = 6.1 + log
(

800
x

)
, or log

(
800
x

)
= 1.3. Solving, we find

x = 800
101.3 ≈ 40.09. Hence, the partial pressure of carbon dioxide in the blood is about 40 torr.

Another place logarithms are used is in data analysis. Suppose, for instance, we wish to model
the spread of influenza A (H1N1), the so-called ‘Swine Flu’. Below is data taken from the World
Health Organization (WHO) where t represents the number of days since April 28, 2009, and N
represents the number of confirmed cases of H1N1 virus worldwide.

t 1 2 3 4 5 6 7 8 9 10 11 12 13

N 148 257 367 658 898 1085 1490 1893 2371 2500 3440 4379 4694

t 14 15 16 17 18 19 20

N 5251 5728 6497 7520 8451 8480 8829

Making a scatter plot of the data treating t as the independent variable and N as the dependent
variable gives

Which models are suggested by the shape of the data? Thinking back Section 2.5, we try a
Quadratic Regression, with pretty good results.

17Since there are only 94 distinct ASCII keyboard characters, to achieve this strength, the number of characters in
the password should be increased.

18Derived from the Henderson-Hasselbalch Equation. See Exercise 43 in Section 6.2. Hasselbalch himself was
studying carbon dioxide dissolving in blood - a process called metabolic acidosis.

http://en.wikipedia.org/wiki/Buffer_solutions
http://www.who.int/csr/disease/swineflu/updates/en/index.html
http://en.wikipedia.org/wiki/Henderson-Hasselbalch_equation
http://en.wikipedia.org/wiki/Metabolic_acidosis
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However, is there any scientific reason for the data to be quadratic? Are there other models which
fit the data equally well, or better? Scientists often use logarithms in an attempt to ‘linearize’ data
sets - in other words, transform the data sets to produce ones which result in straight lines. To see
how this could work, suppose we guessed the relationship between N and t was some kind of power
function, not necessarily quadratic, say N = BtA. To try to determine the A and B, we can take
the natural log of both sides and get ln(N) = ln

(
BtA

)
. Using properties of logs to expand the right

hand side of this equation, we get ln(N) = A ln(t)+ ln(B). If we set X = ln(t) and Y = ln(N), this
equation becomes Y = AX + ln(B). In other words, we have a line with slope A and Y -intercept
ln(B). So, instead of plotting N versus t, we plot ln(N) versus ln(t).

ln(t) 0 0.693 1.099 1.386 1.609 1.792 1.946 2.079 2.197 2.302 2.398 2.485 2.565

ln(N) 4.997 5.549 5.905 6.489 6.800 6.989 7.306 7.546 7.771 7.824 8.143 8.385 8.454

ln(t) 2.639 2.708 2.773 2.833 2.890 2.944 2.996

ln(N) 8.566 8.653 8.779 8.925 9.042 9.045 9.086

Running a linear regression on the data gives

The slope of the regression line is a ≈ 1.512 which corresponds to our exponent A. The y-intercept
b ≈ 4.513 corresponds to ln(B), so that B ≈ 91.201. Hence, we get the model N = 91.201t1.512,
something from Section 5.3. Of course, the calculator has a built-in ‘Power Regression’ feature. If
we apply this to our original data set, we get the same model we arrived at before.19

19Critics may question why the authors of the book have chosen to even discuss linearization of data when the
calculator has a Power Regression built-in and ready to go. Our response: talk to your science faculty.
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This is all well and good, but the quadratic model appears to fit the data better, and we’ve yet to
mention any scientific principle which would lead us to believe the actual spread of the flu follows
any kind of power function at all. If we are to attack this data from a scientific perspective, it does
seem to make sense that, at least in the early stages of the outbreak, the more people who have
the flu, the faster it will spread, which leads us to proposing an uninhibited growth model. If we
assume N = BeAt then, taking logs as before, we get ln(N) = At + ln(B). If we set X = t and
Y = ln(N), then, once again, we get Y = AX + ln(B), a line with slope A and Y -intercept ln(B).
Plotting ln(N) versus t gives the following linear regression.

We see the slope is a ≈ 0.202 and which corresponds to A in our model, and the y-intercept is
b ≈ 5.596 which corresponds to ln(B). We get B ≈ 269.414, so that our model is N = 269.414e0.202t.
Of course, the calculator has a built-in ‘Exponential Regression’ feature which produces what
appears to be a different model N = 269.414(1.22333419)t. Using properties of exponents, we write

e0.202t =
(
e0.202

)t ≈ (1.223848)t, which, had we carried more decimal places, would have matched
the base of the calculator model exactly.

The exponential model didn’t fit the data as well as the quadratic or power function model, but
it stands to reason that, perhaps, the spread of the flu is not unlike that of the spread of a rumor
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and that a logistic model can be used to model the data. The calculator does have a ‘Logistic
Regression’ feature, and using it produces the model N = 10739.147

1+42.416e0.268t .

This appears to be an excellent fit, but there is no friendly coefficient of determination, R2, by
which to judge this numerically. There are good reasons for this, but they are far beyond the scope
of the text. Which of the models, quadratic, power, exponential, or logistic is the ‘best model’?
If by ‘best’ we mean ‘fits closest to the data,’ then the quadratic and logistic models are arguably
the winners with the power function model a close second. However, if we think about the science
behind the spread of the flu, the logistic model gets an edge. For one thing, it takes into account
that only a finite number of people will ever get the flu (according to our model, 10,739), whereas
the quadratic model predicts no limit to the number of cases. As we have stated several times
before in the text, mathematical models, regardless of their sophistication, are just that: models,
and they all have their limitations.20

20Speaking of limitations, as of June 3, 2009, there were 19,273 confirmed cases of influenza A (H1N1). This is
well above our prediction of 10,739. Each time a new report is issued, the data set increases and the model must be
recalculated. We leave this recalculation to the reader.
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6.5.3 Exercises

For each of the scenarios given in Exercises 1 - 6,

� Find the amount A in the account as a function of the term of the investment t in years.

� Determine how much is in the account after 5 years, 10 years, 30 years and 35 years. Round
your answers to the nearest cent.

� Determine how long will it take for the initial investment to double. Round your answer to
the nearest year.

� Find and interpret the average rate of change of the amount in the account from the end of
the fourth year to the end of the fifth year, and from the end of the thirty-fourth year to the
end of the thirty-fifth year. Round your answer to two decimal places.

1. $500 is invested in an account which offers 0.75%, compounded monthly.

2. $500 is invested in an account which offers 0.75%, compounded continuously.

3. $1000 is invested in an account which offers 1.25%, compounded monthly.

4. $1000 is invested in an account which offers 1.25%, compounded continuously.

5. $5000 is invested in an account which offers 2.125%, compounded monthly.

6. $5000 is invested in an account which offers 2.125%, compounded continuously.

7. Look back at your answers to Exercises 1 - 6. What can be said about the difference between
monthly compounding and continuously compounding the interest in those situations? With
the help of your classmates, discuss scenarios where the difference between monthly and
continuously compounded interest would be more dramatic. Try varying the interest rate,
the term of the investment and the principal. Use computations to support your answer.

8. How much money needs to be invested now to obtain $2000 in 3 years if the interest rate in a
savings account is 0.25%, compounded continuously? Round your answer to the nearest cent.

9. How much money needs to be invested now to obtain $5000 in 10 years if the interest rate in
a CD is 2.25%, compounded monthly? Round your answer to the nearest cent.

10. On May, 31, 2009, the Annual Percentage Rate listed at Jeff’s bank for regular savings
accounts was 0.25% compounded monthly. Use Equation 6.2 to answer the following.

(a) If P = 2000 what is A(8)?

(b) Solve the equation A(t) = 4000 for t.

(c) What principal P should be invested so that the account balance is $2000 is three years?
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11. Jeff’s bank also offers a 36-month Certificate of Deposit (CD) with an APR of 2.25%.

(a) If P = 2000 what is A(8)?

(b) Solve the equation A(t) = 4000 for t.

(c) What principal P should be invested so that the account balance is $2000 in three years?

(d) The Annual Percentage Yield is the simple interest rate that returns the same amount of
interest after one year as the compound interest does. With the help of your classmates,
compute the APY for this investment.

12. A finance company offers a promotion on $5000 loans. The borrower does not have to make
any payments for the first three years, however interest will continue to be charged to the
loan at 29.9% compounded continuously. What amount will be due at the end of the three
year period, assuming no payments are made? If the promotion is extended an additional
three years, and no payments are made, what amount would be due?

13. Use Equation 6.2 to show that the time it takes for an investment to double in value does
not depend on the principal P , but rather, depends only on the APR and the number of
compoundings per year. Let n = 12 and with the help of your classmates compute the
doubling time for a variety of rates r. Then look up the Rule of 72 and compare your answers
to what that rule says. If you’re really interested21 in Financial Mathematics, you could also
compare and contrast the Rule of 72 with the Rule of 70 and the Rule of 69.

In Exercises 14 - 18, we list some radioactive isotopes and their associated half-lives. Assume that
each decays according to the formula A(t) = A0e

kt where A0 is the initial amount of the material
and k is the decay constant. For each isotope:

� Find the decay constant k. Round your answer to four decimal places.

� Find a function which gives the amount of isotope A which remains after time t. (Keep the
units of A and t the same as the given data.)

� Determine how long it takes for 90% of the material to decay. Round your answer to two
decimal places. (HINT: If 90% of the material decays, how much is left?)

14. Cobalt 60, used in food irradiation, initial amount 50 grams, half-life of 5.27 years.

15. Phosphorus 32, used in agriculture, initial amount 2 milligrams, half-life 14 days.

16. Chromium 51, used to track red blood cells, initial amount 75 milligrams, half-life 27.7 days.

17. Americium 241, used in smoke detectors, initial amount 0.29 micrograms, half-life 432.7 years.

18. Uranium 235, used for nuclear power, initial amount 1 kg grams, half-life 704 million years.

21Awesome pun!
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19. With the help of your classmates, show that the time it takes for 90% of each isotope listed
in Exercises 14 - 18 to decay does not depend on the initial amount of the substance, but
rather, on only the decay constant k. Find a formula, in terms of k only, to determine how
long it takes for 90% of a radioactive isotope to decay.

20. In Example 6.1.1 in Section 6.1, the exponential function V (x) = 25
(

4
5

)x
was used to model

the value of a car over time. Use the properties of logs and/or exponents to rewrite the model
in the form V (t) = 25ekt.

21. The Gross Domestic Product (GDP) of the US (in billions of dollars) t years after the year
2000 can be modeled by:

G(t) = 9743.77e0.0514t

(a) Find and interpret G(0).

(b) According to the model, what should have been the GDP in 2007? In 2010? (According
to the US Department of Commerce, the 2007 GDP was $14, 369.1 billion and the 2010
GDP was $14, 657.8 billion.)

22. The diameter D of a tumor, in millimeters, t days after it is detected is given by:

D(t) = 15e0.0277t

(a) What was the diameter of the tumor when it was originally detected?

(b) How long until the diameter of the tumor doubles?

23. Under optimal conditions, the growth of a certain strain of E. Coli is modeled by the Law
of Uninhibited Growth N(t) = N0e

kt where N0 is the initial number of bacteria and t is the
elapsed time, measured in minutes. From numerous experiments, it has been determined that
the doubling time of this organism is 20 minutes. Suppose 1000 bacteria are present initially.

(a) Find the growth constant k. Round your answer to four decimal places.

(b) Find a function which gives the number of bacteria N(t) after t minutes.

(c) How long until there are 9000 bacteria? Round your answer to the nearest minute.

24. Yeast is often used in biological experiments. A research technician estimates that a sample of
yeast suspension contains 2.5 million organisms per cubic centimeter (cc). Two hours later,
she estimates the population density to be 6 million organisms per cc. Let t be the time
elapsed since the first observation, measured in hours. Assume that the yeast growth follows
the Law of Uninhibited Growth N(t) = N0e

kt.

(a) Find the growth constant k. Round your answer to four decimal places.

(b) Find a function which gives the number of yeast (in millions) per cc N(t) after t hours.

(c) What is the doubling time for this strain of yeast?

http://1.usa.gov/iimT40
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25. The Law of Uninhibited Growth also applies to situations where an animal is re-introduced
into a suitable environment. Such a case is the reintroduction of wolves to Yellowstone
National Park. According to the National Park Service, the wolf population in Yellowstone
National Park was 52 in 1996 and 118 in 1999. Using these data, find a function of the form
N(t) = N0e

kt which models the number of wolves t years after 1996. (Use t = 0 to represent
the year 1996. Also, round your value of k to four decimal places.) According to the model,
how many wolves were in Yellowstone in 2002? (The recorded number is 272.)

26. During the early years of a community, it is not uncommon for the population to grow
according to the Law of Uninhibited Growth. According to the Painesville Wikipedia entry,
in 1860, the Village of Painesville had a population of 2649. In 1920, the population was
7272. Use these two data points to fit a model of the form N(t) = N0e

kt were N(t) is the
number of Painesville Residents t years after 1860. (Use t = 0 to represent the year 1860.
Also, round the value of k to four decimal places.) According to this model, what was the
population of Painesville in 2010? (The 2010 census gave the population as 19,563) What
could be some causes for such a vast discrepancy? For more on this, see Exercise 37.

27. The population of Sasquatch in Bigfoot county is modeled by

P (t) =
120

1 + 3.167e−0.05t

where P (t) is the population of Sasquatch t years after 2010.

(a) Find and interpret P (0).

(b) Find the population of Sasquatch in Bigfoot county in 2013. Round your answer to the
nearest Sasquatch.

(c) When will the population of Sasquatch in Bigfoot county reach 60? Round your answer
to the nearest year.

(d) Find and interpret the end behavior of the graph of y = P (t). Check your answer using
a graphing utility.

28. The half-life of the radioactive isotope Carbon-14 is about 5730 years.

(a) Use Equation 6.5 to express the amount of Carbon-14 left from an initial N milligrams
as a function of time t in years.

(b) What percentage of the original amount of Carbon-14 is left after 20,000 years?

(c) If an old wooden tool is found in a cave and the amount of Carbon-14 present in it is
estimated to be only 42% of the original amount, approximately how old is the tool?

(d) Radiocarbon dating is not as easy as these exercises might lead you to believe. With
the help of your classmates, research radiocarbon dating and discuss why our model is
somewhat over-simplified.

http://www.nps.gov/yell/naturescience/wolves.htm
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29. Carbon-14 cannot be used to date inorganic material such as rocks, but there are many other
methods of radiometric dating which estimate the age of rocks. One of them, Rubidium-
Strontium dating, uses Rubidium-87 which decays to Strontium-87 with a half-life of 50
billion years. Use Equation 6.5 to express the amount of Rubidium-87 left from an initial 2.3
micrograms as a function of time t in billions of years. Research this and other radiometric
techniques and discuss the margins of error for various methods with your classmates.

30. Use Equation 6.5 to show that k = − ln(2)

h
where h is the half-life of the radioactive isotope.

31. A pork roast22 was taken out of a hardwood smoker when its internal temperature had
reached 180◦F and it was allowed to rest in a 75◦F house for 20 minutes after which its
internal temperature had dropped to 170◦F. Assuming that the temperature of the roast
follows Newton’s Law of Cooling (Equation 6.6),

(a) Express the temperature T (in ◦F) as a function of time t (in minutes).

(b) Find the time at which the roast would have dropped to 140◦F had it not been carved
and eaten.

32. In reference to Exercise 44 in Section 5.3, if Fritzy the Fox’s speed is the same as Chewbacca
the Bunny’s speed, Fritzy’s pursuit curve is given by

y(x) =
1

4
x2 − 1

4
ln(x)− 1

4

Use your calculator to graph this path for x > 0. Describe the behavior of y as x→ 0+ and
interpret this physically.

33. The current i measured in amps in a certain electronic circuit with a constant impressed
voltage of 120 volts is given by i(t) = 2 − 2e−10t where t ≥ 0 is the number of seconds after
the circuit is switched on. Determine the value of i as t → ∞. (This is called the steady
state current.)

34. If the voltage in the circuit in Exercise 33 above is switched off after 30 seconds, the current
is given by the piecewise-defined function

i(t) =

{
2− 2e−10t if 0 ≤ t < 30(

2− 2e−300
)
e−10t+300 if t ≥ 30

With the help of your calculator, graph y = i(t) and discuss with your classmates the physical
significance of the two parts of the graph 0 ≤ t < 30 and t ≥ 30.

22This roast was enjoyed by Jeff and his family on June 10, 2009. This is real data, folks!
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35. In Exercise 26 in Section 2.3, we stated that the cable of a suspension bridge formed a parabola
but that a free hanging cable did not. A free hanging cable forms a catenary and its basic

shape is given by y = 1
2 (ex + e−x). Use your calculator to graph this function. What are

its domain and range? What is its end behavior? Is it invertible? How do you think it is
related to the function given in Exercise 47 in Section 6.3 and the one given in the answer
to Exercise 38 in Section 6.4? When flipped upside down, the catenary makes an arch. The
Gateway Arch in St. Louis, Missouri has the shape

y = 757.7− 127.7

2

(
e

x
127.7 + e−

x
127.7

)
where x and y are measured in feet and −315 ≤ x ≤ 315. Find the highest point on the arch.

36. In Exercise 6a in Section 2.5, we examined the data set given below which showed how two
cats and their surviving offspring can produce over 80 million cats in just ten years. It is
virtually impossible to see this data plotted on your calculator, so plot x versus ln(x) as was
done on page 480. Find a linear model for this new data and comment on its goodness of fit.
Find an exponential model for the original data and comment on its goodness of fit.

Year x 1 2 3 4 5 6 7 8 9 10
Number of
Cats N(x) 12 66 382 2201 12680 73041 420715 2423316 13968290 80399780

37. This exercise is a follow-up to Exercise 26 which more thoroughly explores the population
growth of Painesville, Ohio. According to Wikipedia, the population of Painesville, Ohio is
given by

Year t 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950

Population 2649 3728 3841 4755 5024 5501 7272 10944 12235 14432

Year t 1960 1970 1980 1990 2000

Population 16116 16536 16351 15699 17503

(a) Use a graphing utility to perform an exponential regression on the data from 1860
through 1920 only, letting t = 0 represent the year 1860 as before. How does this
calculator model compare with the model you found in Exercise 26? Use the calcula-
tor’s exponential model to predict the population in 2010. (The 2010 census gave the
population as 19,563)

(b) The logistic model fit to all of the given data points for the population of Painesville t
years after 1860 (again, using t = 0 as 1860) is

P (t) =
18691

1 + 9.8505e−0.03617t

According to this model, what should the population of Painesville have been in 2010?
(The 2010 census gave the population as 19,563.) What is the population limit of
Painesville?

http://en.wikipedia.org/wiki/Painesville
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38. According to OhioBiz, the census data for Lake County, Ohio is as follows:

Year t 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950
Population 15576 15935 16326 18235 21680 22927 28667 41674 50020 75979

Year t 1960 1970 1980 1990 2000
Population 148700 197200 212801 215499 227511

(a) Use your calculator to fit a logistic model to these data, using x = 0 to represent the
year 1860.

(b) Graph these data and your logistic function on your calculator to judge the reasonable-
ness of the fit.

(c) Use this model to estimate the population of Lake County in 2010. (The 2010 census
gave the population to be 230,041.)

(d) According to your model, what is the population limit of Lake County, Ohio?

39. According to facebook, the number of active users of facebook has grown significantly since
its initial launch from a Harvard dorm room in February 2004. The chart below has the
approximate number U(x) of active users, in millions, x months after February 2004. For
example, the first entry (10, 1) means that there were 1 million active users in December 2004
and the last entry (77, 500) means that there were 500 million active users in July 2010.

Month x 10 22 34 38 44 54 59 60 62 65 67 70 72 77
Active Users in
Millions U(x) 1 5.5 12 20 50 100 150 175 200 250 300 350 400 500

With the help of your classmates, find a model for this data.

40. Each Monday during the registration period before the Fall Semester at LCCC, the Enrollment
Planning Council gets a report prepared by the data analysts in Institutional Effectiveness and
Planning.23 While the ongoing enrollment data is analyzed in many different ways, we shall
focus only on the overall headcount. Below is a chart of the enrollment data for Fall Semester
2008. It starts 21 weeks before “Opening Day” and ends on “Day 15” of the semester, but
we have relabeled the top row to be x = 1 through x = 24 so that the math is easier. (Thus,
x = 22 is Opening Day.)

Week x 1 2 3 4 5 6 7 8

Total
Headcount 1194 1564 2001 2475 2802 3141 3527 3790

Week x 9 10 11 12 13 14 15 16

Total
Headcount 4065 4371 4611 4945 5300 5657 6056 6478

23The authors thank Dr. Wendy Marley and her staff for this data and Dr. Marcia Ballinger for the permission to
use it in this problem.

http://www.ohiobiz.com/census/Lake.pdf
http://www.facebook.com/press/info.php?timeline
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Week x 17 18 19 20 21 22 23 24

Total
Headcount 7161 7772 8505 9256 10201 10743 11102 11181

With the help of your classmates, find a model for this data. Unlike most of the phenomena
we have studied in this section, there is no single differential equation which governs the
enrollment growth. Thus there is no scientific reason to rely on a logistic function even
though the data plot may lead us to that model. What are some factors which influence
enrollment at a community college and how can you take those into account mathematically?

41. When we wrote this exercise, the Enrollment Planning Report for Fall Semester 2009 had
only 10 data points for the first 10 weeks of the registration period. Those numbers are given
below.

Week x 1 2 3 4 5 6 7 8 9 10

Total
Headcount 1380 2000 2639 3153 3499 3831 4283 4742 5123 5398

With the help of your classmates, find a model for this data and make a prediction for the
Opening Day enrollment as well as the Day 15 enrollment. (WARNING: The registration
period for 2009 was one week shorter than it was in 2008 so Opening Day would be x = 21
and Day 15 is x = 23.)
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6.5.4 Answers

1. � A(t) = 500
(
1 + 0.0075

12

)12t

� A(5) ≈ $519.10, A(10) ≈ $538.93, A(30) ≈ $626.12, A(35) ≈ $650.03

� It will take approximately 92 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 3.88. This means that the investment is growing at an average rate
of $3.88 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 4.85. This means that
the investment is growing at an average rate of $4.85 per year at this point.

2. � A(t) = 500e0.0075t

� A(5) ≈ $519.11, A(10) ≈ $538.94, A(30) ≈ $626.16, A(35) ≈ $650.09

� It will take approximately 92 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 3.88. This means that the investment is growing at an average rate
of $3.88 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 4.86. This means that
the investment is growing at an average rate of $4.86 per year at this point.

3. � A(t) = 1000
(
1 + 0.0125

12

)12t

� A(5) ≈ $1064.46, A(10) ≈ $1133.07, A(30) ≈ $1454.71, A(35) ≈ $1548.48

� It will take approximately 55 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 13.22. This means that the investment is growing at an average rate
of $13.22 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 19.23. This means that
the investment is growing at an average rate of $19.23 per year at this point.

4. � A(t) = 1000e0.0125t

� A(5) ≈ $1064.49, A(10) ≈ $1133.15, A(30) ≈ $1454.99, A(35) ≈ $1548.83

� It will take approximately 55 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 13.22. This means that the investment is growing at an average rate
of $13.22 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 19.24. This means that
the investment is growing at an average rate of $19.24 per year at this point.

5. � A(t) = 5000
(
1 + 0.02125

12

)12t

� A(5) ≈ $5559.98, A(10) ≈ $6182.67, A(30) ≈ $9453.40, A(35) ≈ $10512.13

� It will take approximately 33 years for the investment to double.
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� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 116.80. This means that the investment is growing at an average rate
of $116.80 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 220.83. This means that
the investment is growing at an average rate of $220.83 per year at this point.

6. � A(t) = 5000e0.02125t

� A(5) ≈ $5560.50, A(10) ≈ $6183.83, A(30) ≈ $9458.73, A(35) ≈ $10519.05

� It will take approximately 33 years for the investment to double.

� The average rate of change from the end of the fourth year to the end of the fifth year
is approximately 116.91. This means that the investment is growing at an average rate
of $116.91 per year at this point. The average rate of change from the end of the thirty-
fourth year to the end of the thirty-fifth year is approximately 221.17. This means that
the investment is growing at an average rate of $221.17 per year at this point.

8. P = 2000
e0.0025·3 ≈ $1985.06

9. P = 5000

(1+ 0.0225
12 )

12·10 ≈ $3993.42

10. (a) A(8) = 2000
(
1 + 0.0025

12

)12·8 ≈ $2040.40

(b) t =
ln(2)

12 ln
(
1 + 0.0025

12

) ≈ 277.29 years

(c) P =
2000(

1 + 0.0025
12

)36 ≈ $1985.06

11. (a) A(8) = 2000
(
1 + 0.0225

12

)12·8 ≈ $2394.03

(b) t =
ln(2)

12 ln
(
1 + 0.0225

12

) ≈ 30.83 years

(c) P =
2000(

1 + 0.0225
12

)36 ≈ $1869.57

(d)
(
1 + 0.0225

12

)12 ≈ 1.0227 so the APY is 2.27%

12. A(3) = 5000e0.299·3 ≈ $12, 226.18, A(6) = 5000e0.299·6 ≈ $30, 067.29

14. � k = ln(1/2)
5.27 ≈ −0.1315

� A(t) = 50e−0.1315t

� t = ln(0.1)
−0.1315 ≈ 17.51 years.

15. � k = ln(1/2)
14 ≈ −0.0495

� A(t) = 2e−0.0495t

� t = ln(0.1)
−0.0495 ≈ 46.52 days.
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16. � k = ln(1/2)
27.7 ≈ −0.0250

� A(t) = 75e−0.0250t

� t = ln(0.1)
−0.025 ≈ 92.10 days.

17. � k = ln(1/2)
432.7 ≈ −0.0016

� A(t) = 0.29e−0.0016t

� t = ln(0.1)
−0.0016 ≈ 1439.11 years.

18. � k = ln(1/2)
704 ≈ −0.0010

� A(t) = e−0.0010t

� t = ln(0.1)
−0.0010 ≈ 2302.58 million years, or 2.30 billion years.

19. t = ln(0.1)
k = − ln(10)

k 20. V (t) = 25eln( 4
5)t ≈ 25e−0.22314355t

21. (a) G(0) = 9743.77 This means that the GDP of the US in 2000 was $9743.77 billion dollars.

(b) G(7) = 13963.24 and G(10) = 16291.25, so the model predicted a GDP of $13, 963.24
billion in 2007 and $16, 291.25 billion in 2010.

22. (a) D(0) = 15, so the tumor was 15 millimeters in diameter when it was first detected.

(b) t = ln(2)
0.0277 ≈ 25 days.

23. (a) k = ln(2)
20 ≈ 0.0346

(b) N(t) = 1000e0.0346t

(c) t = ln(9)
0.0346 ≈ 63 minutes

24. (a) k = 1
2

ln(6)
2.5 ≈ 0.4377

(b) N(t) = 2.5e0.4377t

(c) t = ln(2)
0.4377 ≈ 1.58 hours

25. N0 = 52, k = 1
3 ln

(
118
52

)
≈ 0.2731, N(t) = 52e0.2731t. N(6) ≈ 268.

26. N0 = 2649, k = 1
60 ln

(
7272
2649

)
≈ 0.0168, N(t) = 2649e0.0168t. N(150) ≈ 32923, so the population

of Painesville in 2010 based on this model would have been 32,923.

27. (a) P (0) = 120
4.167 ≈ 29. There are 29 Sasquatch in Bigfoot County in 2010.

(b) P (3) = 120
1+3.167e−0.05(3) ≈ 32 Sasquatch.

(c) t = 20 ln(3.167) ≈ 23 years.

(d) As t → ∞, P (t) → 120. As time goes by, the Sasquatch Population in Bigfoot County
will approach 120. Graphically, y = P (x) has a horizontal asymptote y = 120.

28. (a) A(t) = Ne
−
(

ln(2)
5730

)
t ≈ Ne−0.00012097t

(b) A(20000) ≈ 0.088978 ·N so about 8.9% remains

(c) t ≈ ln(.42)

−0.00012097
≈ 7171 years old

29. A(t) = 2.3e−0.0138629t



6.5 Applications of Exponential and Logarithmic Functions 493

31. (a) T (t) = 75 + 105e−0.005005t

(b) The roast would have cooled to 140◦F in about 95 minutes.

32. From the graph, it appears that as x→ 0+, y →∞. This is due to the presence of the ln(x)
term in the function. This means that Fritzy will never catch Chewbacca, which makes sense
since Chewbacca has a head start and Fritzy only runs as fast as he does.

y(x) = 1
4x

2 − 1
4 ln(x)− 1

4

33. The steady state current is 2 amps.

36. The linear regression on the data below is y = 1.74899x+ 0.70739 with r2 ≈ 0.999995. This
is an excellent fit.
x 1 2 3 4 5 6 7 8 9 10
ln(N(x)) 2.4849 4.1897 5.9454 7.6967 9.4478 11.1988 12.9497 14.7006 16.4523 18.2025

N(x) = 2.02869(5.74879)x = 2.02869e1.74899x with r2 ≈ 0.999995. This is also an excellent fit
and corresponds to our linearized model because ln(2.02869) ≈ 0.70739.

37. (a) The calculator gives: y = 2895.06(1.0147)x. Graphing this along with our answer from
Exercise 26 over the interval [0, 60] shows that they are pretty close. From this model,
y(150) ≈ 25840 which once again overshoots the actual data value.

(b) P (150) ≈ 18717, so this model predicts 17,914 people in Painesville in 2010, a more
conservative number than was recorded in the 2010 census. As t → ∞, P (t) → 18691.
So the limiting population of Painesville based on this model is 18,691 people.

38. (a) y =
242526

1 + 874.62e−0.07113x
, where x is the number of years since 1860.

(b) The plot of the data and the curve is below.

(c) y(140) ≈ 232889, so this model predicts 232,889 people in Lake County in 2010.

(d) As x→∞, y → 242526, so the limiting population of Lake County based on this model
is 242,526 people.
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Chapter 7

Hooked on Conics

7.1 Introduction to Conics

In this chapter, we study the Conic Sections - literally ‘sections of a cone’. Imagine a double-
napped cone as seen below being ‘sliced’ by a plane.

If we slice the cone with a horizontal plane the resulting curve is a circle.
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Tilting the plane ever so slightly produces an ellipse.

If the plane cuts parallel to the cone, we get a parabola.

If we slice the cone with a vertical plane, we get a hyperbola.

For a wonderful animation describing the conics as intersections of planes and cones, see Dr. Louis
Talman’s Mathematics Animated Website.

http://clem.mscd.edu/~talmanl/HTML/ConicSections.html
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If the slicing plane contains the vertex of the cone, we get the so-called ‘degenerate’ conics: a point,
a line, or two intersecting lines.

We will focus the discussion on the non-degenerate cases: circles, parabolas, ellipses, and hyperbo-
las, in that order. To determine equations which describe these curves, we will make use of their
definitions in terms of distances.
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7.2 Circles

Recall from Geometry that a circle can be determined by fixing a point (called the center) and a
positive number (called the radius) as follows.

Definition 7.1. A circle with center (h, k) and radius r > 0 is the set of all points (x, y) in the
plane whose distance to (h, k) is r.

(h, k)

r

(x, y)

From the picture, we see that a point (x, y) is on the circle if and only if its distance to (h, k) is r.
We express this relationship algebraically using the Distance Formula, Equation 1.1, as

r =
√

(x− h)2 + (y − k)2

By squaring both sides of this equation, we get an equivalent equation (since r > 0) which gives us
the standard equation of a circle.

Equation 7.1. The Standard Equation of a Circle: The equation of a circle with center
(h, k) and radius r > 0 is (x− h)2 + (y − k)2 = r2.

Example 7.2.1. Write the standard equation of the circle with center (−2, 3) and radius 5.

Solution. Here, (h, k) = (−2, 3) and r = 5, so we get

(x− (−2))2 + (y − 3)2 = (5)2

(x+ 2)2 + (y − 3)2 = 25

Example 7.2.2. Graph (x+ 2)2 + (y − 1)2 = 4. Find the center and radius.

Solution. From the standard form of a circle, Equation 7.1, we have that x+ 2 is x−h, so h = −2
and y − 1 is y − k so k = 1. This tells us that our center is (−2, 1). Furthermore, r2 = 4, so r = 2.
Thus we have a circle centered at (−2, 1) with a radius of 2. Graphing gives us
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x

y

−4 −3 −2 −1 1

−1

1

2

3

4

If we were to expand the equation in the previous example and gather up like terms, instead of the
easily recognizable (x+ 2)2 + (y − 1)2 = 4, we’d be contending with x2 + 4x+ y2 − 2y + 1 = 0. If
we’re given such an equation, we can complete the square in each of the variables to see if it fits
the form given in Equation 7.1 by following the steps given below.

To Write the Equation of a Circle in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square on both variables as needed.

3. Divide both sides by the coefficient of the squares. (For circles, they will be the same.)

Example 7.2.3. Complete the square to find the center and radius of 3x2− 6x+ 3y2 + 4y− 4 = 0.

Solution.

3x2 − 6x+ 3y2 + 4y − 4 = 0

3x2 − 6x+ 3y2 + 4y = 4 add 4 to both sides

3
(
x2 − 2x

)
+ 3

(
y2 +

4

3
y

)
= 4 factor out leading coefficients

3
(
x2 − 2x+ 1

)
+ 3

(
y2 +

4

3
y +

4

9

)
= 4 + 3(1) + 3

(
4

9

)
complete the square in x, y

3(x− 1)2 + 3

(
y +

2

3

)2

=
25

3
factor

(x− 1)2 +

(
y +

2

3

)2

=
25

9
divide both sides by 3

From Equation 7.1, we identify x− 1 as x− h, so h = 1, and y+ 2
3 as y− k, so k = −2

3 . Hence, the
center is (h, k) =

(
1,−2

3

)
. Furthermore, we see that r2 = 25

9 so the radius is r = 5
3 .
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It is possible to obtain equations like (x− 3)2 + (y+ 1)2 = 0 or (x− 3)2 + (y+ 1)2 = −1, neither of
which describes a circle. (Do you see why not?) The reader is encouraged to think about what, if
any, points lie on the graphs of these two equations. The next example uses the Midpoint Formula,
Equation 1.2, in conjunction with the ideas presented so far in this section.

Example 7.2.4. Write the standard equation of the circle which has (−1, 3) and (2, 4) as the
endpoints of a diameter.

Solution. We recall that a diameter of a circle is a line segment containing the center and two
points on the circle. Plotting the given data yields

x

y

(h, k)

r

−2 −1 1 2 3

1

2

3

4

Since the given points are endpoints of a diameter, we know their midpoint (h, k) is the center of
the circle. Equation 1.2 gives us

(h, k) =

(
x1 + x2

2
,
y1 + y2

2

)
=

(
−1 + 2

2
,
3 + 4

2

)
=

(
1

2
,
7

2

)
The diameter of the circle is the distance between the given points, so we know that half of the
distance is the radius. Thus,

r =
1

2

√
(x2 − x1)

2 + (y2 − y1)
2

=
1

2

√
(2− (−1))2 + (4− 3)2

=
1

2

√
32 + 12

=

√
10

2

Finally, since

(√
10

2

)2

=
10

4
, our answer becomes

(
x− 1

2

)2

+

(
y − 7

2

)2

=
10

4
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We close this section with the most important1 circle in all of mathematics: the Unit Circle.

Definition 7.2. The Unit Circle is the circle centered at (0, 0) with a radius of 1. The
standard equation of the Unit Circle is x2 + y2 = 1.

Example 7.2.5. Find the points on the unit circle with y-coordinate

√
3

2
.

Solution. We replace y with

√
3

2
in the equation x2 + y2 = 1 to get

x2 + y2 = 1

x2 +

(√
3

2

)2

= 1

3

4
+ x2 = 1

x2 =
1

4

x = ±
√

1

4

x = ±1

2

Our final answers are

(
1

2
,

√
3

2

)
and

(
−1

2
,

√
3

2

)
.

1While this may seem like an opinion, it is indeed a fact. See Chapters 10 and 11 for details.



502 Hooked on Conics

7.2.1 Exercises

In Exercises 1 - 6, find the standard equation of the circle and then graph it.

1. Center (−1,−5), radius 10 2. Center (4,−2), radius 3

3. Center
(
−3, 7

13

)
, radius 1

2 4. Center (5,−9), radius ln(8)

5. Center
(
−e,
√

2
)
, radius π 6. Center (π, e2), radius 3

√
91

In Exercises 7 - 12, complete the square in order to put the equation into standard form. Identify
the center and the radius or explain why the equation does not represent a circle.

7. x2 − 4x+ y2 + 10y = −25 8. −2x2 − 36x− 2y2 − 112 = 0

9. x2 + y2 + 8x− 10y − 1 = 0 10. x2 + y2 + 5x− y − 1 = 0

11. 4x2 + 4y2 − 24y + 36 = 0 12. x2 + x+ y2 − 6
5y = 1

In Exercises 13 - 16, find the standard equation of the circle which satisfies the given criteria.

13. center (3, 5), passes through (−1,−2) 14. center (3, 6), passes through (−1, 4)

15. endpoints of a diameter: (3, 6) and (−1, 4) 16. endpoints of a diameter:
(

1
2 , 4
)
,
(

3
2 ,−1

)
17. The Giant Wheel at Cedar Point is a circle with diameter 128 feet which sits on an 8 foot

tall platform making its overall height is 136 feet.2 Find an equation for the wheel assuming
that its center lies on the y-axis and that the ground is the x-axis.

18. Verify that the following points lie on the Unit Circle: (±1, 0), (0,±1),
(
±
√

2
2 ,±

√
2

2

)
,
(
±1

2 ,±
√

3
2

)
and

(
±
√

3
2 ,±

1
2

)
19. Discuss with your classmates how to obtain the standard equation of a circle, Equation 7.1,

from the equation of the Unit Circle, x2 + y2 = 1 using the transformations discussed in
Section 1.7. (Thus every circle is just a few transformations away from the Unit Circle.)

20. Find an equation for the function represented graphically by the top half of the Unit Circle.
Explain how the transformations is Section 1.7 can be used to produce a function whose graph
is either the top or bottom of an arbitrary circle.

21. Find a one-to-one function whose graph is half of a circle. (Hint: Think piecewise.)

2Source: Cedar Point’s webpage.

http://www.cedarpoint.com/public/park/rides/tranquil/giant_wheel.cfm
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7.2.2 Answers

1. (x+ 1)2 + (y + 5)2 = 100

x

y

−5

−11 −1 9

−15

5

2. (x− 4)2 + (y + 2)2 = 9

x

y

1 4 7

−5

−2

1

3. (x+ 3)2 +
(
y − 7

13

)2
= 1

4

x

y

− 7
2
−3 − 5

2

1
26

7
13

27
26

4. (x− 5)2 + (y + 9)2 = (ln(8))2

x
y

5− ln(8) 5 5 + ln(8)

−9− ln(8)

−9

−9 + ln(8)

5. (x+ e)2 +
(
y −
√

2
)2

= π2

x

y

−e− π −e −e + π

√
2− π

√
2

√
2 + π

6. (x− π)2 +
(
y − e2

)2
= 91

2
3

x

y

π − 3√91
π

π + 3√91

e2 − 3√91

e2

e2 + 3√91
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7. (x− 2)2 + (y + 5)2 = 4
Center (2,−5), radius r = 2

8. (x+ 9)2 + y2 = 25
Center (−9, 0), radius r = 5

9. (x+ 4)2 + (y − 5)2 = 42
Center (−4, 5), radius r =

√
42

10.
(
x+ 5

2

)2
+
(
y − 1

2

)2
= 30

4

Center
(
−5

2 ,
1
2

)
, radius r =

√
30
2

11. x2 + (y − 3)2 = 0
This is not a circle.

12.
(
x+ 1

2

)2
+
(
y − 3

5

)2
= 161

100

Center
(
−1

2 ,
3
5

)
, radius r =

√
161
10

13. (x− 3)2 + (y − 5)2 = 65 14. (x− 3)2 + (y − 6)2 = 20

15. (x− 1)2 + (y − 5)2 = 5 16. (x− 1)2 +
(
y − 3

2

)2
= 13

2

17. x2 + (y − 72)2 = 4096
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7.3 Parabolas

We have already learned that the graph of a quadratic function f(x) = ax2 + bx + c (a 6= 0) is
called a parabola. To our surprise and delight, we may also define parabolas in terms of distance.

Definition 7.3. Let F be a point in the plane and D be a line not containing F . A parabola is
the set of all points equidistant from F and D. The point F is called the focus of the parabola
and the line D is called the directrix of the parabola.

Schematically, we have the following.

F

D

V

Each dashed line from the point F to a point on the curve has the same length as the dashed line
from the point on the curve to the line D. The point suggestively labeled V is, as you should
expect, the vertex. The vertex is the point on the parabola closest to the focus.

We want to use only the distance definition of parabola to derive the equation of a parabola and,
if all is right with the universe, we should get an expression much like those studied in Section 2.3.
Let p denote the directed1 distance from the vertex to the focus, which by definition is the same as
the distance from the vertex to the directrix. For simplicity, assume that the vertex is (0, 0) and
that the parabola opens upwards. Hence, the focus is (0, p) and the directrix is the line y = −p.
Our picture becomes

(0, p)

x

y

y = −p

(x, y)

(x,−p)

(0, 0)

From the definition of parabola, we know the distance from (0, p) to (x, y) is the same as the
distance from (x,−p) to (x, y). Using the Distance Formula, Equation 1.1, we get

1We’ll talk more about what ‘directed’ means later.
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√
(x− 0)2 + (y − p)2 =

√
(x− x)2 + (y − (−p))2√

x2 + (y − p)2 =
√

(y + p)2

x2 + (y − p)2 = (y + p)2 square both sides

x2 + y2 − 2py + p2 = y2 + 2py + p2 expand quantities

x2 = 4py gather like terms

Solving for y yields y = x2

4p , which is a quadratic function of the form found in Equation 2.4 with

a = 1
4p and vertex (0, 0).

We know from previous experience that if the coefficient of x2 is negative, the parabola opens
downwards. In the equation y = x2

4p this happens when p < 0. In our formulation, we say that p is
a ‘directed distance’ from the vertex to the focus: if p > 0, the focus is above the vertex; if p < 0,
the focus is below the vertex. The focal length of a parabola is |p|.

If we choose to place the vertex at an arbitrary point (h, k), we arrive at the following formula
using either transformations from Section 1.7 or re-deriving the formula from Definition 7.3.

Equation 7.2. The Standard Equation of a Verticala Parabola: The equation of a
(vertical) parabola with vertex (h, k) and focal length |p| is

(x− h)2 = 4p(y − k)

If p > 0, the parabola opens upwards; if p < 0, it opens downwards.

aThat is, a parabola which opens either upwards or downwards.

Notice that in the standard equation of the parabola above, only one of the variables, x, is squared.
This is a quick way to distinguish an equation of a parabola from that of a circle because in the
equation of a circle, both variables are squared.

Example 7.3.1. Graph (x+ 1)2 = −8(y − 3). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.2. Here, x − h is x + 1 so h = −1,
and y − k is y − 3 so k = 3. Hence, the vertex is (−1, 3). We also see that 4p = −8 so p = −2.
Since p < 0, the focus will be below the vertex and the parabola will open downwards.

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4

1

2

3

4

5
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The distance from the vertex to the focus is |p| = 2, which means the focus is 2 units below the
vertex. From (−1, 3), we move down 2 units and find the focus at (−1, 1). The directrix, then, is
2 units above the vertex, so it is the line y = 5.

Of all of the information requested in the previous example, only the vertex is part of the graph
of the parabola. So in order to get a sense of the actual shape of the graph, we need some more
information. While we could plot a few points randomly, a more useful measure of how wide a
parabola opens is the length of the parabola’s latus rectum.2 The latus rectum of a parabola
is the line segment parallel to the directrix which contains the focus. The endpoints of the latus
rectum are, then, two points on ‘opposite’ sides of the parabola. Graphically, we have the following.

F

the latus rectum

D

V

It turns out3 that the length of the latus rectum, called the focal diameter of the parabola is |4p|,
which, in light of Equation 7.2, is easy to find. In our last example, for instance, when graphing
(x + 1)2 = −8(y − 3), we can use the fact that the focal diameter is | − 8| = 8, which means the
parabola is 8 units wide at the focus, to help generate a more accurate graph by plotting points 4
units to the left and right of the focus.

Example 7.3.2. Find the standard form of the parabola with focus (2, 1) and directrix y = −4.

Solution. Sketching the data yields,

x

y

The vertex lies on this vertical line

midway between the focus and the directrix

−1 1 2 3

−3

−2

−1

1

2No, I’m not making this up.
3Consider this an exercise to show what follows.
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From the diagram, we see the parabola opens upwards. (Take a moment to think about it if you
don’t see that immediately.) Hence, the vertex lies below the focus and has an x-coordinate of 2.
To find the y-coordinate, we note that the distance from the focus to the directrix is 1− (−4) = 5,
which means the vertex lies 5

2 units (halfway) below the focus. Starting at (2, 1) and moving down
5/2 units leaves us at (2,−3/2), which is our vertex. Since the parabola opens upwards, we know
p is positive. Thus p = 5/2. Plugging all of this data into Equation 7.2 give us

(x− 2)2 = 4

(
5

2

)(
y −

(
−3

2

))
(x− 2)2 = 10

(
y +

3

2

)

If we interchange the roles of x and y, we can produce ‘horizontal’ parabolas: parabolas which open
to the left or to the right. The directrices4 of such animals would be vertical lines and the focus
would either lie to the left or to the right of the vertex, as seen below.

F

D

V

Equation 7.3. The Standard Equation of a Horizontal Parabola: The equation of a
(horizontal) parabola with vertex (h, k) and focal length |p| is

(y − k)2 = 4p(x− h)

If p > 0, the parabola opens to the right; if p < 0, it opens to the left.

4plural of ‘directrix’
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Example 7.3.3. Graph (y − 2)2 = 12(x+ 1). Find the vertex, focus, and directrix.

Solution. We recognize this as the form given in Equation 7.3. Here, x − h is x + 1 so h = −1,
and y − k is y − 2 so k = 2. Hence, the vertex is (−1, 2). We also see that 4p = 12 so p = 3.
Since p > 0, the focus will be the right of the vertex and the parabola will open to the right. The
distance from the vertex to the focus is |p| = 3, which means the focus is 3 units to the right. If
we start at (−1, 2) and move right 3 units, we arrive at the focus (2, 2). The directrix, then, is 3
units to the left of the vertex and if we move left 3 units from (−1, 2), we’d be on the vertical line
x = −4. Since the focal diameter is |4p| = 12, the parabola is 12 units wide at the focus, and thus
there are points 6 units above and below the focus on the parabola.

x

y

−5 −4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

5

6

7

8

As with circles, not all parabolas will come to us in the forms in Equations 7.2 or 7.3. If we
encounter an equation with two variables in which exactly one variable is squared, we can attempt
to put the equation into a standard form using the following steps.

To Write the Equation of a Parabola in Standard Form

1. Group the variable which is squared on one side of the equation and position the non-
squared variable and the constant on the other side.

2. Complete the square if necessary and divide by the coefficient of the perfect square.

3. Factor out the coefficient of the non-squared variable from it and the constant.

Example 7.3.4. Consider the equation y2 + 4y + 8x = 4. Put this equation into standard form
and graph the parabola. Find the vertex, focus, and directrix.

Solution. We need a perfect square (in this case, using y) on the left-hand side of the equation
and factor out the coefficient of the non-squared variable (in this case, the x) on the other.
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y2 + 4y + 8x = 4

y2 + 4y = −8x+ 4

y2 + 4y + 4 = −8x+ 4 + 4 complete the square in y only

(y + 2)2 = −8x+ 8 factor

(y + 2)2 = −8(x− 1)

Now that the equation is in the form given in Equation 7.3, we see that x−h is x−1 so h = 1, and
y − k is y + 2 so k = −2. Hence, the vertex is (1,−2). We also see that 4p = −8 so that p = −2.
Since p < 0, the focus will be the left of the vertex and the parabola will open to the left. The
distance from the vertex to the focus is |p| = 2, which means the focus is 2 units to the left of 1, so
if we start at (1,−2) and move left 2 units, we arrive at the focus (−1,−2). The directrix, then, is
2 units to the right of the vertex, so if we move right 2 units from (1,−2), we’d be on the vertical
line x = 3. Since the focal diameter is |4p| is 8, the parabola is 8 units wide at the focus, so there
are points 4 units above and below the focus on the parabola.

x

y

−2 −1 1 2

−6

−5

−4

−3

−2

−1

1

2

In studying quadratic functions, we have seen parabolas used to model physical phenomena such as
the trajectories of projectiles. Other applications of the parabola concern its ‘reflective property’
which necessitates knowing about the focus of a parabola. For example, many satellite dishes are
formed in the shape of a paraboloid of revolution as depicted below.
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Every cross section through the vertex of the paraboloid is a parabola with the same focus. To see
why this is important, imagine the dashed lines below as electromagnetic waves heading towards
a parabolic dish. It turns out that the waves reflect off the parabola and concentrate at the focus
which then becomes the optimal place for the receiver. If, on the other hand, we imagine the dashed
lines as emanating from the focus, we see that the waves are reflected off the parabola in a coherent
fashion as in the case in a flashlight. Here, the bulb is placed at the focus and the light rays are
reflected off a parabolic mirror to give directional light.

F

Example 7.3.5. A satellite dish is to be constructed in the shape of a paraboloid of revolution.
If the receiver placed at the focus is located 2 ft above the vertex of the dish, and the dish is to be
12 feet wide, how deep will the dish be?

Solution. One way to approach this problem is to determine the equation of the parabola suggested
to us by this data. For simplicity, we’ll assume the vertex is (0, 0) and the parabola opens upwards.
Our standard form for such a parabola is x2 = 4py. Since the focus is 2 units above the vertex, we
know p = 2, so we have x2 = 8y. Visually,

?

(6, y)

y

x

12 units wide

−6 6

2

Since the parabola is 12 feet wide, we know the edge is 6 feet from the vertex. To find the depth,
we are looking for the y value when x = 6. Substituting x = 6 into the equation of the parabola
yields 62 = 8y or y = 36

8 = 9
2 = 4.5. Hence, the dish will be 4.5 feet deep.
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7.3.1 Exercises

In Exercises 1 - 8, sketch the graph of the given parabola. Find the vertex, focus and directrix.
Include the endpoints of the latus rectum in your sketch.

1. (x− 3)2 = −16y 2.
(
x+ 7

3

)2
= 2

(
y + 5

2

)
3. (y − 2)2 = −12(x+ 3) 4. (y + 4)2 = 4x

5. (x− 1)2 = 4(y + 3) 6. (x+ 2)2 = −20(y − 5)

7. (y − 4)2 = 18(x− 2) 8.
(
y + 3

2

)2
= −7

(
x+ 9

2

)
In Exercises 9 - 14, put the equation into standard form and identify the vertex, focus and directrix.

9. y2 − 10y − 27x+ 133 = 0 10. 25x2 + 20x+ 5y − 1 = 0

11. x2 + 2x− 8y + 49 = 0 12. 2y2 + 4y + x− 8 = 0

13. x2 − 10x+ 12y + 1 = 0 14. 3y2 − 27y + 4x+ 211
4 = 0

In Exercises 15 - 18, find an equation for the parabola which fits the given criteria.

15. Vertex (7, 0), focus (0, 0) 16. Focus (10, 1), directrix x = 5

17. Vertex (−8,−9); (0, 0) and (−16, 0) are
points on the curve

18. The endpoints of latus rectum are (−2,−7)
and (4,−7)

19. The mirror in Carl’s flashlight is a paraboloid of revolution. If the mirror is 5 centimeters in
diameter and 2.5 centimeters deep, where should the light bulb be placed so it is at the focus
of the mirror?

20. A parabolic Wi-Fi antenna is constructed by taking a flat sheet of metal and bending it into
a parabolic shape.5 If the cross section of the antenna is a parabola which is 45 centimeters
wide and 25 centimeters deep, where should the receiver be placed to maximize reception?

21. A parabolic arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch.

22. A popular novelty item is the ‘mirage bowl.’ Follow this link to see another startling appli-
cation of the reflective property of the parabola.

23. With the help of your classmates, research spinning liquid mirrors. To get you started, check
out this website.

5This shape is called a ‘parabolic cylinder.’

http://spie.org/etop/2007/etop07methodsV.pdf
http://www.astro.ubc.ca/LMT/lzt/
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7.3.2 Answers

1. (x− 3)2 = −16y

Vertex (3, 0)

Focus (3,−4)

Directrix y = 4

Endpoints of latus rectum (−5,−4), (11,−4)
x

y

−5−4−3−2−1 1 2 3 4 5 6 7 8 9 10 11

−4

−3

−2

−1

1

2

3

4

2.
(
x+ 7

3

)2
= 2

(
y + 5

2

)
Vertex

(
− 7

3 ,−
5
2

)
Focus

(
− 7

3 ,−2
)

Directrix y = −3

Endpoints of latus rectum
(
− 10

3 ,−2
)
,
(
− 4

3 ,−2
)

x

y

−5 −4 −3 −2 −1

−3

−2

−1

1

2

3. (y − 2)2 = −12(x+ 3)

Vertex (−3, 2)

Focus (−6, 2)

Directrix x = 0

Endpoints of latus rectum (−6, 8), (−6,−4)

x

y

−7−6−5−4−3−2−1

−4

−3

−2

−1

1

2

3

4

5

6

7

8
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4. (y + 4)2 = 4x

Vertex (0,−4)

Focus (1,−4)

Directrix x = −1

Endpoints of latus rectum (1,−2), (1,−6)

x

y

−1 1 2 3 4

−8

−7

−6

−5

−4

−3

−2

−1

5. (x− 1)2 = 4(y + 3)

Vertex (1,−3)

Focus (1,−2)

Directrix y = −4

Endpoints of latus rectum (3,−2), (−1,−2)

x

y

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

6. (x+ 2)2 = −20(y − 5)

Vertex (−2, 5)

Focus (−2, 0)

Directrix y = 10

Endpoints of latus rectum (−12, 0), (8, 0)

x

y

−12 −10 −8 −6 −4 −2 2 4 6 8

1

2

3

4

5

6

7

8

9

10

7. (y − 4)2 = 18(x− 2)

Vertex (2, 4)

Focus
(
13
2 , 4

)
Directrix x = − 5

2

Endpoints of latus rectum
(
13
2 ,−5

)
,
(
13
2 , 13

)

x

y

−1 1 2 3 4 5 6 7

−5

−3

−1

1

3

5

7

9

11

13



7.3 Parabolas 515

8.
(
y + 3

2

)2
= −7

(
x+ 9

2

)
Vertex

(
− 9

2 ,−
3
2

)
Focus

(
− 25

4 ,−
3
2

)
Directrix x = − 11

4

Endpoints of latus rectum
(
− 25

4 , 2
)
,
(
− 25

4 ,−5
) x

y

−5 −4 −3 −2 −1

−5

−4

−3

−2

−1

1

2

9. (y − 5)2 = 27(x− 4)
Vertex (4, 5)
Focus

(
43
4 , 5

)
Directrix x = −11

4

10.
(
x+ 2

5

)2
= −1

5(y − 1)
Vertex

(
−2

5 , 1
)

Focus
(
−2

5 ,
19
20

)
Directrix y = 21

20

11. (x+ 1)2 = 8(y − 6)
Vertex (−1, 6)
Focus (−1, 8)
Directrix y = 4

12. (y + 1)2 = −1
2(x− 10)

Vertex (10,−1)
Focus

(
79
8 ,−1

)
Directrix x = 81

8

13. (x− 5)2 = −12(y − 2)
Vertex (5, 2)
Focus (5,−1)
Directrix y = 5

14.
(
y − 9

2

)2
= −4

3(x− 2)
Vertex

(
2, 9

2

)
Focus

(
5
3 ,

9
2

)
Directrix x = 7

3

15. y2 = −28(x− 7) 16. (y − 1)2 = 10
(
x− 15

2

)
17. (x+ 8)2 = 64

9 (y + 9) 18. (x− 1)2 = 6
(
y + 17

2

)
or

(x− 1)2 = −6
(
y + 11

2

)
19. The bulb should be placed 0.625 centimeters above the vertex of the mirror. (As verified by

Carl himself!)

20. The receiver should be placed 5.0625 centimeters from the vertex of the cross section of the
antenna.

21. The arch can be modeled by x2 = −(y − 9) or y = 9− x2. One foot in from the base of the
arch corresponds to either x = ±2, so the height is y = 9− (±2)2 = 5 feet.
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7.4 Ellipses

In the definition of a circle, Definition 7.1, we fixed a point called the center and considered all
of the points which were a fixed distance r from that one point. For our next conic section, the
ellipse, we fix two distinct points and a distance d to use in our definition.

Definition 7.4. Given two distinct points F1 and F2 in the plane and a fixed distance d, an
ellipse is the set of all points (x, y) in the plane such that the sum of each of the distances from
F1 and F2 to (x, y) is d. The points F1 and F2 are called the focia of the ellipse.

athe plural of ‘focus’

(x, y)

d1 d2

F1 F2

d1 + d2 = d for all (x, y) on the ellipse

We may imagine taking a length of string and anchoring it to two points on a piece of paper. The
curve traced out by taking a pencil and moving it so the string is always taut is an ellipse.

The center of the ellipse is the midpoint of the line segment connecting the two foci. The major
axis of the ellipse is the line segment connecting two opposite ends of the ellipse which also contains
the center and foci. The minor axis of the ellipse is the line segment connecting two opposite
ends of the ellipse which contains the center but is perpendicular to the major axis. The vertices
of an ellipse are the points of the ellipse which lie on the major axis. Notice that the center is also
the midpoint of the major axis, hence it is the midpoint of the vertices. In pictures we have,
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F1 F2

V2V1

C

Major Axis

M
in

o
r

A
x
is

An ellipse with center C; foci F1, F2; and vertices V1, V2

Note that the major axis is the longer of the two axes through the center, and likewise, the minor
axis is the shorter of the two. In order to derive the standard equation of an ellipse, we assume that
the ellipse has its center at (0, 0), its major axis along the x-axis, and has foci (c, 0) and (−c, 0)
and vertices (−a, 0) and (a, 0). We will label the y-intercepts of the ellipse as (0, b) and (0,−b) (We
assume a, b, and c are all positive numbers.) Schematically,

(−c, 0) (c, 0)(−a, 0) (a, 0)

(0, b)

(0,−b)

(x, y)

x

y

Note that since (a, 0) is on the ellipse, it must satisfy the conditions of Definition 7.4. That is, the
distance from (−c, 0) to (a, 0) plus the distance from (c, 0) to (a, 0) must equal the fixed distance
d. Since all of these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0) + distance from (c, 0) to (a, 0) = d

(a+ c) + (a− c) = d

2a = d
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In other words, the fixed distance d mentioned in the definition of the ellipse is none other than
the length of the major axis. We now use that fact (0, b) is on the ellipse, along with the fact that
d = 2a to get

distance from (−c, 0) to (0, b) + distance from (c, 0) to (0, b) = 2a√
(0− (−c))2 + (b− 0)2 +

√
(0− c)2 + (b− 0)2 = 2a√
b2 + c2 +

√
b2 + c2 = 2a

2
√
b2 + c2 = 2a√
b2 + c2 = a

From this, we get a2 = b2 + c2, or b2 = a2 − c2, which will prove useful later. Now consider a point
(x, y) on the ellipse. Applying Definition 7.4, we get

distance from (−c, 0) to (x, y) + distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 +

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a

In order to make sense of this situation, we need to make good use of Intermediate Algebra.√
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a√
(x+ c)2 + y2 = 2a−

√
(x− c)2 + y2(√

(x+ c)2 + y2
)2

=
(

2a−
√

(x− c)2 + y2
)2

(x+ c)2 + y2 = 4a2 − 4a
√

(x− c)2 + y2 + (x− c)2 + y2

4a
√

(x− c)2 + y2 = 4a2 + (x− c)2 − (x+ c)2

4a
√

(x− c)2 + y2 = 4a2 − 4cx

a
√

(x− c)2 + y2 = a2 − cx(
a
√

(x− c)2 + y2
)2

=
(
a2 − cx

)2
a2
(
(x− c)2 + y2

)
= a4 − 2a2cx+ c2x2

a2x2 − 2a2cx+ a2c2 + a2y2 = a4 − 2a2cx+ c2x2

a2x2 − c2x2 + a2y2 = a4 − a2c2(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
We are nearly finished. Recall that b2 = a2 − c2 so that(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
b2x2 + a2y2 = a2b2

x2

a2
+
y2

b2
= 1
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This equation is for an ellipse centered at the origin. To get the formula for the ellipse centered at
(h, k), we could use the transformations from Section 1.7 or re-derive the equation using Definition
7.4 and the distance formula to obtain the formula below.

Equation 7.4. The Standard Equation of an Ellipse: For positive unequal numbers a and
b, the equation of an ellipse with center (h, k) is

(x− h)2

a2
+

(y − k)2

b2
= 1

Some remarks about Equation 7.4 are in order. First note that the values a and b determine
how far in the x and y directions, respectively, one counts from the center to arrive at points on
the ellipse. Also take note that if a > b, then we have an ellipse whose major axis is horizontal,
and hence, the foci lie to the left and right of the center. In this case, as we’ve seen in the
derivation, the distance from the center to the focus, c, can be found by c =

√
a2 − b2. If b > a,

the roles of the major and minor axes are reversed, and the foci lie above and below the center.
In this case, c =

√
b2 − a2. In either case, c is the distance from the center to each focus, and

c =
√

bigger denominator− smaller denominator. Finally, it is worth mentioning that if we take
the standard equation of a circle, Equation 7.1, and divide both sides by r2, we get

Equation 7.5. The Alternate Standard Equation of a Circle: The equation of a circle
with center (h, k) and radius r > 0 is

(x− h)2

r2
+

(y − k)2

r2
= 1

Notice the similarity between Equation 7.4 and Equation 7.5. Both equations involve a sum of
squares equal to 1; the difference is that with a circle, the denominators are the same, and with an
ellipse, they are different. If we take a transformational approach, we can consider both Equations
7.4 and 7.5 as shifts and stretches of the Unit Circle x2 + y2 = 1 in Definition 7.2. Replacing x
with (x− h) and y with (y− k) causes the usual horizontal and vertical shifts. Replacing x with x

a
and y with y

b causes the usual vertical and horizontal stretches. In other words, it is perfectly fine
to think of an ellipse as the deformation of a circle in which the circle is stretched farther in one
direction than the other.1

Example 7.4.1. Graph (x+1)2

9 + (y−2)2

25 = 1. Find the center, the lines which contain the major
and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. We see that this equation is in the standard form of Equation 7.4. Here x− h is x+ 1
so h = −1, and y−k is y−2 so k = 2. Hence, our ellipse is centered at (−1, 2). We see that a2 = 9
so a = 3, and b2 = 25 so b = 5. This means that we move 3 units left and right from the center
and 5 units up and down from the center to arrive at points on the ellipse. As an aid to sketching,
we draw a rectangle matching this description, called a guide rectangle, and sketch the ellipse
inside this rectangle as seen below on the left.

1This was foreshadowed in Exercise 19 in Section 7.2.
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x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

x

y

−4 −3 −2 −1 1 2

−3

−2

−1

1

2

3

4

5

6

7

Since we moved farther in the y direction than in the x direction, the major axis will lie along
the vertical line x = −1, which means the minor axis lies along the horizontal line, y = 2. The
vertices are the points on the ellipse which lie along the major axis so in this case, they are the
points (−1, 7) and (−1,−3), and the endpoints of the minor axis are (−4, 2) and (2, 2). (Notice
these points are the four points we used to draw the guide rectangle.) To find the foci, we find
c =
√

25− 9 =
√

16 = 4, which means the foci lie 4 units from the center. Since the major axis is
vertical, the foci lie 4 units above and below the center, at (−1,−2) and (−1, 6). Plotting all this
information gives the graph seen above on the right.

Example 7.4.2. Find the equation of the ellipse with foci (2, 1) and (4, 1) and vertex (0, 1).

Solution. Plotting the data given to us, we have

x

y

1 2 3 4 5

1

From this sketch, we know that the major axis is horizontal, meaning a > b. Since the center is the
midpoint of the foci, we know it is (3, 1). Since one vertex is (0, 1) we have that a = 3, so a2 = 9.
All that remains is to find b2. Since the foci are 1 unit away from the center, we know c = 1. Since
a > b, we have c =

√
a2 − b2, or 1 =

√
9− b2, so b2 = 8. Substituting all of our findings into the

equation (x−h)2

a2 + (y−k)2

b2
= 1, we get our final answer to be (x−3)2

9 + (y−1)2

8 = 1.
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As with circles and parabolas, an equation may be given which is an ellipse, but isn’t in the standard
form of Equation 7.4. In those cases, as with circles and parabolas before, we will need to massage
the given equation into the standard form.

To Write the Equation of an Ellipse in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side.

2. Complete the square in both variables as needed.

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1.

Example 7.4.3. Graph x2 + 4y2− 2x+ 24y+ 33 = 0. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, and the foci.

Solution. Since we have a sum of squares and the squared terms have unequal coefficients, it’s a
good bet we have an ellipse on our hands.2 We need to complete both squares, and then divide, if
necessary, to get the right-hand side equal to 1.

x2 + 4y2 − 2x+ 24y + 33 = 0

x2 − 2x+ 4y2 + 24y = −33

x2 − 2x+ 4
(
y2 + 6y

)
= −33(

x2 − 2x+ 1
)

+ 4
(
y2 + 6y + 9

)
= −33 + 1 + 4(9)

(x− 1)2 + 4(y + 3)2 = 4

(x− 1)2 + 4(y + 3)2

4
=

4

4

(x− 1)2

4
+ (y + 3)2 = 1

(x− 1)2

4
+

(y + 3)2

1
= 1

Now that this equation is in the standard form of Equation 7.4, we see that x−h is x− 1 so h = 1,
and y−k is y+ 3 so k = −3. Hence, our ellipse is centered at (1,−3). We see that a2 = 4 so a = 2,
and b2 = 1 so b = 1. This means we move 2 units left and right from the center and 1 unit up and
down from the center to arrive at points on the ellipse. Since we moved farther in the x direction
than in the y direction, the major axis will lie along the horizontal line y = −3, which means the
minor axis lies along the vertical line x = 1. The vertices are the points on the ellipse which lie
along the major axis so in this case, they are the points (−1,−3) and (3,−3), and the endpoints
of the minor axis are (1,−2) and (1,−4). To find the foci, we find c =

√
4− 1 =

√
3, which means

2The equation of a parabola has only one squared variable and the equation of a circle has two squared variables
with identical coefficients.
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the foci lie
√

3 units from the center. Since the major axis is horizontal, the foci lie
√

3 units to the
left and right of the center, at (1−

√
3,−3) and (1 +

√
3,−3). Plotting all of this information gives

x

y

−1 1 2 3 4

−4

−3

−2

−1

As you come across ellipses in the homework exercises and in the wild, you’ll notice they come in
all shapes in sizes. Compare the two ellipses below.

Certainly, one ellipse is more round than the other. This notion of ‘roundness’ is quantified below.

Definition 7.5. The eccentricity of an ellipse, denoted e, is the following ratio:

e =
distance from the center to a focus

distance from the center to a vertex

In an ellipse, the foci are closer to the center than the vertices, so 0 < e < 1. The ellipse above on
the left has eccentricity e ≈ 0.98; for the ellipse above on the right, e ≈ 0.66. In general, the closer
the eccentricity is to 0, the more ‘circular’ the ellipse; the closer the eccentricity is to 1, the more
‘eccentric’ the ellipse.

Example 7.4.4. Find the equation of the ellipse whose vertices are (±5, 0) with eccentricity e = 1
4 .

Solution. As before, we plot the data given to us

x

y



7.4 Ellipses 523

From this sketch, we know that the major axis is horizontal, meaning a > b. With the vertices
located at (±5, 0), we get a = 5 so a2 = 25. We also know that the center is (0, 0) because the
center is the midpoint of the vertices. All that remains is to find b2. To that end, we use the fact
that the eccentricity e = 1

4 which means

e =
distance from the center to a focus

distance from the center to a vertex
=
c

a
=
c

5
=

1

4

from which we get c = 5
4 . To get b2, we use the fact that c =

√
a2 − b2, so 5

4 =
√

25− b2 from which

we get b2 = 375
16 . Substituting all of our findings into the equation (x−h)2

a2 + (y−k)2

b2
= 1, yields our

final answer x2

25 + 16y2

375 = 1.

As with parabolas, ellipses have a reflective property. If we imagine the dashed lines below repre-
senting sound waves, then the waves emanating from one focus reflect off the top of the ellipse and
head towards the other focus.

F1 F2

Such geometry is exploited in the construction of so-called ‘Whispering Galleries’. If a person
whispers at one focus, a person standing at the other focus will hear the first person as if they were
standing right next to them. We explore the Whispering Galleries in our last example.

Example 7.4.5. Jamie and Jason want to exchange secrets (terrible secrets) from across a crowded
whispering gallery. Recall that a whispering gallery is a room which, in cross section, is half of an
ellipse. If the room is 40 feet high at the center and 100 feet wide at the floor, how far from the
outer wall should each of them stand so that they will be positioned at the foci of the ellipse?

Solution. Graphing the data yields



524 Hooked on Conics

x

y

100 units wide

40 units tall

It’s most convenient to imagine this ellipse centered at (0, 0). Since the ellipse is 100 units wide

and 40 units tall, we get a = 50 and b = 40. Hence, our ellipse has the equation x2

502 + y2

402 = 1.

We’re looking for the foci, and we get c =
√

502 − 402 =
√

900 = 30, so that the foci are 30 units
from the center. That means they are 50 − 30 = 20 units from the vertices. Hence, Jason and
Jamie should stand 20 feet from opposite ends of the gallery.
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7.4.1 Exercises

In Exercises 1 - 8, graph the ellipse. Find the center, the lines which contain the major and minor
axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

1.
x2

169
+
y2

25
= 1 2.

x2

9
+
y2

25
= 1

3.
(x− 2)2

4
+

(y + 3)2

9
= 1 4.

(x+ 5)2

16
+

(y − 4)2

1
= 1

5.
(x− 1)2

10
+

(y − 3)2

11
= 1 6.

(x− 1)2

9
+

(y + 3)2

4
= 1

7.
(x+ 2)2

16
+

(y − 5)2

20
= 1 8.

(x− 4)2

8
+

(y − 2)2

18
= 1

In Exercises 9 - 14, put the equation in standard form. Find the center, the lines which contain the
major and minor axes, the vertices, the endpoints of the minor axis, the foci and the eccentricity.

9. 9x2 + 25y2 − 54x− 50y − 119 = 0 10. 12x2 + 3y2 − 30y + 39 = 0

11. 5x2 + 18y2 − 30x+ 72y + 27 = 0 12. x2 − 2x+ 2y2 − 12y + 3 = 0

13. 9x2 + 4y2 − 4y − 8 = 0 14. 6x2 + 5y2 − 24x+ 20y + 14 = 0

In Exercises 15 - 20, find the standard form of the equation of the ellipse which has the given
properties.

15. Center (3, 7), Vertex (3, 2), Focus (3, 3)

16. Foci (0,±5), Vertices (0,±8).

17. Foci (±3, 0), length of the Minor Axis 10

18. Vertices (3, 2), (13, 2); Endpoints of the Minor Axis (8, 4), (8, 0)

19. Center (5, 2), Vertex (0, 2), eccentricity 1
2

20. All points on the ellipse are in Quadrant IV except (0,−9) and (8, 0). (One might also say
that the ellipse is “tangent to the axes” at those two points.)

21. Repeat Example 7.4.5 for a whispering gallery 200 feet wide and 75 feet tall.

22. An elliptical arch is constructed which is 6 feet wide at the base and 9 feet tall in the middle.
Find the height of the arch exactly 1 foot in from the base of the arch. Compare your result
with your answer to Exercise 21 in Section 7.3.
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23. The Earth’s orbit around the sun is an ellipse with the sun at one focus and eccentricity
e ≈ 0.0167. The length of the semimajor axis (that is, half of the major axis) is defined
to be 1 astronomical unit (AU). The vertices of the elliptical orbit are given special names:
‘aphelion’ is the vertex farthest from the sun, and ‘perihelion’ is the vertex closest to the sun.
Find the distance in AU between the sun and aphelion and the distance in AU between the
sun and perihelion.

24. The graph of an ellipse clearly fails the Vertical Line Test, Theorem 1.1, so the equation of
an ellipse does not define y as a function of x. However, much like with circles and horizontal
parabolas, we can split an ellipse into a top half and a bottom half, each of which would
indeed represent y as a function of x. With the help of your classmates, use your calculator
to graph the ellipses given in Exercises 1 - 8 above. What difficulties arise when you plot
them on the calculator?

25. Some famous examples of whispering galleries include St. Paul’s Cathedral in London, Eng-
land, National Statuary Hall in Washington, D.C., and The Cincinnati Museum Center. With
the help of your classmates, research these whispering galleries. How does the whispering ef-
fect compare and contrast with the scenario in Example 7.4.5?

26. With the help of your classmates, research “extracorporeal shock-wave lithotripsy”. It uses
the reflective property of the ellipsoid to dissolve kidney stones.

http://www.stpauls.co.uk/
http://www.aoc.gov/cc/capitol/nat_stat_hall.cfm
http://www.cincymuseum.org/
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7.4.2 Answers

1.
x2

169
+
y2

25
= 1

Center (0, 0)
Major axis along y = 0
Minor axis along x = 0
Vertices (13, 0), (−13, 0)
Endpoints of Minor Axis (0,−5), (0, 5)
Foci (12, 0), (−12, 0)
e = 12

13

x

y

−13 −1 1 13

−5

−4

−3

−2

−1

1

2

3

4

5

2.
x2

9
+
y2

25
= 1

Center (0, 0)
Major axis along x = 0
Minor axis along y = 0
Vertices (0, 5), (0,−5)
Endpoints of Minor Axis (−3, 0), (3, 0)
Foci (0,−4), (0, 4)
e = 4

5

x

y

−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

3.
(x− 2)2

4
+

(y + 3)2

9
= 1

Center (2,−3)
Major axis along x = 2
Minor axis along y = −3
Vertices (2, 0), (2,−6)
Endpoints of Minor Axis (0,−3), (4,−3)
Foci (2,−3 +

√
5), (2,−3−

√
5)

e =
√

5
3

x

y

1 2 3 4

−6

−5

−4

−3

−2

−1

4.
(x+ 5)2

16
+

(y − 4)2

1
= 1

Center (−5, 4)
Major axis along y = 4
Minor axis along x = −5
Vertices (−9, 4), (−1, 4)
Endpoints of Minor Axis (−5, 3), (−5, 5)
Foci (−5 +

√
15, 4), (−5−

√
15, 4)

e =
√

15
4 x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1

1

2

3

4

5
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5.
(x− 1)2

10
+

(y − 3)2

11
= 1

Center (1, 3)
Major axis along x = 1
Minor axis along y = 3
Vertices (1, 3 +

√
11), (1, 3−

√
11)

Endpoints of the Minor Axis
(1−

√
10, 3), (1 +

√
10, 3)

Foci (1, 2), (1, 4)

e =
√

11
11

x

y

−2 −1 1 2 3 4

1

2

3

4

5

6

6.
(x− 1)2

9
+

(y + 3)2

4
= 1

Center (1,−3)
Major axis along y = −3
Minor axis along x = 1
Vertices (4,−3), (−2,−3)
Endpoints of the Minor Axis (1,−1), (1,−5)
Foci (1 +

√
5,−3), (1−

√
5,−3)

e =
√

5
3

x

y

−2 −1 1 2 3 4

−5

−4

−3

−2

−1

7.
(x+ 2)2

16
+

(y − 5)2

20
= 1

Center (−2, 5)
Major axis along x = −2
Minor axis along y = 5
Vertices (−2, 5 + 2

√
5), (−2, 5− 2

√
5)

Endpoints of the Minor Axis (−6, 5), (2, 5)
Foci (−2, 7), (−2, 3)

e =
√

5
5

x

y

−6 −5 −4 −3 −2 −1 1 2

1

2

3

4

5

6

7

8

9

10
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8.
(x− 4)2

8
+

(y − 2)2

18
= 1

Center (4, 2)
Major axis along x = 4
Minor axis along y = 2
Vertices (4, 2 + 3

√
2), (4, 2− 3

√
2)

Endpoints of the Minor Axis
(4− 2

√
2, 2), (4 + 2

√
2, 2)

Foci (4, 2 +
√

10), (4, 2−
√

10)

e =
√

5
3

x

y

1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

9.
(x− 3)2

25
+

(y − 1)2

9
= 1

Center (3, 1)
Major Axis along y = 1
Minor Axis along x = 3
Vertices (8, 1), (−2, 1)
Endpoints of Minor Axis (3, 4), (3,−2)
Foci (7, 1), (−1, 1)
e = 4

5

10.
x2

3
+

(y − 5)2

12
= 1

Center (0, 5)
Major axis along x = 0
Minor axis along y = 5
Vertices (0, 5− 2

√
3), (0, 5 + 2

√
3)

Endpoints of Minor Axis (−
√

3, 5), (
√

3, 5)
Foci (0, 2), (0, 8)

e =
√

3
2

11.
(x− 3)2

18
+

(y + 2)2

5
= 1

Center (3,−2)
Major axis along y = −2
Minor axis along x = 3
Vertices (3− 3

√
2,−2), (3 + 3

√
2,−2)

Endpoints of Minor Axis (3,−2 +
√

5),
(3,−2−

√
5)

Foci (3−
√

13,−2), (3 +
√

13,−2)

e =
√

26
6

12.
(x− 1)2

16
+

(y − 3)2

8
= 1

Center (1, 3)
Major Axis along y = 3
Minor Axis along x = 1
Vertices (5, 3), (−3, 3)
Endpoints of Minor Axis (1, 3 + 2

√
2),

(1, 3− 2
√

2)
Foci (1 + 2

√
2, 3), (1− 2

√
2, 3)

e =
√

2
2
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13.
x2

1
+

4
(
y − 1

2

)2
9

= 1

Center
(
0, 1

2

)
Major Axis along x = 0 (the y-axis)
Minor Axis along y = 1

2
Vertices (0, 2), (0,−1)
Endpoints of Minor Axis

(
−1, 1

2

)
,
(
1, 1

2

)
Foci

(
0, 1+

√
5

2

)
,
(

0, 1−
√

5
2

)
e =

√
5

3

14.
(x− 2)2

5
+

(y + 2)2

6
= 1

Center (2,−2)
Major Axis along x = 2
Minor Axis along y = −2
Vertices

(
2,−2 +

√
6
)
, (2,−2−

√
6)

Endpoints of Minor Axis
(
2−
√

5,−2
)
,(

2 +
√

5,−2
)

Foci (2,−1), (2,−3)

e =
√

6
6

15.
(x− 3)2

9
+

(y − 7)2

25
= 1 16.

x2

39
+
y2

64
= 1

17.
x2

34
+
y2

25
= 1 18.

(x− 8)2

25
+

(y − 2)2

4
= 1

19.
(x− 5)2

25
+

4(y − 2)2

75
= 1 20.

(x− 8)2

64
+

(y + 9)2

81
= 1

21. Jamie and Jason should stand 100− 25
√

7 ≈ 33.86 feet from opposite ends of the gallery.

22. The arch can be modeled by the top half of x
2

9 + y2

81 = 1. One foot in from the base of the arch

corresponds to either x = ±2. Plugging in x = ±2 gives y = ±3
√

5 and since y represents a
height, we choose y = 3

√
5 ≈ 6.71 feet.

23. Distance from the sun to aphelion ≈ 1.0167 AU.
Distance from the sun to perihelion ≈ 0.9833 AU.
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7.5 Hyperbolas

In the definition of an ellipse, Definition 7.4, we fixed two points called foci and looked at points
whose distances to the foci always added to a constant distance d. Those prone to syntactical
tinkering may wonder what, if any, curve we’d generate if we replaced added with subtracted.
The answer is a hyperbola.

Definition 7.6. Given two distinct points F1 and F2 in the plane and a fixed distance d, a
hyperbola is the set of all points (x, y) in the plane such that the absolute value of the difference
of each of the distances from F1 and F2 to (x, y) is d. The points F1 and F2 are called the foci
of the hyperbola.

(x1, y1)

(x2, y2)

F1 F2

In the figure above:

the distance from F1 to (x1, y1)− the distance from F2 to (x1, y1) = d

and

the distance from F2 to (x2, y2)− the distance from F1 to (x2, y2) = d

Note that the hyperbola has two parts, called branches. The center of the hyperbola is the
midpoint of the line segment connecting the two foci. The transverse axis of the hyperbola is
the line segment connecting two opposite ends of the hyperbola which also contains the center and
foci. The vertices of a hyperbola are the points of the hyperbola which lie on the transverse axis.
In addition, we will show momentarily that there are lines called asymptotes which the branches
of the hyperbola approach for large x and y values. They serve as guides to the graph. In pictures,
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V2V1F1 F2

Transverse Axis

C

A hyperbola with center C; foci F1, F2; and vertices V1, V2 and asymptotes (dashed)

Before we derive the standard equation of the hyperbola, we need to discuss one further parameter,
the conjugate axis of the hyperbola. The conjugate axis of a hyperbola is the line segment
through the center which is perpendicular to the transverse axis and has the same length as the
line segment through a vertex which connects the asymptotes. In pictures we have

V2V1 C

C
o
n

ju
g
a
te

A
x
is

Note that in the diagram, we can construct a rectangle using line segments with lengths equal to
the lengths of the transverse and conjugate axes whose center is the center of the hyperbola and
whose diagonals are contained in the asymptotes. This guide rectangle, much akin to the one we
saw Section 7.4 to help us graph ellipses, will aid us in graphing hyperbolas.

Suppose we wish to derive the equation of a hyperbola. For simplicity, we shall assume that the
center is (0, 0), the vertices are (a, 0) and (−a, 0) and the foci are (c, 0) and (−c, 0). We label the
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endpoints of the conjugate axis (0, b) and (0,−b). (Although b does not enter into our derivation,
we will have to justify this choice as you shall see later.) As before, we assume a, b, and c are all
positive numbers. Schematically we have

x

y

(a, 0)(−a, 0)

(0, b)

(0,−b)

(−c, 0) (c, 0)

(x, y)

Since (a, 0) is on the hyperbola, it must satisfy the conditions of Definition 7.6. That is, the distance
from (−c, 0) to (a, 0) minus the distance from (c, 0) to (a, 0) must equal the fixed distance d. Since
all these points lie on the x-axis, we get

distance from (−c, 0) to (a, 0)− distance from (c, 0) to (a, 0) = d

(a+ c)− (c− a) = d

2a = d

In other words, the fixed distance d from the definition of the hyperbola is actually the length of
the transverse axis! (Where have we seen that type of coincidence before?) Now consider a point
(x, y) on the hyperbola. Applying Definition 7.6, we get

distance from (−c, 0) to (x, y)− distance from (c, 0) to (x, y) = 2a√
(x− (−c))2 + (y − 0)2 −

√
(x− c)2 + (y − 0)2 = 2a√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a

Using the same arsenal of Intermediate Algebra weaponry we used in deriving the standard formula
of an ellipse, Equation 7.4, we arrive at the following.1

1It is a good exercise to actually work this out.



534 Hooked on Conics

(
a2 − c2

)
x2 + a2y2 = a2

(
a2 − c2

)
What remains is to determine the relationship between a, b and c. To that end, we note that since
a and c are both positive numbers with a < c, we get a2 < c2 so that a2− c2 is a negative number.
Hence, c2 − a2 is a positive number. For reasons which will become clear soon, we re-write the
equation by solving for y2/x2 to get(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−
(
c2 − a2

)
x2 + a2y2 = −a2

(
c2 − a2

)
a2y2 =

(
c2 − a2

)
x2 − a2

(
c2 − a2

)
y2

x2
=

(
c2 − a2

)
a2

−
(
c2 − a2

)
x2

As x and y attain very large values, the quantity
(c2−a2)

x2 → 0 so that y2

x2 →
(c2−a2)

a2 . By setting

b2 = c2 − a2 we get y2

x2 → b2

a2 . This shows that y → ± b
ax as |x| grows large. Thus y = ± b

ax are the
asymptotes to the graph as predicted and our choice of labels for the endpoints of the conjugate
axis is justified. In our equation of the hyperbola we can substitute a2 − c2 = −b2 which yields(

a2 − c2
)
x2 + a2y2 = a2

(
a2 − c2

)
−b2x2 + a2y2 = −a2b2

x2

a2
− y2

b2
= 1

The equation above is for a hyperbola whose center is the origin and which opens to the left and
right. If the hyperbola were centered at a point (h, k), we would get the following.

Equation 7.6. The Standard Equation of a Horizontala Hyperbola For positive numbers
a and b, the equation of a horizontal hyperbola with center (h, k) is

(x− h)2

a2
− (y − k)2

b2
= 1

aThat is, a hyperbola whose branches open to the left and right

If the roles of x and y were interchanged, then the hyperbola’s branches would open upwards and
downwards and we would get a ‘vertical’ hyperbola.

Equation 7.7. The Standard Equation of a Vertical Hyperbola For positive numbers a
and b, the equation of a vertical hyperbola with center (h, k) is:

(y − k)2

b2
− (x− h)2

a2
= 1

The values of a and b determine how far in the x and y directions, respectively, one counts from the
center to determine the rectangle through which the asymptotes pass. In both cases, the distance
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from the center to the foci, c, as seen in the derivation, can be found by the formula c =
√
a2 + b2.

Lastly, note that we can quickly distinguish the equation of a hyperbola from that of a circle or
ellipse because the hyperbola formula involves a difference of squares where the circle and ellipse
formulas both involve the sum of squares.

Example 7.5.1. Graph the equation (x−2)2

4 − y2

25 = 1. Find the center, the lines which contain the
transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

Solution. We first see that this equation is given to us in the standard form of Equation 7.6. Here
x − h is x − 2 so h = 2, and y − k is y so k = 0. Hence, our hyperbola is centered at (2, 0). We
see that a2 = 4 so a = 2, and b2 = 25 so b = 5. This means we move 2 units to the left and right
of the center and 5 units up and down from the center to arrive at points on the guide rectangle.
The asymptotes pass through the center of the hyperbola as well as the corners of the rectangle.
This yields the following set up.

x

y

−2 −1 1 2 3 4 5 6

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Since the y2 term is being subtracted from the x2 term, we know that the branches of the hyperbola
open to the left and right. This means that the transverse axis lies along the x-axis. Hence, the
conjugate axis lies along the vertical line x = 2. Since the vertices of the hyperbola are where the
hyperbola intersects the transverse axis, we get that the vertices are 2 units to the left and right of
(2, 0) at (0, 0) and (4, 0). To find the foci, we need c =

√
a2 + b2 =

√
4 + 25 =

√
29. Since the foci

lie on the transverse axis, we move
√

29 units to the left and right of (2, 0) to arrive at (2−
√

29, 0)
(approximately (−3.39, 0)) and (2 +

√
29, 0) (approximately (7.39, 0)). To determine the equations

of the asymptotes, recall that the asymptotes go through the center of the hyperbola, (2, 0), as well
as the corners of guide rectangle, so they have slopes of ± b

a = ±5
2 . Using the point-slope equation
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of a line, Equation 2.2, yields y − 0 = ±5
2(x− 2), so we get y = 5

2x− 5 and y = −5
2x+ 5. Putting

it all together, we get

x

y

−3 −2 −1 1 2 3 4 5 6 7

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

Example 7.5.2. Find the equation of the hyperbola with asymptotes y = ±2x and vertices (±5, 0).

Solution. Plotting the data given to us, we have

x

y

−5 5

−5

5

This graph not only tells us that the branches of the hyperbola open to the left and to the right,

it also tells us that the center is (0, 0). Hence, our standard form is x2

a2 − y2

b2
= 1. Since the vertices

are (±5, 0), we have a = 5 so a2 = 25. In order to determine b2, we recall that the slopes of the
asymptotes are ± b

a . Since a = 5 and the slope of the line y = 2x is 2, we have that b
5 = 2, so

b = 10. Hence, b2 = 100 and our final answer is x2

25 −
y2

100 = 1.
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As with the other conic sections, an equation whose graph is a hyperbola may not be given in either
of the standard forms. To rectify that, we have the following.

To Write the Equation of a Hyperbola in Standard Form

1. Group the same variables together on one side of the equation and position the constant
on the other side

2. Complete the square in both variables as needed

3. Divide both sides by the constant term so that the constant on the other side of the
equation becomes 1

Example 7.5.3. Consider the equation 9y2−x2− 6x = 10. Put this equation in to standard form
and graph. Find the center, the lines which contain the transverse and conjugate axes, the vertices,
the foci, and the equations of the asymptotes.

Solution. We need only complete the square on x:

9y2 − x2 − 6x = 10

9y2 − 1
(
x2 + 6x

)
= 10

9y2 −
(
x2 + 6x+ 9

)
= 10− 1(9)

9y2 − (x+ 3)2 = 1

y2

1
9

− (x+ 3)2

1
= 1

Now that this equation is in the standard form of Equation 7.7, we see that x−h is x+3 so h = −3,
and y− k is y so k = 0. Hence, our hyperbola is centered at (−3, 0). We find that a2 = 1 so a = 1,
and b2 = 1

9 so b = 1
3 . This means that we move 1 unit to the left and right of the center and 1

3
units up and down from the center to arrive at points on the guide rectangle. Since the x2 term
is being subtracted from the y2 term, we know the branches of the hyperbola open upwards and
downwards. This means the transverse axis lies along the vertical line x = −3 and the conjugate
axis lies along the x-axis. Since the vertices of the hyperbola are where the hyperbola intersects
the transverse axis, we get that the vertices are 1

3 of a unit above and below (−3, 0) at
(
−3, 1

3

)
and(

−3,−1
3

)
. To find the foci, we use

c =
√
a2 + b2 =

√
1

9
+ 1 =

√
10

3

Since the foci lie on the transverse axis, we move
√

10
3 units above and below (−3, 0) to arrive at(

−3,
√

10
3

)
and

(
−3,−

√
10
3

)
. To determine the asymptotes, recall that the asymptotes go through

the center of the hyperbola, (−3, 0), as well as the corners of guide rectangle, so they have slopes
of ± b

a = ±1
3 . Using the point-slope equation of a line, Equation 2.2, we get y = 1

3x + 1 and
y = −1

3x− 1. Putting it all together, we get
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x

y

−6 −1

1

−1

Hyperbolas can be used in so-called ‘trilateration,’ or ‘positioning’ problems. The procedure out-
lined in the next example is the basis of the (now virtually defunct) LOng Range Aid to Navigation
(LORAN for short) system.2

Example 7.5.4. Jeff is stationed 10 miles due west of Carl in an otherwise empty forest in an
attempt to locate an elusive Sasquatch. At the stroke of midnight, Jeff records a Sasquatch call
9 seconds earlier than Carl. If the speed of sound that night is 760 miles per hour, determine a
hyperbolic path along which Sasquatch must be located.

Solution. Since Jeff hears Sasquatch sooner, it is closer to Jeff than it is to Carl. Since the speed of
sound is 760 miles per hour, we can determine how much closer Sasquatch is to Jeff by multiplying

760
miles

hour
× 1 hour

3600 seconds
× 9 seconds = 1.9 miles

This means that Sasquatch is 1.9 miles closer to Jeff than it is to Carl. In other words, Sasquatch
must lie on a path where

(the distance to Carl)− (the distance to Jeff) = 1.9

This is exactly the situation in the definition of a hyperbola, Definition 7.6. In this case, Jeff
and Carl are located at the foci,3 and our fixed distance d is 1.9. For simplicity, we assume the
hyperbola is centered at (0, 0) with its foci at (−5, 0) and (5, 0). Schematically, we have

2GPS now rules the positioning kingdom. Is there still a place for LORAN and other land-based systems? Do
satellites ever malfunction?

3We usually like to be the center of attention, but being the focus of attention works equally well.

http://en.wikipedia.org/wiki/Trilateration
http://en.wikipedia.org/wiki/LORAN
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x

y

Jeff Carl
−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

We are seeking a curve of the form x2

a2 − y2

b2
= 1 in which the distance from the center to each focus

is c = 5. As we saw in the derivation of the standard equation of the hyperbola, Equation 7.6,
d = 2a, so that 2a = 1.9, or a = 0.95 and a2 = 0.9025. All that remains is to find b2. To that end,
we recall that a2 + b2 = c2 so b2 = c2 − a2 = 25 − 0.9025 = 24.0975. Since Sasquatch is closer to

Jeff than it is to Carl, it must be on the western (left hand) branch of x2

0.9025 −
y2

24.0975 = 1.

In our previous example, we did not have enough information to pin down the exact location of
Sasquatch. To accomplish this, we would need a third observer.

Example 7.5.5. By a stroke of luck, Kai was also camping in the woods during the events of the
previous example. He was located 6 miles due north of Jeff and heard the Sasquatch call 18 seconds
after Jeff did. Use this added information to locate Sasquatch.

Solution. Kai and Jeff are now the foci of a second hyperbola where the fixed distance d can be
determined as before

760
miles

hour
× 1 hour

3600 seconds
× 18 seconds = 3.8 miles

Since Jeff was positioned at (−5, 0), we place Kai at (−5, 6). This puts the center of the new
hyperbola at (−5, 3). Plotting Kai’s position and the new center gives us the diagram below on

the left. The second hyperbola is vertical, so it must be of the form (y−3)2

b2
− (x+5)2

a2 = 1. As before,
the distance d is the length of the major axis, which in this case is 2b. We get 2b = 3.8 so that
b = 1.9 and b2 = 3.61. With Kai 6 miles due North of Jeff, we have that the distance from the
center to the focus is c = 3. Since a2 + b2 = c2, we get a2 = c2 − b2 = 9− 3.61 = 5.39. Kai heard
the Sasquatch call after Jeff, so Kai is farther from Sasquatch than Jeff. Thus Sasquatch must lie

on the southern branch of the hyperbola (y−3)2

3.61 −
(x+5)2

5.39 = 1. Looking at the western branch of the
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hyperbola determined by Jeff and Carl along with the southern branch of the hyperbola determined
by Kai and Jeff, we see that there is exactly one point in common, and this is where Sasquatch
must have been when it called.

x

y

Jeff Carl

Kai

−9−8−7−6−5−4−3−2−1 1 2 3 4 5 6

−6
−5

−4
−3

−2

−1

1

2
3

4

5
6

x

y

Jeff Carl

Kai

Sasquatch
−9−8−7−6−5−4−3−2 1 2 3 4 5 6

−6
−5

−4
−3

−2

1

2
3

4

5
6

To determine the coordinates of this point of intersection exactly, we would need techniques for
solving systems of non-linear equations (which we won’t see until Section 8.7), so we use the
calculator4 Doing so, we get Sasquatch is approximately at (−0.9629,−0.8113).

Each of the conic sections we have studied in this chapter result from graphing equations of the
form Ax2 +Cy2 +Dx+Ey+F = 0 for different choices of A, C, D, E, and5 F . While we’ve seen
examples6 demonstrate how to convert an equation from this general form to one of the standard
forms, we close this chapter with some advice about which standard form to choose.7

Strategies for Identifying Conic Sections

Suppose the graph of equation Ax2 +Cy2 +Dx+Ey+F = 0 is a non-degenerate conic section.a

� If just one variable is squared, the graph is a parabola. Put the equation in the form of
Equation 7.2 (if x is squared) or Equation 7.3 (if y is squared).

If both variables are squared, look at the coefficients of x2 and y2, A and B.

� If A = B, the graph is a circle. Put the equation in the form of Equation 7.1.

� If A 6= B but A and B have the same sign, the graph is an ellipse. Put the equation in
the form of Equation 7.4.

� If A and B have the different signs, the graph is a hyperbola. Put the equation in the form
of either Equation 7.6 or Equation 7.7.

aThat is, a parabola, circle, ellipse, or hyperbola – see Section 7.1.

4First solve each hyperbola for y, and choose the correct equation (branch) before proceeding.
5See Section 11.6 to see why we skip B.
6Examples 7.2.3, 7.3.4, 7.4.3, and 7.5.3, in particular.
7We formalize this in Exercise 34.
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7.5.1 Exercises

In Exercises 1 - 8, graph the hyperbola. Find the center, the lines which contain the transverse
and conjugate axes, the vertices, the foci and the equations of the asymptotes.

1.
x2

16
− y2

9
= 1 2.

y2

9
− x2

16
= 1

3.
(x− 2)2

4
− (y + 3)2

9
= 1 4.

(y − 3)2

11
− (x− 1)2

10
= 1

5.
(x+ 4)2

16
− (y − 4)2

1
= 1 6.

(x+ 1)2

9
− (y − 3)2

4
= 1

7.
(y + 2)2

16
− (x− 5)2

20
= 1 8.

(x− 4)2

8
− (y − 2)2

18
= 1

In Exercises 9 - 12, put the equation in standard form. Find the center, the lines which contain
the transverse and conjugate axes, the vertices, the foci and the equations of the asymptotes.

9. 12x2 − 3y2 + 30y − 111 = 0 10. 18y2 − 5x2 + 72y + 30x− 63 = 0

11. 9x2 − 25y2 − 54x− 50y − 169 = 0 12. −6x2 + 5y2 − 24x+ 40y + 26 = 0

In Exercises 13 - 18, find the standard form of the equation of the hyperbola which has the given
properties.

13. Center (3, 7), Vertex (3, 3), Focus (3, 2)

14. Vertex (0, 1), Vertex (8, 1), Focus (−3, 1)

15. Foci (0,±8), Vertices (0,±5).

16. Foci (±5, 0), length of the Conjugate Axis 6

17. Vertices (3, 2), (13, 2); Endpoints of the Conjugate Axis (8, 4), (8, 0)

18. Vertex (−10, 5), Asymptotes y = ±1
2(x− 6) + 5

In Exercises 19 - 28, find the standard form of the equation using the guidelines on page 540 and
then graph the conic section.

19. x2 − 2x− 4y − 11 = 0 20. x2 + y2 − 8x+ 4y + 11 = 0

21. 9x2 + 4y2 − 36x+ 24y + 36 = 0 22. 9x2 − 4y2 − 36x− 24y − 36 = 0
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23. y2 + 8y − 4x+ 16 = 0 24. 4x2 + y2 − 8x+ 4 = 0

25. 4x2 + 9y2 − 8x+ 54y + 49 = 0 26. x2 + y2 − 6x+ 4y + 14 = 0

27. 2x2 + 4y2 + 12x− 8y + 25 = 0 28. 4x2 − 5y2 − 40x− 20y + 160 = 0

29. The graph of a vertical or horizontal hyperbola clearly fails the Vertical Line Test, Theorem
1.1, so the equation of a vertical of horizontal hyperbola does not define y as a function of x.8

However, much like with circles, horizontal parabolas and ellipses, we can split a hyperbola
into pieces, each of which would indeed represent y as a function of x. With the help of your
classmates, use your calculator to graph the hyperbolas given in Exercises 1 - 8 above. How
many pieces do you need for a vertical hyperbola? How many for a horizontal hyperbola?

30. The location of an earthquake’s epicenter − the point on the surface of the Earth directly
above where the earthquake actually occurred − can be determined by a process similar to
how we located Sasquatch in Example 7.5.5. (As we said back in Exercise 75 in Section 6.1,
earthquakes are complicated events and it is not our intent to provide a complete discussion of
the science involved in them. Instead, we refer the interested reader to a course in Geology or
the U.S. Geological Survey’s Earthquake Hazards Program found here.) Our technique works
only for relatively small distances because we need to assume that the Earth is flat in order
to use hyperbolas in the plane.9 The P-waves (“P” stands for Primary) of an earthquake
in Sasquatchia travel at 6 kilometers per second.10 Station A records the waves first. Then
Station B, which is 100 kilometers due north of Station A, records the waves 2 seconds later.
Station C, which is 150 kilometers due west of Station A records the waves 3 seconds after
that (a total of 5 seconds after Station A). Where is the epicenter?

31. The notion of eccentricity introduced for ellipses in Definition 7.5 in Section 7.4 is the same
for hyperbolas in that we can define the eccentricity e of a hyperbola as

e =
distance from the center to a focus

distance from the center to a vertex

(a) With the help of your classmates, explain why e > 1 for any hyperbola.

(b) Find the equation of the hyperbola with vertices (±3, 0) and eccentricity e = 2.

(c) With the help of your classmates, find the eccentricity of each of the hyperbolas in
Exercises 1 - 8. What role does eccentricity play in the shape of the graphs?

32. On page 510 in Section 7.3, we discussed paraboloids of revolution when studying the design
of satellite dishes and parabolic mirrors. In much the same way, ‘natural draft’ cooling towers
are often shaped as hyperboloids of revolution. Each vertical cross section of these towers

8We will see later in the text that the graphs of certain rotated hyperbolas pass the Vertical Line Test.
9Back in the Exercises in Section 1.1 you were asked to research people who believe the world is flat. What did

you discover?
10Depending on the composition of the crust at a specific location, P-waves can travel between 5 kps and 8 kps.

http://earthquake.usgs.gov/
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is a hyperbola. Suppose the a natural draft cooling tower has the cross section below. Suppose
the tower is 450 feet wide at the base, 275 feet wide at the top, and 220 feet at its narrowest
point (which occurs 330 feet above the ground.) Determine the height of the tower to the
nearest foot.

450 ft

220 ft

275 ft

330 ft

33. With the help of your classmates, research the Cassegrain Telescope. It uses the reflective
property of the hyperbola as well as that of the parabola to make an ingenious telescope.

34. With the help of your classmates show that if Ax2 + Cy2 + Dx + Ey + F = 0 determines a
non-degenerate conic11 then

� AC < 0 means that the graph is a hyperbola

� AC = 0 means that the graph is a parabola

� AC > 0 means that the graph is an ellipse or circle

NOTE: This result will be generalized in Theorem 11.11 in Section 11.6.1.

11Recall that this means its graph is either a circle, parabola, ellipse or hyperbola.
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7.5.2 Answers

1.
x2

16
− y2

9
= 1

Center (0, 0)
Transverse axis on y = 0
Conjugate axis on x = 0
Vertices (4, 0), (−4, 0)
Foci (5, 0), (−5, 0)
Asymptotes y = ±3

4x

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

2.
y2

9
− x2

16
= 1

Center (0, 0)
Transverse axis on x = 0
Conjugate axis on y = 0
Vertices (0, 3), (0,−3)
Foci (0, 5), (0,−5)
Asymptotes y = ±3

4x

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

3.
(x− 2)2

4
− (y + 3)2

9
= 1

Center (2,−3)
Transverse axis on y = −3
Conjugate axis on x = 2
Vertices (0,−3), (4,−3)
Foci (2 +

√
13,−3), (2−

√
13,−3)

Asymptotes y = ±3
2(x− 2)− 3

x

y

−3 −2 −1 1 2 3 4 5 6 7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4
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4.
(y − 3)2

11
− (x− 1)2

10
= 1

Center (1, 3)
Transverse axis on x = 1
Conjugate axis on y = 3
Vertices (1, 3 +

√
11), (1, 3−

√
11)

Foci (1, 3 +
√

21), (1, 3−
√

21)

Asymptotes y = ±
√

110
10 (x− 1) + 3

x

y

−5 −4 −3 −2 −1 1 2 3 4 5 6 7

−3

−2

−1

1

2

3

4

5

6

7

8

9

5.
(x+ 4)2

16
− (y − 4)2

1
= 1

Center (−4, 4)
Transverse axis on y = 4
Conjugate axis on x = −4
Vertices (−8, 4), (0, 4)
Foci (−4 +

√
17, 4), (−4−

√
17, 4)

Asymptotes y = ±1
4(x+ 4) + 4

x

y

−11−10−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3

1

2

3

4

5

6.
(x+ 1)2

9
− (y − 3)2

4
= 1

Center (−1, 3)
Transverse axis on y = 3
Conjugate axis on x = −1
Vertices (2, 3), (−4, 3)
Foci

(
−1 +

√
13, 3

)
,
(
−1−

√
13, 3

)
Asymptotes y = ±2

3(x+ 1) + 3 x

y

−7 −6 −5 −4 −3 −2 −1 1 2 3 4 5

1

2

3

4

5

7.
(y + 2)2

16
− (x− 5)2

20
= 1

Center (5,−2)
Transverse axis on x = 5
Conjugate axis on y = −2
Vertices (5, 2), (5,−6)
Foci (5, 4) , (5,−8)

Asymptotes y = ±2
√

5
5 (x− 5)− 2

x

y

−1 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4
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8.
(x− 4)2

8
− (y − 2)2

18
= 1

Center (4, 2)
Transverse axis on y = 2
Conjugate axis on x = 4
Vertices

(
4 + 2

√
2, 2
)
,
(
4− 2

√
2, 2
)

Foci
(
4 +
√

26, 2
)
,
(
4−
√

26, 2
)

Asymptotes y = ±3
2(x− 4) + 2 x

y

−2−1 1 2 3 4 5 6 7 8 9 10

-

−2

−1

1

2

3

4

5

6

7

8

9

9.
x2

3
− (y − 5)2

12
= 1

Center (0, 5)
Transverse axis on y = 5
Conjugate axis on x = 0
Vertices (

√
3, 5), (−

√
3, 5)

Foci (
√

15, 5), (−
√

15, 5)
Asymptotes y = ±2x+ 5

10.
(y + 2)2

5
− (x− 3)2

18
= 1

Center (3,−2)
Transverse axis on x = 3
Conjugate axis on y = −2
Vertices (3,−2 +

√
5), (3,−2−

√
5)

Foci (3,−2 +
√

23), (3,−2−
√

23)

Asymptotes y = ±
√

10
6 (x− 3)− 2

11.
(x− 3)2

25
− (y + 1)2

9
= 1

Center (3,−1)
Transverse axis on y = −1
Conjugate axis on x = 3
Vertices (8,−1), (−2,−1)
Foci

(
3 +
√

34,−1
)
,
(
3−
√

34,−1
)

Asymptotes y = ±3
5(x− 3)− 1

12.
(y + 4)2

6
− (x+ 2)2

5
= 1

Center (−2,−4)
Transverse axis on x = −2
Conjugate axis on y = −4
Vertices

(
−2,−4 +

√
6
)
,
(
−2,−4−

√
6
)

Foci
(
−2,−4 +

√
11
)
,
(
−2,−4−

√
11
)

Asymptotes y = ±
√

30
5 (x+ 2)− 4

13.
(y − 7)2

16
− (x− 3)2

9
= 1 14.

(x− 4)2

16
− (y − 1)2

33
= 1

15.
y2

25
− x2

39
= 1 16.

x2

16
− y2

9
= 1

17.
(x− 8)2

25
− (y − 2)2

4
= 1 18.

(x− 6)2

256
− (y − 5)2

64
= 1
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19. (x− 1)2 = 4(y + 3)

x

y

−3 −2 −1 1 2 3 4

−4

−3

−2

−1

20. (x− 4)2 + (y + 2)2 = 9

x

y

1 4 7

−5

−2

1

21.
(x− 2)2

4
+

(y + 3)2

9
= 1

x

y

1 2 3 4

−6

−5

−4

−3

−2

−1

22.
(x− 2)2

4
− (y + 3)2

9
= 1

x

y

−3 −2 −1 1 2 3 4 5 6 7

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

23. (y + 4)2 = 4x

x

y

−1 1 2 3 4

−8

−7

−6

−5

−4

−3

−2

−1

24.
(x− 1)2

1
+
y2

4
= 0

The graph is the point (1, 0) only.
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25.
(x− 1)2

9
+

(y + 3)2

4
= 1

x

y

−2 −1 1 2 3 4

−5

−4

−3

−2

−1

26. (x− 3)2 + (y + 2)2 = −1
There is no graph.

27.
(x+ 3)2

2
+

(y − 1)2

1
= −3

4
There is no graph.

28.
(y + 2)2

16
− (x− 5)2

20
= 1

x

y

−1 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

30. By placing Station A at (0,−50) and Station B at (0, 50), the two second time difference

yields the hyperbola y2

36 −
x2

2464 = 1 with foci A and B and center (0, 0). Placing Station C
at (−150,−50) and using foci A and C gives us a center of (−75,−50) and the hyperbola
(x+75)2

225 − (y+50)2

5400 = 1. The point of intersection of these two hyperbolas which is closer to A
than B and closer to A than C is (−57.8444,−9.21336) so that is the epicenter.

31. (b)
x2

9
− y2

27
= 1.

32. The tower may be modeled (approximately)12 by x2

12100 −
(y−330)2

34203 = 1. To find the height, we
plug in x = 137.5 which yields y ≈ 191 or y ≈ 469. Since the top of the tower is above the
narrowest point, we get the tower is approximately 469 feet tall.

12The exact value underneath (y − 330)2 is 52707600
1541

in case you need more precision.



Chapter 8

Systems of Equations and Matrices

8.1 Systems of Linear Equations: Gaussian Elimination

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(x) = g(x), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The x-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(x) and y = g(x), where both the solution to x and y are of interest, we have
what is known as a system of equations, usually written as{

y = f(x)
y = g(x)

The ‘curly bracket’ notation means we are to find all pairs of points (x, y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a1x+a2y = c
where a1, a2 and c are real numbers and at least one of a1 and a2 is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3x− y

2 = 0.1 is a linear equation in two variables with a1 = 3, a2 = −1
2

and c = 0.1. We can also consider x = 5 to be a linear equation in two variables1 by identifying
a1 = 1, a2 = 0, and c = 5. If a1 and a2 are both 0, then depending on c, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If c = 0, then we get 0 = 0, which is always true. If c 6= 0, then we’d have
0 6= 0, which is never true.) Even though identities and contradictions have a large role to play

1Critics may argue that x = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.



550 Systems of Equations and Matrices

in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are x2 +y = 1, xy = 5 and
e2x + ln(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 1.2 and 2.1, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

1.

{
2x− y = 1

y = 3
2.

{
3x+ 4y = −2
−3x− y = 5

3.

{
x
3 −

4y
5 = 7

5
2x
9 + y

3 = 1
2

4.

{
2x− 4y = 6
3x− 6y = 9

5.

{
6x+ 3y = 9
4x+ 2y = 12

6.


x− y = 0
x+ y = 2

−2x+ y = −2

Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2x − 3 = 1, so that x = 2. Our solution to the system is (2, 3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) − 3 = 1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x− y = 1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3x+ 4y = −2

+ (−3x− y = 5)

3y = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say −3x−y = 5,
to get −3x− 1 = 5 so that x = −2. Our solution is (−2, 1). Substituting x = −2 and y = 1
into the first equation gives 3(−2) + 4(1) = −2, which is true, and, likewise, when we check
(−2, 1) in the second equation, we get −3(−2)− 1 = 5, which is also true. Geometrically, the
lines 3x+ 4y = −2 and −3x− y = 5 intersect at (−2, 1).
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(2, 3)

x

y

−1 1 2 3 4

1

2

4

2x− y = 1
y = 3

(−2, 1)

x

y

−4 −3 −2 −1

−2

−1

1

2

3x+ 4y = −2
−3x− y = 5

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system{

5x− 12y = 21
4x+ 6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by −5, we will be in a position to
eliminate the x term

20x− 48y = 84

+ (−20x− 30y = −45)

−78y = 39

From this we get y = −1
2 . We can temporarily avoid too much unpleasantness by choosing to

substitute y = −1
2 into one of the equivalent equations we found by clearing denominators,

say into 5x − 12y = 21. We get 5x + 6 = 21 which gives x = 3. Our answer is
(
3,−1

2

)
.

At this point, we have no choice − in order to check an answer algebraically, we must see
if the answer satisfies both of the original equations, so we substitute x = 3 and y = −1

2

into both x
3 −

4y
5 = 7

5 and 2x
9 + y

3 = 1
2 . We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of

(
3,−1

2

)
.

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and both sides of the second equation by −2, we are ready to eliminate
the x



552 Systems of Equations and Matrices

6x− 12y = 18

+ (−6x+ 12y = −18)

0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x, y) satisfies the equation 2x − 4y = 6, it automatically satisfies the equation
3x− 6y = 9. One way to describe the solution set to this system is to use the roster method2

and write {(x, y) | 2x − 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2x − 4y = 6
for one of the variables, say y = 1

2x −
3
2 . For each value of x, the formula y = 1

2x −
3
2

determines the corresponding y-value of a solution. Since we have no restriction on x, it is
called a free variable. We let x = t, a so-called ‘parameter’, and get y = 1

2 t −
3
2 . Our

set of solutions can then be described as
{(
t, 1

2 t−
3
2

)
| −∞ < t <∞

}
.3 For specific values

of t, we can generate solutions. For example, t = 0 gives us the solution
(
0,−3

2

)
; t = 117

gives us (117, 57), and while we can readily check each of these particular solutions satisfy
both equations, the question is how do we check our general answer algebraically? Same as
always. We claim that for any real number t, the pair

(
t, 1

2 t−
3
2

)
satisfies both equations.

Substituting x = t and y = 1
2 t −

3
2 into 2x − 4y = 6 gives 2t − 4

(
1
2 t−

3
2

)
= 6. Simplifying,

we get 2t− 2t+ 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3x− 6y = 9, we get 3t− 6

(
1
2 t−

3
2

)
= 9 which reduces to 3t− 3t + 9 = 9, so it

checks out, too. Geometrically, 2x− 4y = 6 and 3x− 6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about
how our parametric solution says exactly that.

(
3,− 1

2

) x

y

−1 1 2 4 5 6 7

−4

−3

−2

−1

1

x
3
− 4y

5
= 7

5
2x
9

+ y
3

= 1
2

x

y

1 2 3 4

−1

1

2

2x− 4y = 6
3x− 6y = 9
(Same line.)

2See Section 1.2 for a review of this.
3Note that we could have just as easily chosen to solve 2x− 4y = 6 for x to obtain x = 2y + 3. Letting y be the

parameter t, we have that for any value of t, x = 2t + 3, which gives {(2t + 3, t) | − ∞ < t < ∞}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by −3, we set the stage to eliminate x

12x+ 6y = 18

+ (−12x− 6y = −36)

0 = −18

As in the previous example, both x and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = −18. This tells us that it is impossible to find a pair (x, y)
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 6x+ 3y = 9 and 4x+ 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

x− y = 0

+ (x+ y = 2)

2x = 2

which gives x = 1. Substituting this into the first equation gives 1 − y = 0 so that y = 1.
We seem to have determined a solution to our system, (1, 1). While this checks in the
first two equations, when we substitute x = 1 and y = 1 into the third equation, we get
−2(1)+(1) = −2 which simplifies to the contradiction −1 = −2. Graphing the lines x−y = 0,
x + y = 2, and −2x + y = −2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

x

y

1 2

−3
−2
−1

1
2
3
4
5
6

6x+ 3y = 9
4x+ 2y = 12

x

y

−1

1

y − x = 0
y + x = 2

−2x+ y = −2

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
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consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.4 Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.5 The system in 6 above is called overdetermined, since we have more
equations than variables.6 Not surprisingly, a system with more variables than equations is called
underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,7 but a consistent
underdetermined system of linear equations is necessarily dependent.8

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, x1, x2, . . . , xn, is an equation of the form
a1x1 + a2x2 + . . .+ anxn = c where a1, a2, . . . an and c are real numbers and at least one of a1,
a2, . . . , an is nonzero.

Instead of using more familiar variables like x, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3x1−x2 = 4 represents the same relationship
between the variables x1 and x2 as the equation 3x − y = 4 does between the variables x and y.
In addition, just as we cannot combine the terms in the expression 3x− y, we cannot combine the
terms in the expression 3x1 − x2. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.9

4In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

5The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems – they describe the type of solu-
tions. Is there a free variable (dependent) or not (independent)?

6If we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

7We need more than two variables to give an example of the latter.
8Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.
9That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

� Interchange the position of any two equations.

� Replace an equation with a nonzero multiple of itself.a

� Replace an equation with itself plus a nonzero multiple of another equation.

aThat is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved the
systems in Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations


x− 1

3y + 1
2z = 1

y − 1
2z = 4

z = −1

Clearly z = −1, and we substitute this into the second equation y − 1
2(−1) = 4 to obtain y = 7

2 .
Finally, we substitute y = 7

2 and z = −1 into the first equation to get x − 1
3

(
7
2

)
+ 1

2(−1) = 1,
so that x = 8

3 . The reader can verify that these values of x, y and z satisfy all three original
equations. It is tempting for us to write the solution to this system by extending the usual (x, y)
notation to (x, y, z) and list our solution as

(
8
3 ,

7
2 ,−1

)
. The question quickly becomes what does

an ‘ordered triple’ like
(

8
3 ,

7
2 ,−1

)
represent? Just as ordered pairs are used to locate points on the

two-dimensional plane, ordered triples can be used to locate points in space.10 Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,11

so our intersection point is where all three of these lines meet.

10You were asked to think about this in Exercise 40 in Section 1.1.
11In fact, these lines are described by the parametric solutions to the systems formed by taking any two of these

equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

x− 1
3y + 1

2z = 1

y − 1
2z = 4

z = −1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x1, x2, . . .xn is said to be in
triangular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.

2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variablesa cannot be placed above an equation with variables.

anecessarily an identity or contradiction
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In our previous system, if we make the obvious choices x = x1, y = x2, and z = x3, we see that the
system is in triangular form.12 An example of a more complicated system in triangular form is

x1 − 4x3 + x4 − x6 = 6
x2 + 2x3 = 1

x4 + 3x5 − x6 = 8
x5 + 9x6 = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

1.


3x− y + z = 3

2x− 4y + 3z = 16
x− y + z = 5

2.


2x+ 3y − z = 1

10x− z = 2
4x− 9y + 2z = 5

3.


3x1 + x2 + x4 = 6
2x1 + x2 − x3 = 4
x2 − 3x3 − 2x4 = 0

Solution.

1. For definitiveness, we label the topmost equation in the system E1, the equation beneath that
E2, and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with x, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange E1 and E3.


(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

To satisfy Definition 8.3, we need to eliminate the x’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by −2 then add; to eliminate the x from E3, we need to
multiply E1 by −3 then add. Applying the third move listed in Theorem 8.1 twice, we get


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

Replace E2 with −2E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −3E1 + E3


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

12If letters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem
8.1 and replace E2 with itself times −1

2 .


(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

Replace E2 with − 1
2
E2

−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

To eliminate the y in E3, we add −2E2 to it.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

Replace E3 with −2E2 + E3−−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Finally, we apply the second move from Theorem 8.1 one last time and multiply E3 by −1
to satisfy the conditions of Definition 8.3 for the variable z.


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Replace E3 with −1E3−−−−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y − 3 = −3 so that y = 0.
With y = 0 and z = 6, E1 becomes x − 0 + 6 = 5, or x = −1. Our solution is (−1, 0, 6).
We leave it to the reader to check that substituting the respective values for x, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

2. Proceeding as we did in 1, our first step is to get an equation with x in the E1 position with
1 as its coefficient. Since there is no easy fix, we multiply E1 by 1

2 .


(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E1 with 1
2
E1

−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Now it’s time to take care of the x’s in E2 and E3.


(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have


(E1) x+ 3

2y −
1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

Replace E2 with − 1
15
E2

−−−−−−−−−−−−−−−→


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Finally, we rid E3 of y.


(E1) x+ 3

2y −
1
2z = 1

2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Replace E3 with 15E2 + E3−−−−−−−−−−−−−−−−−→


(E1) x− y + z = 5

(E2) y − 1
2z = −3

(E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying E1 by 1
3 to get a coefficient of 1 on x1.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Next we eliminate x1 from E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4

(E3) x2 − 3x3 − 2x4 = 0

Replace E2−−−−−−−−−−→
with −2E1 + E2


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

We switch E2 and E3 to get a coefficient of 1 for x2.


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

Switch E2 and E3−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Finally, we eliminate x2 in E3.
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
(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Replace E3−−−−−−−−−−→
with − 1

3
E2 + E3


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 0 = 0

Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x3

or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting x3 = s and x4 = t and obtain from E2
that x2 = 3s + 2t. Substituting this and x4 = t into E1, we have x1 + 1

3 (3s+ 2t) + 1
3 t = 2

which gives x1 = 2−s− t. Our solution is the set {(2−s− t, 2s+3t, s, t) | −∞ < s, t <∞}.13

We leave it to the reader to verify that the substitutions x1 = 2− s− t, x2 = 3s+ 2t, x3 = s
and x4 = t satisfy the equations in the original system.

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

(E1) x+ 3
2y −

1
2z = 1

2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

that equations E2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.7. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we’ll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

13Here, any choice of s and t will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution + amount of water = 500 mL

Using our defined variables, this reduces to x+ y +w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200 mL

The amount of acid in x mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30x+ 0.90y = 200. Converting to fractions,14 our system of equations becomes{

x+ y + w = 500
3
10x+ 9

10y = 200

We first eliminate the x from the second equation

{
(E1) x+ y + w = 500
(E2) 3

10x+ 9
10y = 200

Replace E2 with − 3
10
E1 + E2

−−−−−−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Next, we get a coefficient of 1 on the leading variable in E2{
(E1) x+ y + w = 500
(E2) 3

5y −
3
10w = 50

Replace E2 with 5
3
E2

−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) y − 1

2w = 250
3

Notice that we have no equation to determine w, and as such, w is free. We set w = t and from E2
get y = 1

2 t+ 250
3 . Substituting into E1 gives x+

(
1
2 t+ 250

3

)
+ t = 500 so that x = −3

2 t+ 1250
3 . This

system is consistent, dependent and its solution set is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
| − ∞ < t < ∞}.

While this answer checks algebraically, we have neglected to take into account that x, y and w,
being amounts of acid and water, need to be nonnegative. That is, x ≥ 0, y ≥ 0 and w ≥ 0. The
constraint x ≥ 0 gives us −3

2 t+ 1250
3 ≥ 0, or t ≤ 2500

9 . From y ≥ 0, we get 1
2 t+ 250

3 ≥ 0 or t ≥ −500
3 .

The condition z ≥ 0 yields t ≥ 0, and we see that when we take the set theoretic intersection of
these intervals, we get 0 ≤ t ≤ 2500

9 . Our final answer is {
(
−3

2 t+ 1250
3 , 1

2 t+ 250
3 , t

)
| 0 ≤ t ≤ 2500

9 }.
Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that 1

2 t + 250
3 = 100, and we get t = 100

3 . This means the amount of 30% solution required is
x = −3

2 t + 1250
3 = −3

2

(
100
3

)
+ 1250

3 = 1100
3 mL, and for the water, w = t = 100

3 mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required
40% acid mix.

14We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 Exercises

(Review Exercises) In Exercises 1 - 8, take a trip down memory lane and solve the given system
using substitution and/or elimination. Classify each system as consistent independent, consistent
dependent, or inconsistent. Check your answers both algebraically and graphically.

1.

{
x+ 2y = 5

x = 6
2.

{
2y − 3x = 1

y = −3

3.

{
x+2y

4 = −5

3x−y
2 = 1

4.

{
2
3x−

1
5y = 3

1
2x+ 3

4y = 1

5.

{
1
2x−

1
3y = −1

2y − 3x = 6
6.

{
x+ 4y = 6

1
12x+ 1

3y = 1
2

7.

{
3y − 3

2x = −15
2

1
2x− y = 3

2

8.

{
5
6x+ 5

3y = −7
3

−10
3 x−

20
3 y = 10

In Exercises 9 - 26, put each system of linear equations into triangular form and solve the system
if possible. Classify each system as consistent independent, consistent dependent, or inconsistent.

9.

{
−5x+ y = 17
x+ y = 5 10.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

11.


4x− y + z = 5

2y + 6z = 30
x+ z = 5

12.


4x− y + z = 5

2y + 6z = 30
x+ z = 6

13.

{
x+ y + z = −17
y − 3z = 0 14.


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

15.


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

16.


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

17.


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

18.


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3

19.


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

20.


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2
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21.


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

22.


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

23.


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

24.


2x1 + x2 − 12x3 − x4 = 16
−x1 + x2 + 12x3 − 4x4 = −5
3x1 + 2x2 − 16x3 − 3x4 = 25

x1 + 2x2 − 5x4 = 11

25.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

26.


x1 − x2 − 5x3 + 3x4 = −1
x1 + x2 + 5x3 − 3x4 = 0

x2 + 5x3 − 3x4 = 1
x1 − 2x2 − 10x3 + 6x4 = −1

27. Find two other forms of the parametric solution to Exercise 11 above by reorganizing the
equations so that x or y can be the free variable.

28. A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

29. At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

30. Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

31. A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

32. At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

33. Discuss with your classmates how you would approach Exercise 32 above if they needed to
use up a pound of Type I tea to make room on the shelf for a new canister.

34. If you were to try to make 100 mL of a 60% acid solution using stock solutions at 20% and
40%, respectively, what would the triangular form of the resulting system look like? Explain.
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8.1.2 Answers

1. Consistent independent
Solution

(
6,−1

2

) 2. Consistent independent
Solution

(
−7

3 ,−3
)

3. Consistent independent
Solution

(
−16

7 ,−
62
7

) 4. Consistent independent
Solution

(
49
12 ,−

25
18

)
5. Consistent dependent

Solution
(
t, 3

2 t+ 3
)

for all real numbers t

6. Consistent dependent
Solution (6− 4t, t)
for all real numbers t

7. Inconsistent
No solution

8. Inconsistent
No solution

Because triangular form is not unique, we give only one possible answer to that part of the question.
Yours may be different and still be correct.

9.

{
x+ y = 5

y = 7
Consistent independent
Solution (−2, 7)

10.


x− 5

3y −
7
3z = −7

3

y + 5
4z = 2
z = 0

Consistent independent
Solution (1, 2, 0)

11.


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 0

Consistent dependent
Solution (−t+ 5,−3t+ 15, t)
for all real numbers t

12.


x− 1

4y + 1
4z = 5

4

y + 3z = 15
0 = 1

Inconsistent
No solution

13.

{
x+ y + z = −17
y − 3z = 0

Consistent dependent
Solution (−4t− 17, 3t, t)
for all real numbers t

14.


x− 2y + 3z = 7

y − 11
5 z = −16

5
z = 1

Consistent independent
Solution (2,−1, 1)
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15.


x+ y + 2z = 0

y − 3
2z = 6
z = −2

Consistent independent
Solution (1, 3,−2)

16.


x− 1

2y + 1
2z = −1

2

y + 3
5z = 3

5
0 = 1

Inconsistent
no solution

17.


x− y + z = −4
y − 7z = 17

z = −2

Consistent independent
Solution (1, 3,−2)

18.


x− 2y + 2z = −2

y = 1
2

z = 1

Consistent independent
Solution

(
−3, 1

2 , 1
)

19.


x− 1

2y + 1
2z = 1

2

y − 2
3z = 0
z = 1

Consistent independent
Solution

(
1
3 ,

2
3 , 1
)

20.


x− 3y − 4z = 3

y + 11
13z = 4

13
0 = 0

Consistent dependent
Solution

(
19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

21.


x+ y + z = 4
y + 1

2z = 3
2

0 = 1

Inconsistent
no solution

22.


x− y + z = 8
y − 2z = −5

z = 1

Consistent independent
Solution (4,−3, 1)

23.


x− 3

2y + 1
2z = −1

2

y + z = −11
2

0 = 0

Consistent dependent
Solution

(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t

24.


x1 + 2

3x2 − 16
3 x3 − x4 = 25

3

x2 + 4x3 − 3x4 = 2
0 = 0
0 = 0

Consistent dependent
Solution (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

25.


x1 − x3 = −2

x2 − 1
2x4 = 0

x3 − 1
2x4 = 1

x4 = 4

Consistent independent
Solution (1, 2, 3, 4)
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26.


x1 − x2 − 5x3 + 3x4 = −1

x2 + 5x3 − 3x4 = 1
2

0 = 1
0 = 0

Inconsistent
No solution

27. If x is the free variable then the solution is (t, 3t,−t+ 5) and if y is the free variable then the
solution is

(
1
3 t, t,−

1
3 t+ 5

)
.

28. 13 chose the basic buffet and 14 chose the deluxe buffet.

29. Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.

30. Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

31. 22.5 gallons of the 10% solution and 52.5 gallons of pure water.

32. 4
3 −

1
2 t pounds of Type I, 2

3 −
1
2 t pounds of Type II and t pounds of Type III where 0 ≤ t ≤ 4

3 .
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8.2 Systems of Linear Equations: Augmented Matrices

In Section 8.1 we introduced Gaussian Elimination as a means of transforming a system of linear
equations into triangular form with the ultimate goal of producing an equivalent system of linear
equations which is easier to solve. If we take a step back and study the process, we see that all of
our moves are determined entirely by the coefficients of the variables involved, and not the variables
themselves. Much the same thing happened when we studied long division in Section 3.2. Just as
we developed synthetic division to streamline that process, in this section, we introduce a similar
bookkeeping device to help us solve systems of linear equations. To that end, we define a matrix
as a rectangular array of real numbers. We typically enclose matrices with square brackets, ‘[ ’ and
‘ ]’, and we size matrices by the number of rows and columns they have. For example, the size
(sometimes called the dimension) of [

3 0 −1
2 −5 10

]
is 2 × 3 because it has 2 rows and 3 columns. The individual numbers in a matrix are called its
entries and are usually labeled with double subscripts: the first tells which row the element is in
and the second tells which column it is in. The rows are numbered from top to bottom and the
columns are numbered from left to right. Matrices themselves are usually denoted by uppercase
letters (A, B, C, etc.) while their entries are usually denoted by the corresponding letter. So, for
instance, if we have

A =

[
3 0 −1
2 −5 10

]
then a11 = 3, a12 = 0, a13 = −1, a21 = 2, a22 = −5, and a23 = 10. We shall explore matrices as
mathematical objects with their own algebra in Section 8.3 and introduce them here solely as a
bookkeeping device. Consider the system of linear equations from number 2 in Example 8.1.2

(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

We encode this system into a matrix by assigning each equation to a corresponding row. Within
that row, each variable and the constant gets its own column, and to separate the variables on the
left hand side of the equation from the constants on the right hand side, we use a vertical bar, |.
Note that in E2, since y is not present, we record its coefficient as 0. The matrix associated with
this system is

x y z c
(E1)→
(E2)→
(E3)→

 2 3 −1 1
10 0 −1 2
4 −9 2 5


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This matrix is called an augmented matrix because the column containing the constants is
appended to the matrix containing the coefficients.1 To solve this system, we can use the same
kind operations on the rows of the matrix that we performed on the equations of the system. More
specifically, we have the following analog of Theorem 8.1 below.

Theorem 8.2. Row Operations: Given an augmented matrix for a system of linear equations,
the following row operations produce an augmented matrix which corresponds to an equivalent
system of linear equations.

� Interchange any two rows.

� Replace a row with a nonzero multiple of itself.a

� Replace a row with itself plus a nonzero multiple of another row.b

aThat is, the row obtained by multiplying each entry in the row by the same nonzero number.
bWhere we add entries in corresponding columns.

As a demonstration of the moves in Theorem 8.2, we revisit some of the steps that were used in
solving the systems of linear equations in Example 8.1.2 of Section 8.1. The reader is encouraged to
perform the indicated operations on the rows of the augmented matrix to see that the machinations
are identical to what is done to the coefficients of the variables in the equations. We first see a
demonstration of switching two rows using the first step of part 1 in Example 8.1.2.

(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→


(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3 3 −1 1 3

2 −4 3 16
1 −1 1 5

 Switch R1 and R3−−−−−−−−−−−→

 1 −1 1 5
2 −4 3 16
3 −1 1 3


Next, we have a demonstration of replacing a row with a nonzero multiple of itself using the first
step of part 3 in Example 8.1.2.


(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1

−−−−−−−−−−−−−→


(E1) x1 + 1

3x2 + 1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0 3 1 0 1 6

2 1 −1 0 4
0 1 −3 −2 0

 Replace R1 with 1
3
R1

−−−−−−−−−−−−−→

 1 1
3 0 1

3 2
2 1 −1 0 4
0 1 −3 −2 0


Finally, we have an example of replacing a row with itself plus a multiple of another row using the
second step from part 2 in Example 8.1.2.

1We shall study the coefficient and constant matrices separately in Section 8.3.
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
(E1) x+ 3

2y −
1
2z = 1

2
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3


(E1) x+ 3

2y −
1
2z = 1

2
(E2) −15y + 4z = −3
(E3) −15y + 4z = 3 1 3

2 −1
2

1
2

10 0 −1 2
4 −9 2 5

 Replace R2 with −10R1 +R2−−−−−−−−−−−−−−−−−−→
Replace R3 with −4R1 +R3

 1 3
2 −1

2
1
2

0 −15 4 −3
0 −15 4 3


The matrix equivalent of ‘triangular form’ is row echelon form. The reader is encouraged to
refer to Definition 8.3 for comparison. Note that the analog of ‘leading variable’ of an equation
is ‘leading entry’ of a row. Specifically, the first nonzero entry (if it exists) in a row is called the
leading entry of that row.

Definition 8.4. A matrix is said to be in row echelon form provided all of the following
conditions hold:

1. The first nonzero entry in each row is 1.

2. The leading 1 of a given row must be to the right of the leading 1 of the row above it.

3. Any row of all zeros cannot be placed above a row with nonzero entries.

To solve a system of a linear equations using an augmented matrix, we encode the system into an
augmented matrix and apply Gaussian Elimination to the rows to get the matrix into row-echelon
form. We then decode the matrix and back substitute. The next example illustrates this nicely.

Example 8.2.1. Use an augmented matrix to transform the following system of linear equations
into triangular form. Solve the system.

3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Solution. We first encode the system into an augmented matrix.
3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

Encode into the matrix−−−−−−−−−−−−−−→

 3 −1 1 8
1 2 −1 4
2 3 −4 10


Thinking back to Gaussian Elimination at an equations level, our first order of business is to get x
in E1 with a coefficient of 1. At the matrix level, this means getting a leading 1 in R1. This is in
accordance with the first criteria in Definition 8.4. To that end, we interchange R1 and R2. 3 −1 1 8

1 2 −1 4
2 3 −4 10

 Switch R1 and R2−−−−−−−−−−−→

 1 2 −1 4
3 −1 1 8
2 3 −4 10


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Our next step is to eliminate the x’s from E2 and E3. From a matrix standpoint, this means we
need 0’s below the leading 1 in R1. This guarantees the leading 1 in R2 will be to the right of the
leading 1 in R1 in accordance with the second requirement of Definition 8.4. 1 2 −1 4

3 −1 1 8
2 3 −4 10

 Replace R2 with −3R1 +R2−−−−−−−−−−−−−−−−−→
Replace R3 with −2R1 +R3

 1 2 −1 4
0 −7 4 −4
0 −1 −2 2


Now we repeat the above process for the variable y which means we need to get the leading entry
in R2 to be 1.  1 2 −1 4

0 −7 4 −4
0 −1 −2 2

 Replace R2 with − 1
7
R2

−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 −1 −2 2


To guarantee the leading 1 in R3 is to the right of the leading 1 in R2, we get a 0 in the second
column of R3.  1 2 −1 4

0 1 −4
7

4
7

0 −1 −2 2

 Replace R3 with R2 +R3−−−−−−−−−−−−−−−−→

 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7


Finally, we get the leading entry in R3 to be 1. 1 2 −1 4

0 1 −4
7

4
7

0 0 −18
7

18
7

 Replace R3 with − 7
18
R3

−−−−−−−−−−−−−−−→

 1 2 −1 4
0 1 −4

7
4
7

0 0 1 −1


Decoding from the matrix gives a system in triangular form 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x+ 2y − z = 4

y − 4
7z = 4

7
z = −1

We get z = −1, y = 4
7z + 4

7 = 4
7(−1) + 4

7 = 0 and x = −2y + z + 4 = −2(0) + (−1) + 4 = 3 for a
final answer of (3, 0,−1). We leave it to the reader to check.

As part of Gaussian Elimination, we used row operations to obtain 0’s beneath each leading 1 to
put the matrix into row echelon form. If we also require that 0’s are the only numbers above a
leading 1, we have what is known as the reduced row echelon form of the matrix.

Definition 8.5. A matrix is said to be in reduced row echelon form provided both of the
following conditions hold:

1. The matrix is in row echelon form.

2. The leading 1s are the only nonzero entry in their respective columns.
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Of what significance is the reduced row echelon form of a matrix? To illustrate, let’s take the row
echelon form from Example 8.2.1 and perform the necessary steps to put into reduced row echelon
form. We start by using the leading 1 in R3 to zero out the numbers in the rows above it. 1 2 −1 4

0 1 −4
7

4
7

0 0 1 −1

 Replace R1 with R3 +R1−−−−−−−−−−−−−−−−−→
Replace R2 with 4

7
R3 +R2

 1 2 0 3
0 1 0 0
0 0 1 −1


Finally, we take care of the 2 in R1 above the leading 1 in R2. 1 2 0 3

0 1 0 0
0 0 1 −1

 Replace R1 with −2R2 +R1−−−−−−−−−−−−−−−−−→

 1 0 0 3
0 1 0 0
0 0 1 −1


To our surprise and delight, when we decode this matrix, we obtain the solution instantly without
having to deal with any back-substitution at all. 1 0 0 3

0 1 0 0
0 0 1 −1

 Decode from the matrix−−−−−−−−−−−−−−→


x = 3
y = 0
z = −1

Note that in the previous discussion, we could have started with R2 and used it to get a zero above
its leading 1 and then done the same for the leading 1 in R3. By starting with R3, however, we get
more zeros first, and the more zeros there are, the faster the remaining calculations will be.2 It is
also worth noting that while a matrix has several3 row echelon forms, it has only one reduced row
echelon form. The process by which we have put a matrix into reduced row echelon form is called
Gauss-Jordan Elimination.

Example 8.2.2. Solve the following system using an augmented matrix. Use Gauss-Jordan Elim-
ination to put the augmented matrix into reduced row echelon form.

x2 − 3x1 + x4 = 2
2x1 + 4x3 = 5
4x2 − x4 = 3

Solution. We first encode the system into a matrix. (Pay attention to the subscripts!)
x2 − 3x1 + x4 = 2

2x1 + 4x3 = 5
4x2 − x4 = 3

Encode into the matrix−−−−−−−−−−−−−−→

 −3 1 0 1 2
2 0 4 0 5
0 4 0 −1 3


Next, we get a leading 1 in the first column of R1. −3 1 0 1 2

2 0 4 0 5
0 4 0 −1 3

 Replace R1 with − 1
3
R1

−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3


2Carl also finds starting with R3 to be more symmetric, in a purely poetic way.
3infinite, in fact
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Now we eliminate the nonzero entry below our leading 1. 1 −1
3 0 −1

3 −2
3

2 0 4 0 5
0 4 0 −1 3

 Replace R2 with −2R1 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 2
3 4 2

3
19
3

0 4 0 −1 3


We proceed to get a leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 2
3 4 2

3
19
3

0 4 0 −1 3

 Replace R2 with 3
2
R2

−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 4 0 −1 3


We now zero out the entry below the leading 1 in R2. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 4 0 −1 3

 Replace R3 with −4R2 +R3−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 −24 −5 −35


Next, it’s time for a leading 1 in R3. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 −24 −5 −35

 Replace R3 with − 1
24
R3

−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 6 1 19
2

0 0 1 5
24

35
24


The matrix is now in row echelon form. To get the reduced row echelon form, we start with the
last leading 1 we produced and work to get 0’s above it. 1 −1

3 0 −1
3 −2

3

0 1 6 1 19
2

0 0 1 5
24

35
24

 Replace R2 with −6R3 +R2−−−−−−−−−−−−−−−−−→

 1 −1
3 0 −1

3 −2
3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


Lastly, we get a 0 above the leading 1 of R2. 1 −1

3 0 −1
3 −2

3

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Replace R1 with 1
3
R2 +R1

−−−−−−−−−−−−−−−−−→

 1 0 0 − 5
12 − 5

12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24


At last, we decode to get 1 0 0 − 5

12 − 5
12

0 1 0 −1
4

3
4

0 0 1 5
24

35
24

 Decode from the matrix−−−−−−−−−−−−−−→


x1 − 5

12x4 = − 5
12

x2 − 1
4x4 = 3

4

x3 + 5
24x4 = 35

24

We have that x4 is free and we assign it the parameter t. We obtain x3 = − 5
24 t+ 35

24 , x2 = 1
4 t+ 3

4 ,
and x1 = 5

12 t−
5
12 . Our solution is

{(
5
12 t−

5
12 ,

1
4 t+ 3

4 ,−
5
24 t+ 35

24 , t
)

: −∞ < t <∞
}

and leave it to
the reader to check.
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Like all good algorithms, putting a matrix in row echelon or reduced row echelon form can easily
be programmed into a calculator, and, doubtless, your graphing calculator has such a feature. We
use this in our next example.

Example 8.2.3. Find the quadratic function passing through the points (−1, 3), (2, 4), (5,−2).

Solution. According to Definition 2.5, a quadratic function has the form f(x) = ax2 +bx+c where
a 6= 0. Our goal is to find a, b and c so that the three given points are on the graph of f . If (−1, 3)
is on the graph of f , then f(−1) = 3, or a(−1)2 + b(−1) + c = 3 which reduces to a − b + c = 3,
an honest-to-goodness linear equation with the variables a, b and c. Since the point (2, 4) is also
on the graph of f , then f(2) = 4 which gives us the equation 4a + 2b + c = 4. Lastly, the point
(5,−2) is on the graph of f gives us 25a+ 5b+ c = −2. Putting these together, we obtain a system
of three linear equations. Encoding this into an augmented matrix produces

a− b+ c = 3
4a+ 2b+ c = 4

25a+ 5b+ c = −2

Encode into the matrix−−−−−−−−−−−−−−→

 1 −1 1 3
4 2 1 4

25 5 1 −2


Using a calculator,4 we find a = − 7

18 , b = 13
18 and c = 37

9 . Hence, the one and only quadratic which
fits the bill is f(x) = − 7

18x
2 + 13

18x+ 37
9 . To verify this analytically, we see that f(−1) = 3, f(2) = 4,

and f(5) = −2. We can use the calculator to check our solution as well by plotting the three data
points and the function f .

The graph of f(x) = − 7
18x

2 + 13
18x+ 37

9
with the points (−1, 3), (2, 4) and (5,−2)

4We’ve tortured you enough already with fractions in this exposition!



574 Systems of Equations and Matrices

8.2.1 Exercises

In Exercises 1 - 6, state whether the given matrix is in reduced row echelon form, row echelon form
only or in neither of those forms.

1.

[
1 0 3
0 1 3

]
2.

 3 −1 1 3
2 −4 3 16
1 −1 1 5

 3.

 1 1 4 3
0 1 3 6
0 0 0 1



4.

 1 0 0 0
0 1 0 0
0 0 0 1

 5.

 1 0 4 3 0
0 1 3 6 0
0 0 0 0 0

 6.

[
1 1 4 3
0 1 3 6

]

In Exercises 7 - 12, the following matrices are in reduced row echelon form. Determine the solution
of the corresponding system of linear equations or state that the system is inconsistent.

7.

[
1 0 −2
0 1 7

]
8.

 1 0 0 −3
0 1 0 20
0 0 1 19

 9.

 1 0 0 3 4
0 1 0 6 −6
0 0 1 0 2



10.

 1 0 0 3 0
0 1 2 6 0
0 0 0 0 1


11.


1 0 −8 1 7
0 1 4 −3 2
0 0 0 0 0
0 0 0 0 0

 12.

 1 0 9 −3
0 1 −4 20
0 0 0 0



In Exercises 13 - 26, solve the following systems of linear equations using the techniques discussed
in this section. Compare and contrast these techniques with those you used to solve the systems
in the Exercises in Section 8.1.

13.

{
−5x+ y = 17
x+ y = 5 14.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

15.


4x− y + z = 5

2y + 6z = 30
x+ z = 5

16.


x− 2y + 3z = 7
−3x+ y + 2z = −5

2x+ 2y + z = 3

17.


3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

18.


2x− y + z = −1

4x+ 3y + 5z = 1
5y + 3z = 4

19.


x− y + z = −4

−3x+ 2y + 4z = −5
x− 5y + 2z = −18

20.


2x− 4y + z = −7
x− 2y + 2z = −2
−x+ 4y − 2z = 3
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21.


2x− y + z = 1

2x+ 2y − z = 1
3x+ 6y + 4z = 9

22.


x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2

23.


x+ y + z = 4

2x− 4y − z = −1
x− y = 2

24.


x− y + z = 8

3x+ 3y − 9z = −6
7x− 2y + 5z = 39

25.


2x− 3y + z = −1

4x− 4y + 4z = −13
6x− 5y + 7z = −25

26.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

27. It’s time for another meal at our local buffet. This time, 22 diners (5 of whom were children)
feasted for $162.25, before taxes. If the kids buffet is $4.50, the basic buffet is $7.50, and the
deluxe buffet (with crab legs) is $9.25, find out how many diners chose the deluxe buffet.

28. Carl wants to make a party mix consisting of almonds (which cost $7 per pound), cashews
(which cost $5 per pound), and peanuts (which cost $2 per pound.) If he wants to make a 10
pound mix with a budget of $35, what are the possible combinations almonds, cashews, and
peanuts? (You may find it helpful to review Example 8.1.3 in Section 8.1.)

29. Find the quadratic function passing through the points (−2, 1), (1, 4), (3,−2)

30. At 9 PM, the temperature was 60◦F; at midnight, the temperature was 50◦F; and at 6 AM,
the temperature was 70◦F . Use the technique in Example 8.2.3 to fit a quadratic function
to these data with the temperature, T , measured in degrees Fahrenheit, as the dependent
variable, and the number of hours after 9 PM, t, measured in hours, as the independent
variable. What was the coldest temperature of the night? When did it occur?

31. The price for admission into the Stitz-Zeager Sasquatch Museum and Research Station is $15
for adults and $8 for kids 13 years old and younger. When the Zahlenreich family visits the
museum their bill is $38 and when the Nullsatz family visits their bill is $39. One day both
families went together and took an adult babysitter along to watch the kids and the total
admission charge was $92. Later that summer, the adults from both families went without
the kids and the bill was $45. Is that enough information to determine how many adults
and children are in each family? If not, state whether the resulting system is inconsistent or
consistent dependent. In the latter case, give at least two plausible solutions.

32. Use the technique in Example 8.2.3 to find the line between the points (−3, 4) and (6, 1).
How does your answer compare to the slope-intercept form of the line in Equation 2.3?

33. With the help of your classmates, find at least two different row echelon forms for the matrix[
1 2 3
4 12 8

]
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8.2.2 Answers

1. Reduced row echelon form 2. Neither

3. Row echelon form only 4. Reduced row echelon form

5. Reduced row echelon form 6. Row echelon form only

7. (−2, 7) 8. (−3, 20, 19)

9. (−3t+ 4,−6t− 6, 2, t)
for all real numbers t

10. Inconsistent

11. (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

12. (−9t− 3, 4t+ 20, t)
for all real numbers t

13. (−2, 7) 14. (1, 2, 0)

15. (−t+ 5,−3t+ 15, t)
for all real numbers t

16. (2,−1, 1)

17. (1, 3,−2) 18. Inconsistent

19. (1, 3,−2) 20.
(
−3, 1

2 , 1
)

21.
(

1
3 ,

2
3 , 1
)

22.
(

19
13 t+ 51

13 ,−
11
13 t+ 4

13 , t
)

for all real numbers t

23. Inconsistent 24. (4,−3, 1)

25.
(
−2t− 35

4 ,−t−
11
2 , t
)

for all real numbers t
26. (1, 2, 3, 4)

27. This time, 7 diners chose the deluxe buffet.

28. If t represents the amount (in pounds) of peanuts, then we need 1.5t−7.5 pounds of almonds
and 17.5− 2.5t pounds of cashews. Since we can’t have a negative amount of nuts, 5 ≤ t ≤ 7.

29. f(x) = −4
5x

2 + 1
5x+ 23

5

30. T (t) = 20
27 t

2 − 50
9 t+ 60. Lowest temperature of the evening 595

12 ≈ 49.58◦F at 12:45 AM.
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31. Let x1 and x2 be the numbers of adults and children, respectively, in the Zahlenreich family
and let x3 and x4 be the numbers of adults and children, respectively, in the Nullsatz family.
The system of equations determined by the given information is

15x1 + 8x2 = 38
15x3 + 8x4 = 39

15x1 + 8x2 + 15x3 + 8x4 = 77
15x1 + 15x3 = 45

We subtracted the cost of the babysitter in E3 so the constant is 77, not 92. This system is
consistent dependent and its solution is

(
8
15 t+ 2

5 ,−t+ 4,− 8
15 t+ 13

5 , t
)
. Our variables repre-

sent numbers of adults and children so they must be whole numbers. Running through the
values t = 0, 1, 2, 3, 4 yields only one solution where all four variables are whole numbers;
t = 3 gives us (2, 1, 1, 3). Thus there are 2 adults and 1 child in the Zahlenreichs and 1 adult
and 3 kids in the Nullsatzs.
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8.3 Matrix Arithmetic

In Section 8.2, we used a special class of matrices, the augmented matrices, to assist us in solving
systems of linear equations. In this section, we study matrices as mathematical objects of their
own accord, temporarily divorced from systems of linear equations. To do so conveniently requires
some more notation. When we write A = [aij ]m×n, we mean A is an m by n matrix1 and aij is the
entry found in the ith row and jth column. Schematically, we have

j counts columns

from left to right

−−−−−−−−−−−−−−−→

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn


y

i counts rows

from top to bottom

With this new notation we can define what it means for two matrices to be equal.

Definition 8.6. Matrix Equality: Two matrices are said to be equal if they are the same size
and their corresponding entries are equal. More specifically, if A = [aij ]m×n and B = [bij ]p×r,
we write A = B provided

1. m = p and n = r

2. aij = bij for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

Essentially, two matrices are equal if they are the same size and they have the same numbers in
the same spots.2 For example, the two 2× 3 matrices below are, despite appearances, equal.[

0 −2 9
25 117 −3

]
=

[
ln(1) 3

√
−8 e2 ln(3)

1252/3 32 · 13 log(0.001)

]
Now that we have an agreed upon understanding of what it means for two matrices to equal each
other, we may begin defining arithmetic operations on matrices. Our first operation is addition.

Definition 8.7. Matrix Addition: Given two matrices of the same size, the matrix obtained
by adding the corresponding entries of the two matrices is called the sum of the two matrices.
More specifically, if A = [aij ]m×n and B = [bij ]m×n, we define

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n

As an example, consider the sum below.

1Recall that means A has m rows and n columns.
2Critics may well ask: Why not leave it at that? Why the need for all the notation in Definition 8.6? It is the

authors’ attempt to expose you to the wonderful world of mathematical precision.
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 2 3
4 −1
0 −7

+

 −1 4
−5 −3

8 1

 =

 2 + (−1) 3 + 4
4 + (−5) (−1) + (−3)

0 + 8 (−7) + 1

 =

 1 7
−1 −4

8 −6


It is worth the reader’s time to think what would have happened had we reversed the order of the
summands above. As we would expect, we arrive at the same answer. In general, A+B = B +A
for matrices A and B, provided they are the same size so that the sum is defined in the first place.
This is the commutative property of matrix addition. To see why this is true in general, we
appeal to the definition of matrix addition. Given A = [aij ]m×n and B = [bij ]m×n,

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n = [bij + aij ]m×n = [bij ]m×n + [aij ]m×n = B +A

where the second equality is the definition of A+ B, the third equality holds by the commutative
law of real number addition, and the fourth equality is the definition of B + A. In other words,
matrix addition is commutative because real number addition is. A similar argument shows the
associative property of matrix addition also holds, inherited in turn from the associative law
of real number addition. Specifically, for matrices A, B, and C of the same size, (A + B) + C =
A+ (B+C). In other words, when adding more than two matrices, it doesn’t matter how they are
grouped. This means that we can write A+B +C without parentheses and there is no ambiguity
as to what this means.3 These properties and more are summarized in the following theorem.

Theorem 8.3. Properties of Matrix Addition

� Commutative Property: For all m× n matrices, A+B = B +A

� Associative Property: For all m× n matrices, (A+B) + C = A+ (B + C)

� Identity Property: If 0m×n is the m × n matrix whose entries are all 0, then 0m×n is
called the m× n additive identity and for all m× n matrices A

A+ 0m×n = 0m×n +A = A

� Inverse Property: For every given m × n matrix A, there is a unique matrix denoted
−A called the additive inverse of A such that

A+ (−A) = (−A) +A = 0m×n

The identity property is easily verified by resorting to the definition of matrix addition; just as the
number 0 is the additive identity for real numbers, the matrix comprised of all 0’s does the same
job for matrices. To establish the inverse property, given a matrix A = [aij ]m×n, we are looking
for a matrix B = [bij ]m×n so that A + B = 0m×n. By the definition of matrix addition, we must
have that aij + bij = 0 for all i and j. Solving, we get bij = −aij . Hence, given a matrix A,
its additive inverse, which we call −A, does exist and is unique and, moreover, is given by the
formula: −A = [−aij ]m×n. The long and short of this is: to get the additive inverse of a matrix,

3A technical detail which is sadly lost on most readers.
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take additive inverses of each of its entries. With the concept of additive inverse well in hand, we
may now discuss what is meant by subtracting matrices. You may remember from arithmetic that
a− b = a+ (−b); that is, subtraction is defined as ‘adding the opposite (inverse).’ We extend this
concept to matrices. For two matrices A and B of the same size, we define A−B = A+ (−B). At
the level of entries, this amounts to

A−B = A+ (−B) = [aij ]m×n + [−bij ]m×n = [aij + (−bij)]m×n = [aij − bij ]m×n
Thus to subtract two matrices of equal size, we subtract their corresponding entries. Surprised?

Our next task is to define what it means to multiply a matrix by a real number. Thinking back to
arithmetic, you may recall that multiplication, at least by a natural number, can be thought of as
‘rapid addition.’ For example, 2 + 2 + 2 = 3 · 2. We know from algebra4 that 3x = x+ x+ x, so it
seems natural that given a matrix A, we define 3A = A+A+A. If A = [aij ]m×n, we have

3A = A+A+A = [aij ]m×n + [aij ]m×n + [aij ]m×n = [aij + aij + aij ]m×n = [3aij ]m×n

In other words, multiplying the matrix in this fashion by 3 is the same as multiplying each entry
by 3. This leads us to the following definition.

Definition 8.8. Scalara Multiplication: We define the product of a real number and a
matrix to be the matrix obtained by multiplying each of its entries by said real number. More
specifically, if k is a real number and A = [aij ]m×n, we define

kA = k [aij ]m×n = [kaij ]m×n

aThe word ‘scalar’ here refers to real numbers. ‘Scalar multiplication’ in this context means we are multiplying
a matrix by a real number (a scalar).

One may well wonder why the word ‘scalar’ is used for ‘real number.’ It has everything to do with
‘scaling’ factors.5 A point P (x, y) in the plane can be represented by its position matrix, P :

(x, y)↔ P =

[
x
y

]
Suppose we take the point (−2, 1) and multiply its position matrix by 3. We have

3P = 3

[
−2

1

]
=

[
3(−2)

3(1)

]
=

[
−6

3

]
which corresponds to the point (−6, 3). We can imagine taking (−2, 1) to (−6, 3) in this fashion as
a dilation by a factor of 3 in both the horizontal and vertical directions. Doing this to all points
(x, y) in the plane, therefore, has the effect of magnifying (scaling) the plane by a factor of 3.

4The Distributive Property, in particular.
5See Section 1.7.



8.3 Matrix Arithmetic 581

As did matrix addition, scalar multiplication inherits many properties from real number arithmetic.
Below we summarize these properties.

Theorem 8.4. Properties of Scalar Multiplication

� Associative Property: For every m× n matrix A and scalars k and r, (kr)A = k(rA).

� Identity Property: For all m× n matrices A, 1A = A.

� Additive Inverse Property: For all m× n matrices A, −A = (−1)A.

� Distributive Property of Scalar Multiplication over Scalar Addition: For every
m× n matrix A and scalars k and r,

(k + r)A = kA+ rA

� Distributive Property of Scalar Multiplication over Matrix Addition: For all
m× n matrices A and B scalars k,

k(A+B) = kA+ kB

� Zero Product Property: If A is an m× n matrix and k is a scalar, then

kA = 0m×n if and only if k = 0 or A = 0m×n

As with the other results in this section, Theorem 8.4 can be proved using the definitions of scalar
multiplication and matrix addition. For example, to prove that k(A+B) = kA+ kB for a scalar k
and m× n matrices A and B, we start by adding A and B, then multiplying by k and seeing how
that compares with the sum of kA and kB.

k(A+B) = k
(
[aij ]m×n + [bij ]m×n

)
= k [aij + bij ]m×n = [k (aij + bij)]m×n = [kaij + kbij ]m×n

As for kA+ kB, we have

kA+ kB = k [aij ]m×n + k [bij ]m×n = [kaij ]m×n + [kbij ]m×n = [kaij + kbij ]m×n X

which establishes the property. The remaining properties are left to the reader. The properties in
Theorems 8.3 and 8.4 establish an algebraic system that lets us treat matrices and scalars more or
less as we would real numbers and variables, as the next example illustrates.

Example 8.3.1. Solve for the matrix A: 3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]
using the definitions and properties of matrix arithmetic.
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Solution.

3A−
([

2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

1

3

[
9 12
−3 39

]

3A+

{
−
([

2 −1
3 5

]
+ 5A

)}
=

[
−4 2

6 −2

]
+

[ (
1
3

)
(9)

(
1
3

)
(12)(

1
3

)
(−3)

(
1
3

)
(39)

]

3A+ (−1)

([
2 −1
3 5

]
+ 5A

)
=

[
−4 2

6 −2

]
+

[
3 4
−1 13

]
3A+

{
(−1)

[
2 −1
3 5

]
+ (−1)(5A)

}
=

[
−1 6

5 11

]
3A+ (−1)

[
2 −1
3 5

]
+ (−1)(5A) =

[
−1 6

5 11

]
3A+

[
(−1)(2) (−1)(−1)
(−1)(3) (−1)(5)

]
+ ((−1)(5))A =

[
−1 6

5 11

]
3A+

[
−2 1
−3 −5

]
+ (−5)A =

[
−1 6

5 11

]
3A+ (−5)A+

[
−2 1
−3 −5

]
=

[
−1 6

5 11

]
(3 + (−5))A+

[
−2 1
−3 −5

]
+

(
−
[
−2 1
−3 −5

])
=

[
−1 6

5 11

]
+

(
−
[
−2 1
−3 −5

])
(−2)A+ 02×2 =

[
−1 6

5 11

]
−
[
−2 1
−3 −5

]
(−2)A =

[
−1− (−2) 6− 1

5− (−3) 11− (−5)

]
(−2)A =

[
1 5
8 16

]
(
−1

2

)
((−2)A) = −1

2

[
1 5
8 16

]
((
−1

2

)
(−2)

)
A =

[ (
−1

2

)
(1)

(
−1

2

)
(5)(

−1
2

)
(8)

(
−1

2

)
(16)

]

1A =

[
−1

2 −5
2

−4 −16
2

]

A =

[
−1

2 −5
2

−4 −8

]
The reader is encouraged to check our answer in the original equation.



8.3 Matrix Arithmetic 583

While the solution to the previous example is written in excruciating detail, in practice many of
the steps above are omitted. We have spelled out each step in this example to encourage the reader
to justify each step using the definitions and properties we have established thus far for matrix
arithmetic. The reader is encouraged to solve the equation in Example 8.3.1 as they would any
other linear equation, for example: 3a− (2 + 5a) = −4 + 1

3(9).

We now turn our attention to matrix multiplication - that is, multiplying a matrix by another
matrix. Based on the ‘no surprises’ trend so far in the section, you may expect that in order to
multiply two matrices, they must be of the same size and you find the product by multiplying the
corresponding entries. While this kind of product is used in other areas of mathematics,6 we define
matrix multiplication to serve us in solving systems of linear equations. To that end, we begin by
defining the product of a row and a column. We motivate the general definition with an example.
Consider the two matrices A and B below.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


Let R1 denote the first row of A and C1 denote the first column of B. To find the ‘product’ of R1
with C1, denoted R1 ·C1, we first find the product of the first entry in R1 and the first entry in C1.
Next, we add to that the product of the second entry in R1 and the second entry in C1. Finally,
we take that sum and we add to that the product of the last entry in R1 and the last entry in C1.
Using entry notation, R1·C1 = a11b11 +a12b21 +a13b31 = (2)(3)+(0)(4)+(−1)(5) = 6+0+(−5) = 1.
We can visualize this schematically as follows

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


−−−−−−−−−→
2 0 −1

3
4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3

4
5

y︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3
4

5

y︸ ︷︷ ︸
a11b11 + a12b21 + a13b31

(2)(3) + (0)(4) + (−1)(5)

To find R2 · C3 where R2 denotes the second row of A and C3 denotes the third column of B, we
proceed similarly. We start with finding the product of the first entry of R2 with the first entry in
C3 then add to it the product of the second entry in R2 with the second entry in C3, and so forth.
Using entry notation, we have R2·C3 = a21b13+a22b23+a23b33 = (−10)(2)+(3)(−5)+(5)(−2) = −45.
Schematically,

[
2 0 −1

−10 3 5

] 3 1 2 −8
4 8 −5 9
5 0 −2 −12


6See this article on the Hadamard Product.

http://en.wikipedia.org/wiki/Matrix_multiplication
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−−−−−−−−−→
−10 3 5

2
−5
−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2

−5

−2

y︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2
−5

−2

y︸ ︷︷ ︸
a21b13 = (−10)(2) = −20 + a22b23 = (3)(−5) = −15 + a23b33 = (5)(−2) = −10

Generalizing this process, we have the following definition.

Definition 8.9. Product of a Row and a Column: Suppose A = [aij ]m×n and B = [bij ]n×r.
Let Ri denote the ith row of A and let Cj denote the jth column of B. The product of Ri
and Cj, denoted Ri · Cj is the real number defined by

Ri · Cj = ai1b1j + ai2b2j + . . . ainbnj

Note that in order to multiply a row by a column, the number of entries in the row must match
the number of entries in the column. We are now in the position to define matrix multiplication.

Definition 8.10. Matrix Multiplication: Suppose A = [aij ]m×n and B = [bij ]n×r. Let Ri
denote the ith row of A and let Cj denote the jth column of B. The product of A and B,
denoted AB, is the matrix defined by

AB = [Ri · Cj]m×r

that is

AB =


R1 · C1 R1 · C2 . . . R1 · Cr
R2 · C1 R2 · C2 . . . R2 · Cr

...
...

...
Rm · C1 Rm · C2 . . . Rm · Cr


There are a number of subtleties in Definition 8.10 which warrant closer inspection. First and
foremost, Definition 8.10 tells us that the ij-entry of a matrix product AB is the ith row of A
times the jth column of B. In order for this to be defined, the number of entries in the rows of A
must match the number of entries in the columns of B. This means that the number of columns
of A must match7 the number of rows of B. In other words, to multiply A times B, the second
dimension of A must match the first dimension of B, which is why in Definition 8.10, Am×n is being
multiplied by a matrix Bn×r. Furthermore, the product matrix AB has as many rows as A and as
many columns of B. As a result, when multiplying a matrix Am×n by a matrix Bn×r, the result is
the matrix ABm×r. Returning to our example matrices below, we see that A is a 2× 3 matrix and
B is a 3× 4 matrix. This means that the product matrix AB is defined and will be a 2× 4 matrix.

A =

[
2 0 −1

−10 3 5

]
B =

 3 1 2 −8
4 8 −5 9
5 0 −2 −12


7The reader is encouraged to think this through carefully.
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Using Ri to denote the ith row of A and Cj to denote the jth column of B, we form AB according
to Definition 8.10.

AB =

[
R1 · C1 R1 · C2 R1 · C3 R1 · C4
R2 · C1 R2 · C2 R2 · C3 R2 · C4

]
=

[
1 2 6 −4
7 14 −45 47

]
Note that the product BA is not defined, since B is a 3× 4 matrix while A is a 2× 3 matrix; B has
more columns than A has rows, and so it is not possible to multiply a row of B by a column of A.
Even when the dimensions of A and B are compatible such that AB and BA are both defined, the
product AB and BA aren’t necessarily equal.8 In other words, AB may not equal BA. Although
there is no commutative property of matrix multiplication in general, several other real number
properties are inherited by matrix multiplication, as illustrated in our next theorem.

Theorem 8.5. Properties of Matrix Multiplication Let A, B and C be matrices such that
all of the matrix products below are defined and let k be a real number.

� Associative Property of Matrix Multiplication: (AB)C = A(BC)

� Associative Property with Scalar Multiplication: k(AB) = (kA)B = A(kB)

� Identity Property: For a natural number k, the k× k identity matrix, denoted Ik, is
defined by Ik = [dij ]k×k where

dij =

{
1, if i = j
0, otherwise

For all m× n matrices, ImA = AIn = A.

� Distributive Property of Matrix Multiplication over Matrix Addition:

A(B ± C) = AB ±AC and (A±B)C = AC ±BC

The one property in Theorem 8.5 which begs further investigation is, without doubt, the multi-
plicative identity. The entries in a matrix where i = j comprise what is called the main diagonal
of the matrix. The identity matrix has 1’s along its main diagonal and 0’s everywhere else. A few
examples of the matrix Ik mentioned in Theorem 8.5 are given below. The reader is encouraged to
see how they match the definition of the identity matrix presented there.

[1]

[
1 0
0 1

]  1 0 0
0 1 0
0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


I1 I2 I3 I4

8And may not even have the same dimensions. For example, if A is a 2× 3 matrix and B is a 3× 2 matrix, then
AB is defined and is a 2× 2 matrix while BA is also defined... but is a 3× 3 matrix!
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The identity matrix is an example of what is called a square matrix as it has the same number
of rows as columns. Note that to in order to verify that the identity matrix acts as a multiplicative
identity, some care must be taken depending on the order of the multiplication. For example, take
the matrix 2× 3 matrix A from earlier

A =

[
2 0 −1

−10 3 5

]
In order for the product IkA to be defined, k = 2; similarly, for AIk to be defined, k = 3. We leave
it to the reader to show I2A = A and AI3 = A. In other words,

[
1 0
0 1

] [
2 0 −1

−10 3 5

]
=

[
2 0 −1

−10 3 5

]
and [

2 0 −1
−10 3 5

] 1 0 0
0 1 0
0 0 1

 =

[
2 0 −1

−10 3 5

]

While the proofs of the properties in Theorem 8.5 are computational in nature, the notation becomes
quite involved very quickly, so they are left to a course in Linear Algebra. The following example
provides some practice with matrix multiplication and its properties. As usual, some valuable
lessons are to be learned.

Example 8.3.2.

1. Find AB for A =

[
−23 −1 17

46 2 −34

]
and B =

 −3 2
1 5
−4 3



2. Find C2 − 5C + 10I2 for C =

[
1 −2
3 4

]
3. Suppose M is a 4× 4 matrix. Use Theorem 8.5 to expand (M − 2I4) (M + 3I4).

Solution.

1. We have AB =

[
−23 −1 17

46 2 −34

] −3 2
1 5
−4 3

 =

[
0 0
0 0

]

2. Just as x2 means x times itself, C2 denotes the matrix C times itself. We get
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C2 − 5C + 10I2 =

[
1 −2
3 4

]2

− 5

[
1 −2
3 4

]
+ 10

[
1 0
0 1

]
=

[
1 −2
3 4

] [
1 −2
3 4

]
+

[
−5 10
−15 −20

]
+

[
10 0
0 10

]
=

[
−5 −10
15 10

]
+

[
5 10

−15 −10

]
=

[
0 0
0 0

]
3. We expand (M − 2I4) (M + 3I4) with the same pedantic zeal we showed in Example 8.3.1.

The reader is encouraged to determine which property of matrix arithmetic is used as we
proceed from one step to the next.

(M − 2I4) (M + 3I4) = (M − 2I4)M + (M − 2I4) (3I4)
= MM − (2I4)M +M (3I4)− (2I4) (3I4)
= M2 − 2 (I4M) + 3 (MI4)− 2 (I4 (3I4))
= M2 − 2M + 3M − 2 (3 (I4I4))
= M2 +M − 6I4

Example 8.3.2 illustrates some interesting features of matrix multiplication. First note that in
part 1, neither A nor B is the zero matrix, yet the product AB is the zero matrix. Hence, the
the zero product property enjoyed by real numbers and scalar multiplication does not hold for
matrix multiplication. Parts 2 and 3 introduce us to polynomials involving matrices. The reader is
encouraged to step back and compare our expansion of the matrix product (M − 2I4) (M + 3I4) in
part 3 with the product (x − 2)(x + 3) from real number algebra. The exercises explore this kind
of parallel further.

As we mentioned earlier, a point P (x, y) in the xy-plane can be represented as a 2 × 1 position
matrix. We now show that matrix multiplication can be used to rotate these points, and hence
graphs of equations.

Example 8.3.3. Let R =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]
.

1. Plot P (2,−2), Q(4, 0), S(0, 3), and T (−3,−3) in the plane as well as the points RP , RQ,
RS, and RT . Plot the lines y = x and y = −x as guides. What does R appear to be doing
to these points?

2. If a point P is on the hyperbola x2 − y2 = 4, show that the point RP is on the curve y = 2
x .
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Solution. For P (2,−2), the position matrix is P =

[
2
−2

]
, and

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
2

−2

]

=

[
2
√

2
0

]

We have that R takes (2,−2) to (2
√

2, 0). Similarly, we find (4, 0) is moved to (2
√

2, 2
√

2), (0, 3)

is moved to
(
−3
√

2
2 , 3

√
2

2

)
, and (−3,−3) is moved to (0,−3

√
2). Plotting these in the coordinate

plane along with the lines y = x and y = −x, we see that the matrix R is rotating these points
counterclockwise by 45◦.

P

RP

Q

RQ
S

RS

T

RT

x

y

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

4

For a generic point P (x, y) on the hyperbola x2 − y2 = 4, we have

RP =

[ √
2

2 −
√

2
2√

2
2

√
2

2

][
x

y

]

=

[ √
2

2 x−
√

2
2 y√

2
2 x+

√
2

2 y

]

which means R takes (x, y) to
(√

2
2 x−

√
2

2 y,
√

2
2 x+

√
2

2 y
)

. To show that this point is on the curve

y = 2
x , we replace x with

√
2

2 x−
√

2
2 y and y with

√
2

2 x+
√

2
2 y and simplify.
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y = 2
x√

2
2 x+

√
2

2 y
?
= 2√

2
2
x−
√

2
2
y(√

2
2 x−

√
2

2 y
)(√

2
2 x+

√
2

2 y
)

?
=

(
2

√
2

2 x−
√

2
2 y

)(√
2

2 x−
√

2
2 y
)

(√
2

2 x
)2
−
(√

2
2 y
)2 ?

= 2

x2

2 −
y2

2
?
= 2

x2 − y2 X
= 4

Since (x, y) is on the hyperbola x2 − y2 = 4, we know that this last equation is true. Since all of
our steps are reversible, this last equation is equivalent to our original equation, which establishes
the point is, indeed, on the graph of y = 2

x . This means the graph of y = 2
x is a hyperbola, and it

is none other than the hyperbola x2− y2 = 4 rotated counterclockwise by 45◦.9 Below we have the
graph of x2 − y2 = 4 (solid line) and y = 2

x (dashed line) for comparison.

x

y

−3 −1 1 3 4

−3

−2

−1

1

2

3

4

When we started this section, we mentioned that we would temporarily consider matrices as their
own entities, but that the algebra developed here would ultimately allow us to solve systems of
linear equations. To that end, consider the system

3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

In Section 8.2, we encoded this system into the augmented matrix 3 −1 1 8
1 2 −1 4
2 3 −4 10


9See Section 7.5 for more details.
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Recall that the entries to the left of the vertical line come from the coefficients of the variables in
the system, while those on the right comprise the associated constants. For that reason, we may
form the coefficient matrix A, the unknowns matrix X and the constant matrix B as below

A =

 3 −1 1
1 2 −1
2 3 −4

 X =

 x
y
z

 B =

 8
4

10


We now consider the matrix equation AX = B.

AX = B 3 −1 1
1 2 −1
2 3 −4

 x
y
z

 =

 8
4

10


 3x− y + z

x+ 2y − z
2x+ 3y − 4z

 =

 8
4

10


We see that finding a solution (x, y, z) to the original system corresponds to finding a solution X
for the matrix equation AX = B. If we think about solving the real number equation ax = b, we
would simply ‘divide’ both sides by a. Is it possible to ‘divide’ both sides of the matrix equation
AX = B by the matrix A? This is the central topic of Section 8.4.
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8.3.1 Exercises

For each pair of matrices A and B in Exercises 1 - 7, find the following, if defined

� 3A � −B � A2

� A− 2B � AB � BA

1. A =

[
2 −3
1 4

]
, B =

[
5 −2
4 8

]
2. A =

[
−1 5
−3 6

]
, B =

[
2 10
−7 1

]
3. A =

[
−1 3

5 2

]
, B =

[
7 0 8
−3 1 4

]
4. A =

[
2 4
6 8

]
, B =

[
−1 3 −5

7 −9 11

]

5. A =

 7
8
9

, B =
[

1 2 3
]

6. A =

 1 −2
−3 4

5 −6

, B =
[
−5 1 8

]

7. A =

 2 −3 5
3 1 −2
−7 1 −1

, B =

 1 2 1
17 33 19
10 19 11


In Exercises 8 - 21, use the matrices

A =

[
1 2
3 4

]
B =

[
0 −3
−5 2

]
C =

[
10 −11

2 0
3
5 5 9

]

D =

 7 −13
−4

3 0
6 8

 E =

 1 2 3
0 4 −9
0 0 −5


to compute the following or state that the indicated operation is undefined.

8. 7B − 4A 9. AB 10. BA

11. E +D 12. ED 13. CD + 2I2A

14. A− 4I2 15. A2 −B2 16. (A+B)(A−B)

17. A2 − 5A− 2I2 18. E2 + 5E − 36I3 19. EDC

20. CDE 21. ABCEDI2

22. Let A =

[
a b c
d e f

]
E1 =

[
0 1
1 0

]
E2 =

[
5 0
0 1

]
E3 =

[
1 −2
0 1

]
Compute E1A, E2A and E3A. What effect did each of the Ei matrices have on the rows of
A? Create E4 so that its effect on A is to multiply the bottom row by −6. How would you
extend this idea to matrices with more than two rows?
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In Exercises 23 - 29, consider the following scenario. In the small village of Pedimaxus in the
country of Sasquatchia, all 150 residents get one of the two local newspapers. Market research
has shown that in any given week, 90% of those who subscribe to the Pedimaxus Tribune want to
keep getting it, but 10% want to switch to the Sasquatchia Picayune. Of those who receive the
Picayune, 80% want to continue with it and 20% want switch to the Tribune. We can express this
situation using matrices. Specifically, let X be the ‘state matrix’ given by

X =

[
T
P

]
where T is the number of people who get the Tribune and P is the number of people who get the
Picayune in a given week. Let Q be the ‘transition matrix’ given by

Q =

[
0.90 0.20
0.10 0.80

]
such that QX will be the state matrix for the next week.

23. Let’s assume that when Pedimaxus was founded, all 150 residents got the Tribune. (Let’s
call this Week 0.) This would mean

X =

[
150

0

]
Since 10% of that 150 want to switch to the Picayune, we should have that for Week 1, 135
people get the Tribune and 15 people get the Picayune. Show that QX in this situation is
indeed

QX =

[
135
15

]
24. Assuming that the percentages stay the same, we can get to the subscription numbers for

Week 2 by computing Q2X. How many people get each paper in Week 2?

25. Explain why the transition matrix does what we want it to do.

26. If the conditions do not change from week to week, then Q remains the same and we have
what’s known as a Stochastic Process10 because Week n’s numbers are found by computing
QnX. Choose a few values of n and, with the help of your classmates and calculator, find out
how many people get each paper for that week. You should start to see a pattern as n→∞.

27. If you didn’t see the pattern, we’ll help you out. Let

Xs =

[
100
50

]
.

Show that QXs = Xs This is called the steady state because the number of people who get
each paper didn’t change for the next week. Show that QnX → Xs as n→∞.

10More specifically, we have a Markov Chain, which is a special type of stochastic process.
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28. Now let

S =

[
2
3

2
3

1
3

1
3

]
Show that Qn → S as n→∞.

29. Show that SY = Xs for any matrix Y of the form

Y =

[
y

150− y

]
This means that no matter how the distribution starts in Pedimaxus, if Q is applied often
enough, we always end up with 100 people getting the Tribune and 50 people getting the
Picayune.

30. Let z = a + bi and w = c + di be arbitrary complex numbers. Associate z and w with the
matrices

Z =

[
a b
−b a

]
and W =

[
c d
−d c

]
Show that complex number addition, subtraction and multiplication are mirrored by the
associated matrix arithmetic. That is, show that Z +W , Z −W and ZW produce matrices
which can be associated with the complex numbers z + w, z − w and zw, respectively.

31. Let

A =

[
1 2
3 4

]
and B =

[
0 −3
−5 2

]
Compare (A+ B)2 to A2 + 2AB + B2. Discuss with your classmates what constraints must
be placed on two arbitrary matrices A and B so that both (A+B)2 and A2 +2AB+B2 exist.
When will (A+B)2 = A2 + 2AB+B2? In general, what is the correct formula for (A+B)2?

In Exercises 32 - 36, consider the following definitions. A square matrix is said to be an upper
triangular matrix if all of its entries below the main diagonal are zero and it is said to be a lower
triangular matrix if all of its entries above the main diagonal are zero. For example,

E =

 1 2 3
0 4 −9
0 0 −5


from Exercises 8 - 21 above is an upper triangular matrix whereas

F =

[
1 0
3 0

]
is a lower triangular matrix. (Zeros are allowed on the main diagonal.) Discuss the following
questions with your classmates.
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32. Give an example of a matrix which is neither upper triangular nor lower triangular.

33. Is the product of two n× n upper triangular matrices always upper triangular?

34. Is the product of two n× n lower triangular matrices always lower triangular?

35. Given the matrix

A =

[
1 2
3 4

]
write A as LU where L is a lower triangular matrix and U is an upper triangular matrix?

36. Are there any matrices which are simultaneously upper and lower triangular?
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8.3.2 Answers

1. For A =

[
2 −3
1 4

]
and B =

[
5 −2
4 8

]

� 3A =

[
6 −9
3 12

]
� −B =

[
−5 2
−4 −8

]
� A2 =

[
1 −18
6 13

]

� A− 2B =

[
−8 1
−7 −12

]
� AB =

[
−2 −28
21 30

]
� BA =

[
8 −23

16 20

]

2. For A =

[
−1 5
−3 6

]
and B =

[
2 10
−7 1

]

� 3A =

[
−3 15
−9 18

]
� −B =

[
−2 −10

7 −1

]
� A2 =

[
−14 25
−15 21

]

� A− 2B =

[
−5 −15
11 4

]
� AB =

[
−37 −5
−48 −24

]
� BA =

[
−32 70

4 −29

]

3. For A =

[
−1 3

5 2

]
and B =

[
7 0 8
−3 1 4

]

� 3A =

[
−3 9
15 6

]
� −B =

[
−7 0 −8

3 −1 −4

]
� A2 =

[
16 3
5 19

]

� A− 2B is not defined
� AB =

[
−16 3 4

29 2 48

]
� BA is not defined

4. For A =

[
2 4
6 8

]
and B =

[
−1 3 −5

7 −9 11

]

� 3A =

[
6 12

18 24

]
� −B =

[
1 −3 5
−7 9 −11

]
� A2 =

[
28 40
60 88

]

� A− 2B is not defined
� AB =

[
26 −30 34
50 −54 58

]
� BA is not defined
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5. For A =

 7
8
9

 and B =
[

1 2 3
]

� 3A =

 21
24
27

 � −B =
[
−1 −2 −3

]
� A2 is not defined � A− 2B is not defined

� AB =

 7 14 21
8 16 24
9 18 27

 � BA = [50]

6. For A =

 1 −2
−3 4

5 −6

 and B =
[
−5 1 8

]

� 3A =

 3 −6
−9 12
15 −18

 � −B =
[

5 −1 −8
]

� A2 is not defined � A− 2B is not defined

� AB is not defined � BA =
[

32 −34
]

7. For A =

 2 −3 5
3 1 −2
−7 1 −1

 and B =

 1 2 1
17 33 19
10 19 11



� 3A =

 6 −9 15
9 3 −6

−21 3 −3

 � −B =

 −1 −2 −1
−17 −33 −19
−10 −19 −11



� A2 =

 −40 −4 11
23 −10 15
−4 21 −36

 � A− 2B =

 0 −7 3
−31 −65 −40
−27 −37 −23



� AB =

 1 0 0
0 1 0
0 0 1

 � BA =

 1 0 0
0 1 0
0 0 1


8. 7B − 4A =

[
−4 −29
−47 −2

]
9. AB =

[
−10 1
−20 −1

]
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10. BA =

[
−9 −12

1 −2

]
11. E +D is undefined

12. ED =

 67
3 11

−178
3 −72
−30 −40

 13. CD + 2I2A =

[
238
3 −126

863
15

361
5

]

14. A− 4I2 =

[
−3 2

3 0

]
15. A2 −B2 =

[
−8 16
25 3

]

16. (A+B)(A−B) =

[
−7 3
46 2

]
17. A2 − 5A− 2I2 =

[
0 0
0 0

]

18. E2 + 5E − 36I3 =

 −30 20 −15
0 0 −36
0 0 −36

 19. EDC =

 3449
15 −407

6 99

−9548
15 −101

3 −648
−324 −35 −360


20. CDE is undefined 21. ABCEDI2 =

[
−90749

15 −28867
5

−156601
15 −47033

5

]

22. E1A =

[
d e f
a b c

]
E1 interchanged R1 and R2 of A.

E2A =

[
5a 5b 5c
d e f

]
E2 multiplied R1 of A by 5.

E3A =

[
a− 2d b− 2e c− 2f

d e f

]
E3 replaced R1 in A with R1− 2R2.

E4 =

[
1 0
0 −6

]
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8.4 Systems of Linear Equations: Matrix Inverses

We concluded Section 8.3 by showing how we can rewrite a system of linear equations as the matrix
equation AX = B where A and B are known matrices and the solution matrix X of the equation
corresponds to the solution of the system. In this section, we develop the method for solving such
an equation. To that end, consider the system{

2x− 3y = 16
3x+ 4y = 7

To write this as a matrix equation, we follow the procedure outlined on page 590. We find the
coefficient matrix A, the unknowns matrix X and constant matrix B to be

A =

[
2 −3
3 4

]
X =

[
x
y

]
B =

[
16
7

]
In order to motivate how we solve a matrix equation like AX = B, we revisit solving a similar
equation involving real numbers. Consider the equation 3x = 5. To solve, we simply divide both
sides by 3 and obtain x = 5

3 . How can we go about defining an analogous process for matrices?
To answer this question, we solve 3x = 5 again, but this time, we pay attention to the properties
of real numbers being used at each step. Recall that dividing by 3 is the same as multiplying by
1
3 = 3−1, the so-called multiplicative inverse1 of 3.

3x = 5
3−1(3x) = 3−1(5) Multiply by the (multiplicative) inverse of 3(

3−1 · 3
)
x = 3−1(5) Associative property of multiplication

1 · x = 3−1(5) Inverse property
x = 3−1(5) Multiplicative Identity

If we wish to check our answer, we substitute x = 3−1(5) into the original equation

3x
?
= 5

3
(
3−1(5)

) ?
= 5(

3 · 3−1
)

(5)
?
= 5 Associative property of multiplication

1 · 5 ?
= 5 Inverse property

5
X
= 5 Multiplicative Identity

Thinking back to Theorem 8.5, we know that matrix multiplication enjoys both an associative
property and a multiplicative identity. What’s missing from the mix is a multiplicative inverse for
the coefficient matrix A. Assuming we can find such a beast, we can mimic our solution (and check)
to 3x = 5 as follows

1Every nonzero real number a has a multiplicative inverse, denoted a−1, such that a−1 · a = a · a−1 = 1.
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Solving AX = B Checking our answer

AX = B
A−1(AX) = A−1B(
A−1A

)
X = A−1B

I2X = A−1B
X = A−1B

AX
?
= B

A
(
A−1B

) ?
= B(

AA−1
)
B

?
= B

I2B
?
= B

B
X
= B

The matrix A−1 is read ‘A-inverse’ and we will define it formally later in the section. At this stage,
we have no idea if such a matrix A−1 exists, but that won’t deter us from trying to find it.2 We
want A−1 to satisfy two equations, A−1A = I2 and AA−1 = I2, making A−1 necessarily a 2 × 2
matrix.3 Hence, we assume A−1 has the form

A−1 =

[
x1 x2

x3 x4

]
for real numbers x1, x2, x3 and x4. For reasons which will become clear later, we focus our attention
on the equation AA−1 = I2. We have

AA−1 = I2[
2 −3
3 4

] [
x1 x2

x3 x4

]
=

[
1 0
0 1

]
[

2x1 − 3x3 2x2 − 3x4

3x1 + 4x3 3x2 + 4x4

]
=

[
1 0
0 1

]
This gives rise to two more systems of equations

{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

{
2x2 − 3x4 = 0
3x2 + 4x4 = 1

At this point, it may seem absurd to continue with this venture. After all, the intent was to solve
one system of equations, and in doing so, we have produced two more to solve. Remember, the
objective of this discussion is to develop a general method which, when used in the correct scenarios,
allows us to do far more than just solve a system of equations. If we set about to solve these systems
using augmented matrices using the techniques in Section 8.2, we see that not only do both systems
have the same coefficient matrix, this coefficient matrix is none other than the matrix A itself. (We
will come back to this observation in a moment.)

2Much like Carl’s quest to find Sasquatch.
3Since matrix multiplication isn’t necessarily commutative, at this stage, these are two different equations.
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{
2x1 − 3x3 = 1
3x1 + 4x3 = 0

Encode into a matrix−−−−−−−−−−−−−→
[

2 −3 1
3 4 0

]
{

2x2 − 3x4 = 0
3x2 + 4x4 = 1

Encode into a matrix−−−−−−−−−−−−−→
[

2 −3 0
3 4 1

]
To solve these two systems, we use Gauss-Jordan Elimination to put the augmented matrices into
reduced row echelon form. (We leave the details to the reader.) For the first system, we get[

2 −3 1
3 4 0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 4

17

0 1 − 3
17

]
which gives x1 = 4

17 and x3 = − 3
17 . To solve the second system, we use the exact same row

operations, in the same order, to put its augmented matrix into reduced row echelon form (Think
about why that works.) and we obtain[

2 −3 0
3 4 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
1 0 3

17

0 1 2
17

]
which means x2 = 3

17 and x4 = 2
17 . Hence,

A−1 =

[
x1 x2

x3 x4

]
=

[
4
17

3
17

− 3
17

2
17

]
We can check to see that A−1 behaves as it should by computing AA−1

AA−1 =

[
2 −3
3 4

][ 4
17

3
17

− 3
17

2
17

]
=

[
1 0
0 1

]
= I2 X

As an added bonus,

A−1A =

[
4
17

3
17

− 3
17

2
17

] [
2 −3
3 4

]
=

[
1 0
0 1

]
= I2 X

We can now return to the problem at hand. From our discussion at the beginning of the section
on page 599, we know

X = A−1B =

[
4
17

3
17

− 3
17

2
17

] [
16
7

]
=

[
5
−2

]
so that our final solution to the system is (x, y) = (5,−2).

As we mentioned, the point of this exercise was not just to solve the system of linear equations, but
to develop a general method for finding A−1. We now take a step back and analyze the foregoing
discussion in a more general context. In solving for A−1, we used two augmented matrices, both of
which contained the same entries as A
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[
2 −3 1
3 4 0

]
=

[
A

1
0

]
[

2 −3 0
3 4 1

]
=

[
A

0
1

]
We also note that the reduced row echelon forms of these augmented matrices can be written as[

1 0 4
17

0 1 − 3
17

]
=

[
I2

x1

x3

]
[

1 0 3
17

0 1 2
17

]
=

[
I2

x2

x4

]
where we have identified the entries to the left of the vertical bar as the identity I2 and the entries
to the right of the vertical bar as the solutions to our systems. The long and short of the solution
process can be summarized as[

A
1
0

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1

x3

]
[
A

0
1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x2

x4

]
Since the row operations for both processes are the same, all of the arithmetic on the left hand side
of the vertical bar is identical in both problems. The only difference between the two processes is
what happens to the constants to the right of the vertical bar. As long as we keep these separated
into columns, we can combine our efforts into one ‘super-sized’ augmented matrix and describe the
above process as [

A
1 0
0 1

]
Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
I2

x1 x2

x3 x4

]
We have the identity matrix I2 appearing as the right hand side of the first super-sized augmented
matrix and the left hand side of the second super-sized augmented matrix. To our surprise and
delight, the elements on the right hand side of the second super-sized augmented matrix are none
other than those which comprise A−1. Hence, we have

[
A I2

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→
[
I2 A−1

]
In other words, the process of finding A−1 for a matrix A can be viewed as performing a series of
row operations which transform A into the identity matrix of the same dimension. We can view
this process as follows. In trying to find A−1, we are trying to ‘undo’ multiplication by the matrix
A. The identity matrix in the super-sized augmented matrix [A|I] keeps a running memory of all
of the moves required to ‘undo’ A. This results in exactly what we want, A−1. We are now ready
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to formalize and generalize the foregoing discussion. We begin with the formal definition of an
invertible matrix.

Definition 8.11. An n×n matrix A is said to be invertible if there exists a matrix A−1, read
‘A inverse’, such that A−1A = AA−1 = In.

Note that, as a consequence of our definition, invertible matrices are square, and as such, the
conditions in Definition 8.11 force the matrix A−1 to be same dimensions as A, that is, n × n.
Since not all matrices are square, not all matrices are invertible. However, just because a matrix is
square doesn’t guarantee it is invertible. (See the exercises.) Our first result summarizes some of
the important characteristics of invertible matrices and their inverses.

Theorem 8.6. Suppose A is an n× n matrix.

1. If A is invertible then A−1 is unique.

2. A is invertible if and only if AX = B has a unique solution for every n× r matrix B.

The proofs of the properties in Theorem 8.6 rely on a healthy mix of definition and matrix arith-
metic. To establish the first property, we assume that A is invertible and suppose the matrices B and
C act as inverses for A. That is, BA = AB = In and CA = AC = In. We need to show that B and
C are, in fact, the same matrix. To see this, we note that B = InB = (CA)B = C(AB) = CIn = C.
Hence, any two matrices that act like A−1 are, in fact, the same matrix.4 To prove the second
property of Theorem 8.6, we note that if A is invertible then the discussion on page 599 shows
the solution to AX = B to be X = A−1B, and since A−1 is unique, so is A−1B. Conversely, if
AX = B has a unique solution for every n × r matrix B, then, in particular, there is a unique
solution X0 to the equation AX = In. The solution matrix X0 is our candidate for A−1. We
have AX0 = In by definition, but we need to also show X0A = In. To that end, we note that
A (X0A) = (AX0)A = InA = A. In other words, the matrix X0A is a solution to the equation
AX = A. Clearly, X = In is also a solution to the equation AX = A, and since we are assuming ev-
ery such equation as a unique solution, we must have X0A = In. Hence, we have X0A = AX0 = In,
so that X0 = A−1 and A is invertible. The foregoing discussion justifies our quest to find A−1 using
our super-sized augmented matrix approach[

A In
] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→

[
In A−1

]
We are, in essence, trying to find the unique solution to the equation AX = In using row operations.

What does all of this mean for a system of linear equations? Theorem 8.6 tells us that if we write
the system in the form AX = B, then if the coefficient matrix A is invertible, there is only one
solution to the system − that is, if A is invertible, the system is consistent and independent.5 We
also know that the process by which we find A−1 is determined completely by A, and not by the

4If this proof sounds familiar, it should. See the discussion following Theorem 5.2 on page 380.
5It can be shown that a matrix is invertible if and only if when it serves as a coefficient matrix for a system of

equations, the system is always consistent independent. It amounts to the second property in Theorem 8.6 where
the matrices B are restricted to being n× 1 matrices. We note that, owing to how matrix multiplication is defined,
being able to find unique solutions to AX = B for n× 1 matrices B gives you the same statement about solving such
equations for n× r matrices − since we can find a unique solution to them one column at a time.
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constants in B. This answers the question as to why we would bother doing row operations on
a super-sized augmented matrix to find A−1 instead of an ordinary augmented matrix to solve a
system; by finding A−1 we have done all of the row operations we ever need to do, once and for all,
since we can quickly solve any equation AX = B using one multiplication, A−1B.

Example 8.4.1. Let A =

 3 1 2
0 −1 5
2 1 4


1. Use row operations to find A−1. Check your answer by finding A−1A and AA−1.

2. Use A−1 to solve the following systems of equations

(a)


3x+ y + 2z = 26
−y + 5z = 39

2x+ y + 4z = 117
(b)


3x+ y + 2z = 4
−y + 5z = 2

2x+ y + 4z = 5
(c)


3x+ y + 2z = 1
−y + 5z = 0

2x+ y + 4z = 0

Solution.

1. We begin with a super-sized augmented matrix and proceed with Gauss-Jordan elimination.

 3 1 2 1 0 0
0 −1 5 0 1 0
2 1 4 0 0 1

 Replace R1−−−−−−−→
with 1

3
R1

 1 1
3

2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1


 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
2 1 4 0 0 1

 Replace R3 with−−−−−−−−−−→
−2R1 +R3

 1 1
3

2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1


 1 1

3
2
3

1
3 0 0

0 −1 5 0 1 0
0 1

3
8
3 −2

3 0 1

 Replace R2−−−−−−−−→
with (−1)R2

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 1

3
8
3 −2

3 0 1

 Replace R3 with−−−−−−−−−−→
− 1

3
R2 +R3

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 13

3 −2
3

1
3 1

 Replace R3−−−−−−−→
with 3

13
R3

 1 1
3

2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13


 1 1

3
2
3

1
3 0 0

0 1 −5 0 −1 0
0 0 1 − 2

13
1
13

3
13


Replace R1 with

− 2
3
R3 +R1

−−−−−−−−−−−−→
Replace R2 with

5R3 +R2

 1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13


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 1 1
3 0 17

39 − 2
39 − 2

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13

 Replace R1 with−−−−−−−−−−→
− 1

3
R2 +R1

 1 0 0 9
13

2
13 − 7

13

0 1 0 −10
13 − 8

13
15
13

0 0 1 − 2
13

1
13

3
13



We find A−1 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

. To check our answer, we compute

A−1A =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 3 1 2

0 −1 5

2 1 4

 =

 1 0 0

0 1 0

0 0 1

 = I3 X

and

AA−1 =

 3 1 2

0 −1 5

2 1 4




9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13

 =

 1 0 0

0 1 0

0 0 1

 = I3 X

2. Each of the systems in this part has A as its coefficient matrix. The only difference between
the systems is the constants which is the matrix B in the associated matrix equation AX = B.
We solve each of them using the formula X = A−1B.

(a) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 26

39

117

 =

 −39

91

26

. Our solution is (−39, 91, 26).

(b) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 4

2

5

 =


5
13
19
13
9
13

. We get
(

5
13 ,

19
13 ,

9
13

)
.

(c) X = A−1B =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


 1

0

0

 =


9
13

−10
13

− 2
13

. We find
(

9
13 ,−

10
13 ,−

2
13

)
.6

In Example 8.4.1, we see that finding one inverse matrix can enable us to solve an entire family
of systems of linear equations. There are many examples of where this comes in handy ‘in the
wild’, and we chose our example for this section from the field of electronics. We also take this
opportunity to introduce the student to how we can compute inverse matrices using the calculator.

6Note that the solution is the first column of the A−1. The reader is encouraged to meditate on this ‘coincidence’.
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Example 8.4.2. Consider the circuit diagram below.7 We have two batteries with source voltages
VB1 and VB2, measured in volts V , along with six resistors with resistances R1 through R6, measured
in kiloohms, kΩ. Using Ohm’s Law and Kirchhoff’s Voltage Law, we can relate the voltage supplied
to the circuit by the two batteries to the voltage drops across the six resistors in order to find the
four ‘mesh’ currents: i1, i2, i3 and i4, measured in milliamps, mA. If we think of electrons flowing
through the circuit, we can think of the voltage sources as providing the ‘push’ which makes the
electrons move, the resistors as obstacles for the electrons to overcome, and the mesh current as a
net rate of flow of electrons around the indicated loops.

VB1

R5

R1 R2 R6

VB2R3 R4i1 i2 i3

i4

1

The system of linear equations associated with this circuit is
(R1 +R3) i1 −R3i2 −R1i4 = VB1

−R3i1 + (R2 +R3 +R4) i2 −R4i3 −R2i4 = 0
−R4i2 + (R4 +R6) i3 −R6i4 = −VB2

−R1i1 −R2i2 −R6i3 + (R1 +R2 +R5 +R6) i4 = 0

1. Assuming the resistances are all 1kΩ, find the mesh currents if the battery voltages are

(a) VB1 = 10V and VB2 = 5V

(b) VB1 = 10V and VB2 = 0V

(c) VB1 = 0V and VB2 = 10V

(d) VB1 = 10V and VB2 = 10V

2. Assuming VB1 = 10V and VB2 = 5V , find the possible combinations of resistances which
would yield the mesh currents you found in 1(a).

7The authors wish to thank Don Anthan of Lakeland Community College for the design of this example.

http://en.wikipedia.org/wiki/Ohm's_law
http://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws
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Solution.

1. Substituting the resistance values into our system of equations, we get
2i1 − i2 − i4 = VB1

−i1 + 3i2 − i3 − i4 = 0
−i2 + 2i3 − i4 = −VB2

−i1 − i2 − i3 + 4i4 = 0

This corresponds to the matrix equation AX = B where

A =


2 −1 0 −1
−1 3 −1 −1

0 −1 2 −1
−1 −1 −1 4

 X =


i1
i2
i3
i4

 B =


VB1

0
−VB2

0


When we input the matrix A into the calculator, we find

from which we have A−1 =


1.625 1.25 1.125 1
1.25 1.5 1.25 1

1.125 1.25 1.625 1
1 1 1 1

.

To solve the four systems given to us, we find X = A−1B where the value of B is determined
by the given values of VB1 and VB2

1 (a) B =


10
0
−5

0

 , 1 (b) B =


10
0
0
0

 , 1 (c) B =


0
0

−10
0

 , 1 (d) B =


10
0

10
0


(a) For VB1 = 10V and VB2 = 5V , the calculator gives i1 = 10.625 mA, i2 = 6.25 mA,

i3 = 3.125 mA, and i4 = 5 mA. We include a calculator screenshot below for this part
(and this part only!) for reference.



8.4 Systems of Linear Equations: Matrix Inverses 607

(b) By keeping VB1 = 10V and setting VB2 = 0V , we are removing the effect of the second
battery. We get i1 = 16.25 mA, i2 = 12.5 mA, i3 = 11.25 mA, and i4 = 10 mA.

(c) Part (c) is a symmetric situation to part (b) in so much as we are zeroing out VB1 and
making VB2 = 10. We find i1 = −11.25 mA, i2 = −12.5 mA, i3 = −16.25 mA, and
i4 = −10 mA, where the negatives indicate that the current is flowing in the opposite
direction as is indicated on the diagram. The reader is encouraged to study the symmetry
here, and if need be, hold up a mirror to the diagram to literally ‘see’ what is happening.

(d) For VB1 = 10V and VB2 = 10V , we get i1 = 5 mA, i2 = 0 mA, i3 = −5 mA, and
i4 = 0 mA. The mesh currents i2 and i4 being zero is a consequence of both batteries
‘pushing’ in equal but opposite directions, causing the net flow of electrons in these two
regions to cancel out.

2. We now turn the tables and are given VB1 = 10V , VB2 = 5V , i1 = 10.625 mA, i2 = 6.25 mA,
i3 = 3.125 mA and i4 = 5 mA and our unknowns are the resistance values. Rewriting our
system of equations, we get


5.625R1 + 4.375R3 = 10

1.25R2 − 4.375R3 + 3.125R4 = 0
−3.125R4 − 1.875R6 = −5

−5.625R1 − 1.25R2 + 5R5 + 1.875R6 = 0

The coefficient matrix for this system is 4× 6 (4 equations with 6 unknowns) and is therefore
not invertible. We do know, however, this system is consistent, since setting all the resis-
tance values equal to 1 corresponds to our situation in problem 1a. This means we have an
underdetermined consistent system which is necessarily dependent. To solve this system, we
encode it into an augmented matrix


5.25 0 4.375 0 0 0 10

0 1.25 −4.375 3.125 0 0 0
0 0 0 −3.125 0 −1.875 −5

−5.625 −1.25 0 0 5 1.875 0


and use the calculator to write in reduced row echelon form
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
1 0 0.7 0 0 0 1.7
0 1 −3.5 0 0 −1.5 −4
0 0 0 1 0 0.6 1.6
0 0 0 0 1 0 1


Decoding this system from the matrix, we get

R1 + 0.7R3 = 1.7
R2 − 3.5R3 − 1.5R6 = −4

R4 + 0.6R6 = 1.6
R5 = 1

We can solve for R1, R2, R4 and R5 leaving R3 and R6 as free variables. Labeling R3 = s
and R6 = t, we have R1 = −0.7s + 1.7, R2 = 3.5s + 1.5t − 4, R4 = −0.6t + 1.6 and
R5 = 1. Since resistance values are always positive, we need to restrict our values of s
and t. We know R3 = s > 0 and when we combine that with R1 = −0.7s + 1.7 > 0,
we get 0 < s < 16

7 . Similarly, R6 = t > 0 and with R4 = −0.6t + 1.6 > 0, we find
0 < t < 8

3 . In order visualize the inequality R2 = 3.5s + 1.5t − 4 > 0, we graph the
line 3.5s + 1.5t − 4 = 0 on the st-plane and shade accordingly.8 Imposing the additional
conditions 0 < s < 16

7 and 0 < t < 8
3 , we find our values of s and t restricted to the region

depicted on the right. Using the roster method, the values of s and t are pulled from the region{
(s, t) : 0 < s < 16

7 , 0 < t < 8
3 , 3.5s+ 1.5t− 4 > 0

}
. The reader is encouraged to check that

the solution presented in 1(a), namely all resistance values equal to 1, corresponds to a pair
(s, t) in the region.

t

s

−2 −1 1 2 4

−1

1

2

3

The region where 3.5s+ 1.5t− 4 > 0

t

s

t = 8
3

s = 16
7

−2 −1 1 2 4

−1

1

2

3

The region for our parameters s and t.

8See Section 2.4 for a review of this procedure.
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8.4.1 Exercises

In Exercises 1 - 8, find the inverse of the matrix or state that the matrix is not invertible.

1. A =

[
1 2
3 4

]
2. B =

[
12 −7
−5 3

]

3. C =

[
6 15

14 35

]
4. D =

[
2 −1

16 −9

]

5. E =

 3 0 4
2 −1 3
−3 2 −5

 6. F =

 4 6 −3
3 4 −3
1 2 6



7. G =

 1 2 3
2 3 11
3 4 19


8. H =


1 0 −3 0
2 −2 8 7
−5 0 16 0

1 0 4 1


In Exercises 9 - 11, use one matrix inverse to solve the following systems of linear equations.

9.

{
3x+ 7y = 26

5x+ 12y = 39
10.

{
3x+ 7y = 0

5x+ 12y = −1
11.

{
3x+ 7y = −7

5x+ 12y = 5

In Exercises 12 - 14, use the inverse of E from Exercise 5 above to solve the following systems of
linear equations.

12.


3x+ 4z = 1

2x− y + 3z = 0
−3x+ 2y − 5z = 0

13.


3x+ 4z = 0

2x− y + 3z = 1
−3x+ 2y − 5z = 0

14.


3x+ 4z = 0

2x− y + 3z = 0
−3x+ 2y − 5z = 1

15. This exercise is a continuation of Example 8.3.3 in Section 8.3 and gives another application
of matrix inverses. Recall that given the position matrix P for a point in the plane, the
matrix RP corresponds to a point rotated 45◦ counterclockwise from P where

R =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]

(a) Find R−1.

(b) If RP rotates a point counterclockwise 45◦, what should R−1P do? Check your answer
by finding R−1P for various points on the coordinate axes and the lines y = ±x.

(c) Find R−1P where P corresponds to a generic point P (x, y). Verify that this takes points
on the curve y = 2

x to points on the curve x2 − y2 = 4.
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16. A Sasquatch’s diet consists of three primary foods: Ippizuti Fish, Misty Mushrooms, and Sun
Berries. Each serving of Ippizuti Fish is 500 calories, contains 40 grams of protein, and has
no Vitamin X. Each serving of Misty Mushrooms is 50 calories, contains 1 gram of protein,
and 5 milligrams of Vitamin X. Finally, each serving of Sun Berries is 80 calories, contains
no protein, but has 15 milligrams of Vitamin X.9

(a) If an adult male Sasquatch requires 3200 calories, 130 grams of protein, and 275 mil-
ligrams of Vitamin X daily, use a matrix inverse to find how many servings each of
Ippizuti Fish, Misty Mushrooms, and Sun Berries he needs to eat each day.

(b) An adult female Sasquatch requires 3100 calories, 120 grams of protein, and 300 mil-
ligrams of Vitamin X daily. Use the matrix inverse you found in part (a) to find how
many servings each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to
eat each day.

(c) An adolescent Sasquatch requires 5000 calories, 400 grams of protein daily, but no Vita-
min X daily.10 Use the matrix inverse you found in part (a) to find how many servings
each of Ippizuti Fish, Misty Mushrooms, and Sun Berries she needs to eat each day.

17. Matrices can be used in cryptography. Suppose we wish to encode the message ‘BIGFOOT
LIVES’. We start by assigning a number to each letter of the alphabet, say A = 1, B = 2 and
so on. We reserve 0 to act as a space. Hence, our message ‘BIGFOOT LIVES’ corresponds
to the string of numbers ‘2, 9, 7, 6, 15, 15, 20, 0, 12, 9, 22, 5, 19.’ To encode this message,
we use an invertible matrix. Any invertible matrix will do, but for this exercise, we choose

A =

 2 −3 5
3 1 −2
−7 1 −1


Since A is 3 × 3 matrix, we encode our message string into a matrix M with 3 rows. To do
this, we take the first three numbers, 2 9 7, and make them our first column, the next three
numbers, 6 15 15, and make them our second column, and so on. We put 0’s to round out
the matrix.

M =

 2 6 20 9 19
9 15 0 22 0
7 15 12 5 0


To encode the message, we find the product AM

AM =

 2 −3 5
3 1 −2
−7 1 −1

 2 6 20 9 19
9 15 0 22 0
7 15 12 5 0

 =

 12 42 100 −23 38
1 3 36 39 57

−12 −42 −152 −46 −133


9Misty Mushrooms and Sun Berries are the only known fictional sources of Vitamin X.

10Vitamin X is needed to sustain Sasquatch longevity only.
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So our coded message is ‘12, 1, −12, 42, 3, −42, 100, 36, −152, −23, 39, −46, 38, 57, −133.’
To decode this message, we start with this string of numbers, construct a message matrix as
we did earlier (we should get the matrix AM again) and then multiply by A−1.

(a) Find A−1.

(b) Use A−1 to decode the message and check this method actually works.

(c) Decode the message ‘14, 37, −76, 128, 21, −151, 31, 65, −140’

(d) Choose another invertible matrix and encode and decode your own messages.

18. Using the matrices A from Exercise 1, B from Exercise 2 and D from Exercise 4, show
AB = D and D−1 = B−1A−1. That is, show that (AB)−1 = B−1A−1.

19. Let M and N be invertible n × n matrices. Show that (MN)−1 = N−1M−1 and compare
your work to Exercise 31 in Section 5.2.
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8.4.2 Answers

1. A−1 =

[
−2 1

3
2 −1

2

]
2. B−1 =

[
3 7
5 12

]

3. C is not invertible 4. D−1 =

[
9
2 −1

2
8 −1

]

5. E−1 =

 −1 8 4
1 −3 −1
1 −6 −3

 6. F−1 =

 −
5
2

7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6



7. G is not invertible 8. H−1 =


16 0 3 0

−90 −1
2 −35

2
7
2

5 0 1 0

−36 0 −7 1


The coefficient matrix is B−1 from Exercise 2 above so the inverse we need is (B−1)−1 = B.

9.

[
12 −7
−5 3

] [
26
39

]
=

[
39
−13

]
So x = 39 and y = −13.

10.

[
12 −7
−5 3

] [
0
−1

]
=

[
7
−3

]
So x = 7 and y = −3.

11.

[
12 −7
−5 3

] [
−7

5

]
=

[
−119

50

]
So x = −119 and y = 50.

The coefficient matrix is E =

 3 0 4
2 −1 3
−3 2 −5

 from Exercise 5, so E−1 =

 −1 8 4
1 −3 −1
1 −6 −3



12.

 −1 8 4
1 −3 −1
1 −6 −3

 1
0
0

 =

 −1
1
1

 So x = −1, y = 1 and z = 1.

13.

 −1 8 4
1 −3 −1
1 −6 −3

 0
1
0

 =

 8
−3
−6

 So x = 8, y = −3 and z = −6.

14.

 −1 8 4
1 −3 −1
1 −6 −3

 0
0
1

 =

 4
−1
−3

 So x = 4, y = −1 and z = −3.
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16. (a) The adult male Sasquatch needs: 3 servings of Ippizuti Fish, 10 servings of Misty Mush-
rooms, and 15 servings of Sun Berries daily.

(b) The adult female Sasquatch needs: 3 servings of Ippizuti Fish and 20 servings of Sun
Berries daily. (No Misty Mushrooms are needed!)

(c) The adolescent Sasquatch requires 10 servings of Ippizuti Fish daily. (No Misty Mush-
rooms or Sun Berries are needed!)

17. (a) A−1 =

 1 2 1
17 33 19
10 19 11


(b)

 1 2 1
17 33 19
10 19 11

 12 42 100 −23 38
1 3 36 39 57

−12 −42 −152 −46 −133

 =

 2 6 20 9 19
9 15 0 22 0
7 15 12 5 0

 X

(c) ‘LOGS RULE’
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8.5 Determinants and Cramer’s Rule

8.5.1 Definition and Properties of the Determinant

In this section we assign to each square matrix A a real number, called the determinant of A,
which will eventually lead us to yet another technique for solving consistent independent systems
of linear equations. The determinant is defined recursively, that is, we define it for 1× 1 matrices
and give a rule by which we can reduce determinants of n × n matrices to a sum of determinants
of (n− 1)× (n− 1) matrices.1 This means we will be able to evaluate the determinant of a 2× 2
matrix as a sum of the determinants of 1× 1 matrices; the determinant of a 3× 3 matrix as a sum
of the determinants of 2 × 2 matrices, and so forth. To explain how we will take an n× n matrix
and distill from it an (n− 1)× (n− 1), we use the following notation.

Definition 8.12. Given an n×n matrix A where n > 1, the matrix Aij is the (n− 1)× (n− 1)
matrix formed by deleting the ith row of A and the jth column of A.

For example, using the matrix A below, we find the matrix A23 by deleting the second row and
third column of A.

A =

 3 1 2
0 −1 5
2 1 4

 Delete R2 and C3−−−−−−−−−−−→ A23 =

[
3 1
2 1

]
We are now in the position to define the determinant of a matrix.

Definition 8.13. Given an n× n matrix A the determinant of A, denoted det(A), is defined
as follows

� If n = 1, then A = [a11] and det(A) = det ([a11]) = a11.

� If n > 1, then A = [aij ]n×n and

det(A) = det
(
[aij ]n×n

)
= a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

There are two commonly used notations for the determinant of a matrix A: ‘det(A)’ and ‘|A|’
We have chosen to use the notation det(A) as opposed to |A| because we find that the latter is
often confused with absolute value, especially in the context of a 1 × 1 matrix. In the expansion
a11 det (A11)−a12 det (A12)+− . . .+(−1)1+na1n det (A1n), the notation ‘+− . . .+(−1)1+na1n’ means
that the signs alternate and the final sign is dictated by the sign of the quantity (−1)1+n. Since
the entries a11, a12 and so forth up through a1n comprise the first row of A, we say we are finding
the determinant of A by ‘expanding along the first row’. Later in the section, we will develop a
formula for det(A) which allows us to find it by expanding along any row.

Applying Definition 8.13 to the matrix A =

[
4 −3
2 1

]
we get

1We will talk more about the term ‘recursively’ in Section 9.1.
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det(A) = det

([
4 −3
2 1

])
= 4 det (A11)− (−3) det (A12)
= 4 det([1]) + 3 det([2])
= 4(1) + 3(2)
= 10

For a generic 2× 2 matrix A =

[
a b
c d

]
we get

det(A) = det

([
a b
c d

])
= adet (A11)− bdet (A12)
= adet ([d])− bdet ([c])
= ad− bc

This formula is worth remembering

Equation 8.1. For a 2× 2 matrix,

det

([
a b
c d

])
= ad− bc

Applying Definition 8.13 to the 3× 3 matrix A =

 3 1 2
0 −1 5
2 1 4

 we obtain

det(A) = det

 3 1 2
0 −1 5
2 1 4


= 3 det (A11)− 1 det (A12) + 2 det (A13)

= 3 det

([
−1 5

1 4

])
− det

([
0 5
2 4

])
+ 2 det

([
0 −1
2 1

])
= 3((−1)(4)− (5)(1))− ((0)(4)− (5)(2)) + 2((0)(1)− (−1)(2))
= 3(−9)− (−10) + 2(2)
= −13

To evaluate the determinant of a 4 × 4 matrix, we would have to evaluate the determinants of
four 3 × 3 matrices, each of which involves the finding the determinants of three 2 × 2 matrices.
As you can see, our method of evaluating determinants quickly gets out of hand and many of you
may be reaching for the calculator. There is some mathematical machinery which can assist us in
calculating determinants and we present that here. Before we state the theorem, we need some
more terminology.
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Definition 8.14. Let A be an n × n matrix and Aij be defined as in Definition 8.12. The ij
minor of A, denoted Mij is defined by Mij = det (Aij). The ij cofactor of A, denoted Cij is
defined by Cij = (−1)i+jMij = (−1)i+j det (Aij).

We note that in Definition 8.13, the sum

a11 det (A11)− a12 det (A12) +− . . .+ (−1)1+na1n det (A1n)

can be rewritten as

a11(−1)1+1 det (A11) + a12(−1)1+2 det (A12) + . . .+ a1n(−1)1+n det (A1n)

which, in the language of cofactors is

a11C11 + a12C12 + . . .+ a1nC1n

We are now ready to state our main theorem concerning determinants.

Theorem 8.7. Properties of the Determinant: Let A = [aij ]n×n.

� We may find the determinant by expanding along any row. That is, for any 1 ≤ k ≤ n,

det(A) = ak1Ck1 + ak2Ck2 + . . .+ aknCkn

� If A′ is the matrix obtained from A by:

– interchanging any two rows, then det(A′) = −det(A).

– replacing a row with a nonzero multiple (say c) of itself, then det(A′) = cdet(A)

– replacing a row with itself plus a multiple of another row, then det(A′) = det(A)

� If A has two identical rows, or a row consisting of all 0’s, then det(A) = 0.

� If A is upper or lower triangular,a then det(A) is the product of the entries on the main
diagonal.b

� If B is an n× n matrix, then det(AB) = det(A) det(B).

� det (An) = det(A)n for all natural numbers n.

� A is invertible if and only if det(A) 6= 0. In this case, det
(
A−1

)
=

1

det(A)
.

aSee Exercise 8.3.1 in 8.3.
bSee page 585 in Section 8.3.

Unfortunately, while we can easily demonstrate the results in Theorem 8.7, the proofs of most of
these properties are beyond the scope of this text. We could prove these properties for generic 2×2
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or even 3×3 matrices by brute force computation, but this manner of proof belies the elegance and
symmetry of the determinant. We will prove what few properties we can after we have developed
some more tools such as the Principle of Mathematical Induction in Section 9.3.2 For the moment,
let us demonstrate some of the properties listed in Theorem 8.7 on the matrix A below. (Others
will be discussed in the Exercises.)

A =

 3 1 2
0 −1 5
2 1 4


We found det(A) = −13 by expanding along the first row. To take advantage of the 0 in the second
row, we use Theorem 8.7 to find det(A) = −13 by expanding along that row.

det

 3 1 2
0 −1 5
2 1 4

 = 0C21 + (−1)C22 + 5C23

= (−1)(−1)2+2 det (A22) + 5(−1)2+3 det (A23)

= −det

([
3 2
2 4

])
− 5 det

([
3 1
2 1

])
= −((3)(4)− (2)(2))− 5((3)(1)− (2)(1))
= −8− 5
= −13 X

In general, the sign of (−1)i+j in front of the minor in the expansion of the determinant follows
an alternating pattern. Below is the pattern for 2 × 2, 3 × 3 and 4 × 4 matrices, and it extends
naturally to higher dimensions.

[
+ −
− +

]  + − +
− + −
+ − +




+ − + −
− + − +
+ − + −
− + − +


The reader is cautioned, however, against reading too much into these sign patterns. In the example
above, we expanded the 3× 3 matrix A by its second row and the term which corresponds to the
second entry ended up being negative even though the sign attached to the minor is (+). These
signs represent only the signs of the (−1)i+j in the formula; the sign of the corresponding entry as
well as the minor itself determine the ultimate sign of the term in the expansion of the determinant.

To illustrate some of the other properties in Theorem 8.7, we use row operations to transform our
3× 3 matrix A into an upper triangular matrix, keeping track of the row operations, and labeling

2For a very elegant treatment, take a course in Linear Algebra. There, you will most likely see the treatment of
determinants logically reversed than what is presented here. Specifically, the determinant is defined as a function
which takes a square matrix to a real number and satisfies some of the properties in Theorem 8.7. From that function,
a formula for the determinant is developed.
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each successive matrix.3

 3 1 2
0 −1 5
2 1 4

 Replace R3−−−−−−−−−−→
with − 2

3
R1 +R3

 3 1 2
0 −1 5
0 1

3
8
3

 Replace R3 with−−−−−−−−−−→
1
3
R2 +R3

 3 1 2
0 −1 5
0 0 13

3


A B C

Theorem 8.7 guarantees us that det(A) = det(B) = det(C) since we are replacing a row with
itself plus a multiple of another row moving from one matrix to the next. Furthermore, since
C is upper triangular, det(C) is the product of the entries on the main diagonal, in this case
det(C) = (3)(−1)

(
13
3

)
= −13. This demonstrates the utility of using row operations to assist in

calculating determinants. This also sheds some light on the connection between a determinant and
invertibility. Recall from Section 8.4 that in order to find A−1, we attempt to transform A to In
using row operations

[
A In

] Gauss Jordan Elimination−−−−−−−−−−−−−−−−→
[
In A−1

]
As we apply our allowable row operations on A to put it into reduced row echelon form, the
determinant of the intermediate matrices can vary from the determinant of A by at most a nonzero
multiple. This means that if det(A) 6= 0, then the determinant of A’s reduced row echelon form
must also be nonzero, which, according to Definition 8.4 means that all the main diagonal entries
on A’s reduced row echelon form must be 1. That is, A’s reduced row echelon form is In, and A is
invertible. Conversely, if A is invertible, then A can be transformed into In using row operations.
Since det (In) = 1 6= 0, our same logic implies det(A) 6= 0. Basically, we have established that the
determinant determines whether or not the matrix A is invertible.4

It is worth noting that when we first introduced the notion of a matrix inverse, it was in the context
of solving a linear matrix equation. In effect, we were trying to ‘divide’ both sides of the matrix
equation AX = B by the matrix A. Just like we cannot divide a real number by 0, Theorem 8.7
tells us we cannot ‘divide’ by a matrix whose determinant is 0. We also know that if the coefficient
matrix of a system of linear equations is invertible, then system is consistent and independent. It
follows, then, that if the determinant of said coefficient is not zero, the system is consistent and
independent.

8.5.2 Cramer’s Rule and Matrix Adjoints

In this section, we introduce a theorem which enables us to solve a system of linear equations by
means of determinants only. As usual, the theorem is stated in full generality, using numbered
unknowns x1, x2, etc., instead of the more familiar letters x, y, z, etc. The proof of the general
case is best left to a course in Linear Algebra.

3Essentially, we follow the Gauss Jordan algorithm but we don’t care about getting leading 1’s.
4In Section 8.5.2, we learn determinants (specifically cofactors) are deeply connected with the inverse of a matrix.
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Theorem 8.8. Cramer’s Rule: Suppose AX = B is the matrix form of a system of n linear
equations in n unknowns where A is the coefficient matrix, X is the unknowns matrix, and B is
the constant matrix. If det(A) 6= 0, then the corresponding system is consistent and independent
and the solution for unknowns x1, x2, . . .xn is given by:

xj =
det (Aj)

det(A)
,

where Aj is the matrix A whose jth column has been replaced by the constants in B.

In words, Cramer’s Rule tells us we can solve for each unknown, one at a time, by finding the ratio
of the determinant of Aj to that of the determinant of the coefficient matrix. The matrix Aj is
found by replacing the column in the coefficient matrix which holds the coefficients of xj with the
constants of the system. The following example fleshes out this method.

Example 8.5.1. Use Cramer’s Rule to solve for the indicated unknowns.

1. Solve

{
2x1 − 3x2 = 4
5x1 + x2 = −2

for x1 and x2

2. Solve


2x− 3y + z = −1
x− y + z = 1

3x− 4z = 0
for z.

Solution.

1. Writing this system in matrix form, we find

A =

[
2 −3
5 1

]
X =

[
x1

x2

]
B =

[
4
−2

]
To find the matrix A1, we remove the column of the coefficient matrix A which holds the
coefficients of x1 and replace it with the corresponding entries in B. Likewise, we replace the
column of A which corresponds to the coefficients of x2 with the constants to form the matrix
A2. This yields

A1 =

[
4 −3
−2 1

]
A2 =

[
2 4
5 −2

]
Computing determinants, we get det(A) = 17, det (A1) = −2 and det (A2) = −24, so that

x1 =
det (A1)

det(A)
= − 2

17
x2 =

det (A2)

det(A)
= −24

17

The reader can check that the solution to the system is
(
− 2

17 ,−
24
17

)
.
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2. To use Cramer’s Rule to find z, we identify x3 as z. We have

A =

 2 −3 1
1 −1 1
3 0 −4

 X =

 x
y
z

 B =

 −1
1
0

 A3 = Az =

 2 −3 −1
1 −1 1
3 0 0


Expanding both det(A) and det (Az) along the third rows (to take advantage of the 0’s) gives

z =
det (Az)

det(A)
=
−12

−10
=

6

5

The reader is encouraged to solve this system for x and y similarly and check the answer.

Our last application of determinants is to develop an alternative method for finding the inverse of
a matrix.5 Let us consider the 3× 3 matrix A which we so extensively studied in Section 8.5.1

A =

 3 1 2
0 −1 5
2 1 4


We found through a variety of methods that det(A) = −13. To our surprise and delight, its inverse
below has a remarkable number of 13’s in the denominators of its entries. This is no coincidence.

A−1 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


Recall that to find A−1, we are essentially solving the matrix equation AX = I3, where X = [xij ]3×3
is a 3 × 3 matrix. Because of how matrix multiplication is defined, the first column of I3 is the
product of A with the first column of X, the second column of I3 is the product of A with the
second column of X and the third column of I3 is the product of A with the third column of X. In
other words, we are solving three equations6

A

 x11

x21

x31

 =

 1
0
0

 A

 x12

x22

x32

 =

 0
1
0

 A

 x13

x23

x33

 =

 0
0
1


We can solve each of these systems using Cramer’s Rule. Focusing on the first system, we have

A1 =

 1 1 2
0 −1 5
0 1 4

 A2 =

 3 1 2
0 0 5
2 0 4

 A3 =

 3 1 1
0 −1 0
2 1 0


5We are developing a method in the forthcoming discussion. As with the discussion in Section 8.4 when we

developed the first algorithm to find matrix inverses, we ask that you indulge us.
6The reader is encouraged to stop and think this through.
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If we expand det (A1) along the first row, we get

det (A1) = det

([
−1 5

1 4

])
− det

([
0 5
0 4

])
+ 2 det

([
0 −1
0 1

])
= det

([
−1 5

1 4

])
Amazingly, this is none other than the C11 cofactor of A. The reader is invited to check this, as
well as the claims that det (A2) = C12 and det (A3) = C13.

7 (To see this, though it seems unnatural
to do so, expand along the first row.) Cramer’s Rule tells us

x11 =
det (A1)

det(A)
=

C11

det(A)
, x21 =

det (A2)

det(A)
=

C12

det(A)
, x31 =

det (A3)

det(A)
=

C13

det(A)

So the first column of the inverse matrix X is:

 x11

x21

x31

 =



C11

det(A)

C12

det(A)

C13

det(A)


=

1

det(A)

 C11

C12

C13



Notice the reversal of the subscripts going from the unknown to the corresponding cofactor of A.
This trend continues and we get x12

x22

x32

 =
1

det(A)

 C21

C22

C23

  x13

x23

x33

 =
1

det(A)

 C31

C32

C33


Putting all of these together, we have obtained a new and surprising formula for A−1, namely

A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33


To see that this does indeed yield A−1, we find all of the cofactors of A

C11 = −9, C21 = −2, C31 = 7
C12 = 10, C22 = 8, C32 = −15
C13 = 2, C23 = −1, C33 = −3

And, as promised,

7In a solid Linear Algebra course you will learn that the properties in Theorem 8.7 hold equally well if the word
‘row’ is replaced by the word ‘column’. We’re not going to get into column operations in this text, but they do make
some of what we’re trying to say easier to follow.
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A−1 =
1

det(A)

 C11 C21 C31

C12 C22 C32

C13 C23 C33

 = − 1

13

 −9 −2 7
10 8 −15
2 −1 −3

 =


9
13

2
13 − 7

13

−10
13 − 8

13
15
13

− 2
13

1
13

3
13


To generalize this to invertible n × n matrices, we need another definition and a theorem. Our
definition gives a special name to the cofactor matrix, and the theorem tells us how to use it along
with det(A) to find the inverse of a matrix.

Definition 8.15. Let A be an n× n matrix, and Cij denote the ij cofactor of A. The adjoint
of A, denoted adj(A) is the matrix whose ij-entry is the ji cofactor of A, Cji. That is

adj(A) =


C11 C21 . . . Cn1

C12 C22 . . . Cn2

...
...

...
C1n C2n . . . Cnn


This new notation greatly shortens the statement of the formula for the inverse of a matrix.

Theorem 8.9. Let A be an invertible n× n matrix. Then

A−1 =
1

det(A)
adj(A)

For 2× 2 matrices, Theorem 8.9 reduces to a fairly simple formula.

Equation 8.2. For an invertible 2× 2 matrix,[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
The proof of Theorem 8.9 is, like so many of the results in this section, best left to a course in
Linear Algebra. In such a course, not only do you gain some more sophisticated proof techniques,
you also gain a larger perspective. The authors assure you that persistence pays off. If you stick
around a few semesters and take a course in Linear Algebra, you’ll see just how pretty all things
matrix really are - in spite of the tedious notation and sea of subscripts. Within the scope of this
text, we will prove a few results involving determinants in Section 9.3 once we have the Principle of
Mathematical Induction well in hand. Until then, make sure you have a handle on the mechanics
of matrices and the theory will come eventually.
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8.5.3 Exercises

In Exercises 1 - 8, compute the determinant of the given matrix. (Some of these matrices appeared
in Exercises 1 - 8 in Section 8.4.)

1. B =

[
12 −7
−5 3

]
2. C =

[
6 15

14 35

]

3. Q =

[
x x2

1 2x

]
4. L =


1

x3

ln(x)

x3

− 3

x4

1− 3 ln(x)

x4



5. F =

 4 6 −3
3 4 −3
1 2 6

 6. G =

 1 2 3
2 3 11
3 4 19



7. V =

 i j k
−1 0 5

9 −4 −2

 8. H =


1 0 −3 0
2 −2 8 7
−5 0 16 0

1 0 4 1


In Exercises 9 - 14, use Cramer’s Rule to solve the system of linear equations.

9.

{
3x+ 7y = 26

5x+ 12y = 39
10.

{
2x− 4y = 5

10x+ 13y = −6

11.

{
x+ y = 8000

0.03x+ 0.05y = 250
12.

{
1
2x−

1
5y = 1

6x+ 7y = 3

13.


x+ y + z = 3

2x− y + z = 0
−3x+ 5y + 7z = 7

14.


3x+ y − 2z = 10
4x− y + z = 5
x− 3y − 4z = −1

In Exercises 15 - 16, use Cramer’s Rule to solve for x4.

15.


x1 − x3 = −2

2x2 − x4 = 0
x1 − 2x2 + x3 = 0
−x3 + x4 = 1

16.


4x1 + x2 = 4
x2 − 3x3 = 1

10x1 + x3 + x4 = 0
−x2 + x3 = −3
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In Exercises 17 - 18, find the inverse of the given matrix using their determinants and adjoints.

17. B =

[
12 −7
−5 3

]
18. F =

 4 6 −3
3 4 −3
1 2 6


19. Carl’s Sasquatch Attack! Game Card Collection is a mixture of common and rare cards.

Each common card is worth $0.25 while each rare card is worth $0.75. If his entire 117 card
collection is worth $48.75, how many of each kind of card does he own?

20. How much of a 5 gallon 40% salt solution should be replaced with pure water to obtain 5
gallons of a 15% solution?

21. How much of a 10 liter 30% acid solution must be replaced with pure acid to obtain 10 liters
of a 50% solution?

22. Daniel’s Exotic Animal Rescue houses snakes, tarantulas and scorpions. When asked how
many animals of each kind he boards, Daniel answered: ‘We board 49 total animals, and I
am responsible for each of their 272 legs and 28 tails.’ How many of each animal does the
Rescue board? (Recall: tarantulas have 8 legs and no tails, scorpions have 8 legs and one
tail, and snakes have no legs and one tail.)

23. This exercise is a continuation of Exercise 16 in Section 8.4. Just because a system is consistent
independent doesn’t mean it will admit a solution that makes sense in an applied setting.
Using the nutrient values given for Ippizuti Fish, Misty Mushrooms, and Sun Berries, use
Cramer’s Rule to determine the number of servings of Ippizuti Fish needed to meet the needs
of a daily diet which requires 2500 calories, 1000 grams of protein, and 400 milligrams of
Vitamin X. Now use Cramer’s Rule to find the number of servings of Misty Mushrooms
required. Does a solution to this diet problem exist?

24. Let R =

[
−7 3
11 2

]
, S =

[
1 −5
6 9

]
T =

[
11 2
−7 3

]
, and U =

[
−3 15

6 9

]
(a) Show that det(RS) = det(R) det(S)

(b) Show that det(T ) = −det(R)

(c) Show that det(U) = −3 det(S)

25. For M , N , and P below, show that det(M) = 0, det(N) = 0 and det(P ) = 0.

M =

 1 2 3
0 0 0
7 8 9

 , N =

 1 2 3
1 2 3
4 5 6

 , P =

 1 2 3
−2 −4 −6

7 8 9


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26. Let A be an arbitrary invertible 3× 3 matrix.

(a) Show that det(I3) = 1. (See footnote8 below.)

(b) Using the facts that AA−1 = I3 and det(AA−1) = det(A) det(A−1), show that

det(A−1) =
1

det(A)

The purpose of Exercises 27 - 30 is to introduce you to the eigenvalues and eigenvectors of a matrix.9

We begin with an example using a 2× 2 matrix and then guide you through some exercises using
a 3× 3 matrix. Consider the matrix

C =

[
6 15

14 35

]
from Exercise 2. We know that det(C) = 0 which means that CX = 02×2 does not have a unique
solution. So there is a nonzero matrix Y with CY = 02×2. In fact, every matrix of the form

Y =

[
−5

2 t

t

]

is a solution to CX = 02×2, so there are infinitely many matrices such that CX = 02×2. But
consider the matrix

X41 =

[
3
7

]
It is NOT a solution to CX = 02×2, but rather,

CX41 =

[
6 15

14 35

] [
3
7

]
=

[
123
287

]
= 41

[
3
7

]
In fact, if Z is of the form

Z =

[
3
7 t

t

]
then

CZ =

[
6 15

14 35

][ 3
7 t

t

]
=

[
123
7 t

41t

]
= 41

[
3
7 t

t

]
= 41Z

for all t. The big question is “How did we know to use 41?”

We need a number λ such that CX = λX has nonzero solutions. We have demonstrated that λ = 0
and λ = 41 both worked. Are there others? If we look at the matrix equation more closely, what

8If you think about it for just a moment, you’ll see that det(In) = 1 for any natural number n. The formal proof
of this fact requires the Principle of Mathematical Induction (Section 9.3) so we’ll stick with n = 3 for the time being.

9This material is usually given its own chapter in a Linear Algebra book so clearly we’re not able to tell you
everything you need to know about eigenvalues and eigenvectors. They are a nice application of determinants,
though, so we’re going to give you enough background so that you can start playing around with them.
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we really wanted was a nonzero solution to (C − λI2)X = 02×2 which we know exists if and only if
the determinant of C − λI2 is zero.10 So we computed

det(C − λI2) = det

([
6− λ 15

14 35− λ

])
= (6− λ)(35− λ)− 14 · 15 = λ2 − 41λ

This is called the characteristic polynomial of the matrix C and it has two zeros: λ = 0 and
λ = 41. That’s how we knew to use 41 in our work above. The fact that λ = 0 showed up as one
of the zeros of the characteristic polynomial just means that C itself had determinant zero which
we already knew. Those two numbers are called the eigenvalues of C. The corresponding matrix
solutions to CX = λX are called the eigenvectors of C and the ‘vector’ portion of the name will
make more sense after you’ve studied vectors.

Now it’s your turn. In the following exercises, you’ll be using the matrix G from Exercise 6.

G =

 1 2 3
2 3 11
3 4 19


27. Show that the characteristic polynomial of G is p(λ) = −λ(λ− 1)(λ− 22). That is, compute

det (G− λI3).

28. Let G0 = G. Find the parametric description of the solution to the system of linear equations
given by GX = 03×3.

29. Let G1 = G − I3. Find the parametric description of the solution to the system of linear
equations given by G1X = 03×3. Show that any solution to G1X = 03×3 also has the property
that GX = 1X.

30. Let G22 = G − 22I3. Find the parametric description of the solution to the system of linear
equations given by G22X = 03×3. Show that any solution to G22X = 03×3 also has the
property that GX = 22X.

10Think about this.
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8.5.4 Answers

1. det(B) = 1 2. det(C) = 0

3. det(Q) = x2 4. det(L) =
1

x7

5. det(F ) = −12 6. det(G) = 0

7. det(V ) = 20i+ 43j + 4k 8. det(H) = −2

9. x = 39, y = −13 10. x = 41
66 , y = −31

33

11. x = 7500, y = 500 12. x = 76
47 , y = −45

47

13. x = 1, y = 2, z = 0 14. x = 121
60 , y = 131

60 , z = −53
60

15. x4 = 4 16. x4 = −1

17. B−1 =

[
3 7
5 12

]

18. F−1 =

 −
5
2

7
2

1
2

7
4 −9

4 −1
4

−1
6

1
6

1
6


19. Carl owns 78 common cards and 39 rare cards.

20. 3.125 gallons.

21. 20
7 ≈ 2.85 liters.

22. The rescue houses 15 snakes, 21 tarantulas and 13 scorpions.

23. Using Cramer’s Rule, we find we need 53 servings of Ippizuti Fish to satisfy the dietary
requirements. The number of servings of Misty Mushrooms required, however, is −1120.
Since it’s impossible to have a negative number of servings, there is no solution to the applied
problem, despite there being a solution to the mathematical problem. A cautionary tale
about using Cramer’s Rule: just because you are guaranteed a mathematical answer for each
variable doesn’t mean the solution will make sense in the ‘real’ world.
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8.6 Partial Fraction Decomposition

This section uses systems of linear equations to rewrite rational functions in a form more palatable
to Calculus students. In College Algebra, the function

f(x) =
x2 − x− 6

x4 + x2
(1)

is written in the best form possible to construct a sign diagram and to find zeros and asymptotes,
but certain applications in Calculus require us to rewrite f(x) as

f(x) =
x+ 7

x2 + 1
− 1

x
− 6

x2
(2)

If we are given the form of f(x) in (2), it is a matter of Intermediate Algebra to determine a common
denominator to obtain the form of f(x) given in (1). The focus of this section is to develop a method
by which we start with f(x) in the form of (1) and ‘resolve it into partial fractions’ to obtain the
form in (2). Essentially, we need to reverse the least common denominator process. Starting with
the form of f(x) in (1), we begin by factoring the denominator

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)

We now think about which individual denominators could contribute to obtain x2
(
x2 + 1

)
as the

least common denominator. Certainly x2 and x2 + 1, but are there any other factors? Since
x2 + 1 is an irreducible quadratic1 there are no factors of it that have real coefficients which can
contribute to the denominator. The factor x2, however, is not irreducible, since we can think of it as
x2 = xx = (x− 0)(x− 0), a so-called ‘repeated’ linear factor.2 This means it’s possible that a term
with a denominator of just x contributed to the expression as well. What about something like
x
(
x2 + 1

)
? This, too, could contribute, but we would then wish to break down that denominator

into x and
(
x2 + 1

)
, so we leave out a term of that form. At this stage, we have guessed

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=

?

x
+

?

x2
+

?

x2 + 1

Our next task is to determine what form the unknown numerators take. It stands to reason that
since the expression x2−x−6

x4+x2 is ‘proper’ in the sense that the degree of the numerator is less than
the degree of the denominator, we are safe to make the ansatz that all of the partial fraction
resolvents are also. This means that the numerator of the fraction with x as its denominator is just
a constant and the numerators on the terms involving the denominators x2 and x2 + 1 are at most
linear polynomials. That is, we guess that there are real numbers A, B, C, D and E so that

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=
A

x
+
Bx+ C

x2
+
Dx+ E

x2 + 1

1Recall this means it has no real zeros; see Section 3.4.
2Recall this means x = 0 is a zero of multiplicity 2.

http://en.wikipedia.org/wiki/Ansatz
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However, if we look more closely at the term Bx+C
x2 , we see that Bx+C

x2 = Bx
x2 + C

x2 = B
x + C

x2 . The

term B
x has the same form as the term A

x which means it contributes nothing new to our expansion.
Hence, we drop it and, after re-labeling, we find ourselves with our new guess:

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
=
A

x
+
B

x2
+
Cx+D

x2 + 1

Our next task is to determine the values of our unknowns. Clearing denominators gives

x2 − x− 6 = Ax
(
x2 + 1

)
+B

(
x2 + 1

)
+ (Cx+D)x2

Gathering the like powers of x we have

x2 − x− 6 = (A+ C)x3 + (B +D)x2 +Ax+B

In order for this to hold for all values of x in the domain of f , we equate the coefficients of
corresponding powers of x on each side of the equation3 and obtain the system of linear equations


(E1) A+ C = 0 From equating coefficients of x3

(E2) B +D = 1 From equating coefficients of x2

(E3) A = −1 From equating coefficients of x
(E4) B = −6 From equating the constant terms

To solve this system of equations, we could use any of the methods presented in Sections 8.1 through
8.5, but none of these methods are as efficient as the good old-fashioned substitution you learned
in Intermediate Algebra. From E3, we have A = −1 and we substitute this into E1 to get C = 1.
Similarly, since E4 gives us B = −6, we have from E2 that D = 7. We get

x2 − x− 6

x4 + x2
=
x2 − x− 6

x2 (x2 + 1)
= −1

x
− 6

x2
+

x+ 7

x2 + 1

which matches the formula given in (2). As we have seen in this opening example, resolving a
rational function into partial fractions takes two steps: first, we need to determine the form of
the decomposition, and then we need to determine the unknown coefficients which appear in said
form. Theorem 3.16 guarantees that any polynomial with real coefficients can be factored over
the real numbers as a product of linear factors and irreducible quadratic factors. Once we have
this factorization of the denominator of a rational function, the next theorem tells us the form the
decomposition takes. The reader is encouraged to review the Factor Theorem (Theorem 3.6) and
its connection to the role of multiplicity to fully appreciate the statement of the following theorem.

3We will justify this shortly.
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Theorem 8.10. Suppose R(x) =
N(x)

D(x)
is a rational function where the degree of N(x) less

than the degree of D(x) and N(x) and D(x) have no common factors.a

� If α is a real zero of D of multiplicity m which corresponds to the linear factor ax+ b, the
partial fraction decomposition includes

A1

ax+ b
+

A2

(ax+ b)2
+ . . .+

Am
(ax+ b)m

for real numbers A1, A2, . . .Am.

� If α is a non-real zero of D of multiplicity m which corresponds to the irreducible quadratic
ax2 + bx+ c, the partial fraction decomposition includes

B1x+ C1

ax2 + bx+ c
+

B2x+ C2

(ax2 + bx+ c)2 + . . .+
Bmx+ Cm

(ax2 + bx+ c)m

for real numbers B1, B2, . . .Bm and C1, C2, . . .Cm.

aIn other words, R(x) is a proper rational function which has been fully reduced.

The proof of Theorem 8.10 is best left to a course in Abstract Algebra. Notice that the theorem
provides for the general case, so we need to use subscripts, A1, A2, etc., to denote different unknown
coefficients as opposed to the usual convention of A, B, etc.. The stress on multiplicities is to help
us correctly group factors in the denominator. For example, consider the rational function

3x− 1

(x2 − 1) (2− x− x2)

Factoring the denominator to find the zeros, we get (x+ 1)(x− 1)(1− x)(2 + x). We find x = −1
and x = −2 are zeros of multiplicity one but that x = 1 is a zero of multiplicity two due to the two
different factors (x− 1) and (1− x). One way to handle this is to note that (1− x) = −(x− 1) so

3x− 1

(x+ 1)(x− 1)(1− x)(2 + x)
=

3x− 1

−(x− 1)2(x+ 1)(x+ 2)
=

1− 3x

(x− 1)2(x+ 1)(x+ 2)

from which we proceed with the partial fraction decomposition

1− 3x

(x− 1)2(x+ 1)(x+ 2)
=

A

x− 1
+

B

(x− 1)2
+

C

x+ 1
+

D

x+ 2

Turning our attention to non-real zeros, we note that the tool of choice to determine the irreducibil-
ity of a quadratic ax2 + bx+ c is the discriminant, b2− 4ac. If b2− 4ac < 0, the quadratic admits a
pair of non-real complex conjugate zeros. Even though one irreducible quadratic gives two distinct
non-real zeros, we list the terms with denominators involving a given irreducible quadratic only
once to avoid duplication in the form of the decomposition. The trick, of course, is factoring the
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denominator or otherwise finding the zeros and their multiplicities in order to apply Theorem 8.10.
We recommend that the reader review the techniques set forth in Sections 3.3 and 3.4. Next, we
state a theorem that if two polynomials are equal, the corresponding coefficients of the like powers
of x are equal. This is the principal by which we shall determine the unknown coefficients in our
partial fraction decomposition.

Theorem 8.11. Suppose

anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = bmx

m +mm−1x
m−1 + · · ·+ b2x

2 + b1x+ b0

for all x in an open interval I. Then n = m and ai = bi for all i = 1 . . . n.

Believe it or not, the proof of Theorem 8.11 is a consequence of Theorem 3.14. Define p(x) to be
the difference of the left hand side of the equation in Theorem 8.11 and the right hand side. Then
p(x) = 0 for all x in the open interval I. If p(x) were a nonzero polynomial of degree k, then, by
Theorem 3.14, p could have at most k zeros in I, and k is a finite number. Since p(x) = 0 for all
the x in I, p has infinitely many zeros, and hence, p is the zero polynomial. This means there can
be no nonzero terms in p(x) and the theorem follows. Arguably, the best way to make sense of
either of the two preceding theorems is to work some examples.

Example 8.6.1. Resolve the following rational functions into partial fractions.

1. R(x) =
x+ 5

2x2 − x− 1
2. R(x) =

3

x3 − 2x2 + x
3. R(x) =

3

x3 − x2 + x

4. R(x) =
4x3

x2 − 2
5. R(x) =

x3 + 5x− 1

x4 + 6x2 + 9
6. R(x) =

8x2

x4 + 16

Solution.

1. We begin by factoring the denominator to find 2x2−x− 1 = (2x+ 1)(x− 1). We get x = −1
2

and x = 1 are both zeros of multiplicity one and thus we know

x+ 5

2x2 − x− 1
=

x+ 5

(2x+ 1)(x− 1)
=

A

2x+ 1
+

B

x− 1

Clearing denominators, we get x+5 = A(x−1)+B(2x+1) so that x+5 = (A+2B)x+B−A.
Equating coefficients, we get the system{

A+ 2B = 1
−A+B = 5

This system is readily handled using the Addition Method from Section 8.1, and after adding
both equations, we get 3B = 6 so B = 2. Using back substitution, we find A = −3. Our
answer is easily checked by getting a common denominator and adding the fractions.

x+ 5

2x2 − x− 1
=

2

x− 1
− 3

2x+ 1
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2. Factoring the denominator gives x3−2x2 +x = x
(
x2 − 2x+ 1

)
= x(x−1)2 which gives x = 0

as a zero of multiplicity one and x = 1 as a zero of multiplicity two. We have

3

x3 − 2x2 + x
=

3

x(x− 1)2
=
A

x
+

B

x− 1
+

C

(x− 1)2

Clearing denominators, we get 3 = A(x − 1)2 + Bx(x − 1) + Cx, which, after gathering up
the like terms becomes 3 = (A+B)x2 + (−2A−B + C)x+A. Our system is

A+B = 0
−2A−B + C = 0

A = 3

Substituting A = 3 into A + B = 0 gives B = −3, and substituting both for A and B in
−2A−B + C = 0 gives C = 3. Our final answer is

3

x3 − 2x2 + x
=

3

x
− 3

x− 1
+

3

(x− 1)2

3. The denominator factors as x
(
x2 − x+ 1

)
. We see immediately that x = 0 is a zero of

multiplicity one, but the zeros of x2 − x+ 1 aren’t as easy to discern. The quadratic doesn’t
factor easily, so we check the discriminant and find it to be (−1)2 − 4(1)(1) = −3 < 0. We
find its zeros are not real so it is an irreducible quadratic. The form of the partial fraction
decomposition is then

3

x3 − x2 + x
=

3

x (x2 − x+ 1)
=
A

x
+

Bx+ C

x2 − x+ 1

Proceeding as usual, we clear denominators and get 3 = A
(
x2 − x+ 1

)
+ (Bx + C)x or

3 = (A+B)x2 + (−A+ C)x+A. We get
A+B = 0
−A+ C = 0

A = 3

From A = 3 and A+B = 0, we get B = −3. From −A+ C = 0, we get C = A = 3. We get

3

x3 − x2 + x
=

3

x
+

3− 3x

x2 − x+ 1

4. Since 4x3

x2−2
isn’t proper, we use long division and we get a quotient of 4x with a remainder of

8x. That is, 4x3

x2−2
= 4x+ 8x

x2−2
so we now work on resolving 8x

x2−2
into partial fractions. The

quadratic x2−2, though it doesn’t factor nicely, is, nevertheless, reducible. Solving x2−2 = 0
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gives us x = ±
√

2, and each of these zeros must be of multiplicity one since Theorem 3.14
enables us to now factor x2 − 2 =

(
x−
√

2
) (
x+
√

2
)
. Hence,

8x

x2 − 2
=

8x(
x−
√

2
) (
x+
√

2
) =

A

x−
√

2
+

B

x+
√

2

Clearing fractions, we get 8x = A
(
x+
√

2
)

+ B
(
x−
√

2
)

or 8x = (A + B)x + (A − B)
√

2.
We get the system {

A+B = 8

(A−B)
√

2 = 0

From (A − B)
√

2 = 0, we get A = B, which, when substituted into A + B = 8 gives B = 4.
Hence, A = B = 4 and we get

4x3

x2 − 2
= 4x+

8x

x2 − 2
= 4x+

4

x+
√

2
+

4

x−
√

2

5. At first glance, the denominator D(x) = x4 + 6x2 + 9 appears irreducible. However, D(x) has
three terms, and the exponent on the first term is exactly twice that of the second. Rewriting
D(x) =

(
x2
)2

+ 6x2 + 9, we see it is a quadratic in disguise and factor D(x) =
(
x2 + 3

)2
.

Since x2 + 3 clearly has no real zeros, it is irreducible and the form of the decomposition is

x3 + 5x− 1

x4 + 6x2 + 9
=
x3 + 5x− 1

(x2 + 3)2 =
Ax+B

x2 + 3
+

Cx+D

(x2 + 3)2

When we clear denominators, we find x3 + 5x− 1 = (Ax+B)
(
x2 + 3

)
+Cx+D which yields

x3 + 5x− 1 = Ax3 +Bx2 + (3A+ C)x+ 3B +D. Our system is
A = 1
B = 0

3A+ C = 5
3B +D = −1

We have A = 1 and B = 0 from which we get C = 2 and D = −1. Our final answer is

x3 + 5x− 1

x4 + 6x2 + 9
=

x

x2 + 3
+

2x− 1

(x2 + 3)2

6. Once again, the difficulty in our last example is factoring the denominator. In an attempt to
get a quadratic in disguise, we write

x4 + 16 =
(
x2
)2

+ 42 =
(
x2
)2

+ 8x2 + 42 − 8x2 =
(
x2 + 4

)2 − 8x2
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and obtain a difference of two squares:
(
x2 + 4

)2
and 8x2 =

(
2x
√

2
)2

. Hence,

x4 + 16 =
(
x2 + 4− 2x

√
2
)(

x2 + 4 + 2x
√

2
)

=
(
x2 − 2x

√
2 + 4

)(
x2 + 2x

√
2 + 4

)
The discrimant of both of these quadratics works out to be −8 < 0, which means they are
irreducible. We leave it to the reader to verify that, despite having the same discriminant,
these quadratics have different zeros. The partial fraction decomposition takes the form

8x2

x4 + 16
=

8x2(
x2 − 2x

√
2 + 4

) (
x2 + 2x

√
2 + 4

) =
Ax+B

x2 − 2x
√

2 + 4
+

Cx+D

x2 + 2x
√

2 + 4

We get 8x2 = (Ax+B)
(
x2 + 2x

√
2 + 4

)
+ (Cx+D)

(
x2 − 2x

√
2 + 4

)
or

8x2 = (A+ C)x3 + (2A
√

2 +B − 2C
√

2 +D)x2 + (4A+ 2B
√

2 + 4C − 2D
√

2)x+ 4B + 4D

which gives the system 
A+ C = 0

2A
√

2 +B − 2C
√

2 +D = 8

4A+ 2B
√

2 + 4C − 2D
√

2 = 0
4B + 4D = 0

We choose substitution as the weapon of choice to solve this system. From A + C = 0, we
get A = −C; from 4B + 4D = 0, we get B = −D. Substituting these into the remaining two
equations, we get {

−2C
√

2−D − 2C
√

2 +D = 8

−4C − 2D
√

2 + 4C − 2D
√

2 = 0

or {
−4C

√
2 = 8

−4D
√

2 = 0

We get C = −
√

2 so that A = −C =
√

2 and D = 0 which means B = −D = 0. We get

8x2

x4 + 16
=

x
√

2

x2 − 2x
√

2 + 4
− x

√
2

x2 + 2x
√

2 + 4
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8.6.1 Exercises

In Exercises 1 - 6, find only the form needed to begin the process of partial fraction decomposition.
Do not create the system of linear equations or attempt to find the actual decomposition.

1.
7

(x− 3)(x+ 5)
2.

5x+ 4

x(x− 2)(2− x)

3.
m

(7x− 6)(x2 + 9) 4.
ax2 + bx+ c

x3(5x+ 9)(3x2 + 7x+ 9)

5.
A polynomial of degree < 9

(x+ 4)5(x2 + 1)2
6.

A polynomial of degree < 7

x(4x− 1)2(x2 + 5)(9x2 + 16)

In Exercises 7 - 18, find the partial fraction decomposition of the following rational expressions.

7.
2x

x2 − 1
8.

−7x+ 43

3x2 + 19x− 14

9.
11x2 − 5x− 10

5x3 − 5x2
10.

−2x2 + 20x− 68

x3 + 4x2 + 4x+ 16

11.
−x2 + 15

4x4 + 40x2 + 36
12.

−21x2 + x− 16

3x3 + 4x2 − 3x+ 2

13.
5x4 − 34x3 + 70x2 − 33x− 19

(x− 3)2
14.

x6 + 5x5 + 16x4 + 80x3 − 2x2 + 6x− 43

x3 + 5x2 + 16x+ 80

15.
−7x2 − 76x− 208

x3 + 18x2 + 108x+ 216
16.
−10x4 + x3 − 19x2 + x− 10

x5 + 2x3 + x

17.
4x3 − 9x2 + 12x+ 12

x4 − 4x3 + 8x2 − 16x+ 16
18.

2x2 + 3x+ 14

(x2 + 2x+ 9)(x2 + x+ 5)

19. As we stated at the beginning of this section, the technique of resolving a rational function
into partial fractions is a skill needed for Calculus. However, we hope to have shown you that
it is worth doing if, for no other reason, it reinforces a hefty amount of algebra. One of the
common algebraic errors the authors find students make is something along the lines of

8

x2 − 9
6= 8

x2
− 8

9

Think about why if the above were true, this section would have no need to exist.
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8.6.2 Answers

1.
A

x− 3
+

B

x+ 5
2.

A

x
+

B

x− 2
+

C

(x− 2)2

3.
A

7x− 6
+
Bx+ C

x2 + 9
4.

A

x
+
B

x2
+
C

x3
+

D

5x+ 9
+

Ex+ F

3x2 + 7x+ 9

5.
A

x+ 4
+

B

(x+ 4)2
+

C

(x+ 4)3
+

D

(x+ 4)4
+

E

(x+ 4)5
+
Fx+G

x2 + 1
+

Hx+ I

(x2 + 1)2

6.
A

x
+

B

4x− 1
+

C

(4x− 1)2
+
Dx+ E

x2 + 5
+
Fx+G

9x2 + 16

7.
2x

x2 − 1
=

1

x+ 1
+

1

x− 1

8.
−7x+ 43

3x2 + 19x− 14
=

5

3x− 2
− 4

x+ 7

9.
11x2 − 5x− 10

5x3 − 5x2
=

3

x
+

2

x2
− 4

5(x− 1)

10.
−2x2 + 20x− 68

x3 + 4x2 + 4x+ 16
= − 9

x+ 4
+

7x− 8

x2 + 4

11.
−x2 + 15

4x4 + 40x2 + 36
=

1

2(x2 + 1)
− 3

4(x2 + 9)

12.
−21x2 + x− 16

3x3 + 4x2 − 3x+ 2
= − 6

x+ 2
− 3x+ 5

3x2 − 2x+ 1

13.
5x4 − 34x3 + 70x2 − 33x− 19

(x− 3)2
= 5x2 − 4x+ 1 +

9

x− 3
− 1

(x− 3)2

14.
x6 + 5x5 + 16x4 + 80x3 − 2x2 + 6x− 43

x3 + 5x2 + 16x+ 80
= x3 +

x+ 1

x2 + 16
− 3

x+ 5

15.
−7x2 − 76x− 208

x3 + 18x2 + 108x+ 216
= − 7

x+ 6
+

8

(x+ 6)2
− 4

(x+ 6)3

16.
−10x4 + x3 − 19x2 + x− 10

x5 + 2x3 + x
= −10

x
+

1

x2 + 1
+

x

(x2 + 1)2

17.
4x3 − 9x2 + 12x+ 12

x4 − 4x3 + 8x2 − 16x+ 16
=

1

x− 2
+

4

(x− 2)2
+

3x+ 1

x2 + 4

18.
2x2 + 3x+ 14

(x2 + 2x+ 9)(x2 + x+ 5)
=

1

x2 + 2x+ 9
+

1

x2 + x+ 5
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8.7 Systems of Non-Linear Equations and Inequalities

In this section, we study systems of non-linear equations and inequalities. Unlike the systems of
linear equations for which we have developed several algorithmic solution techniques, there is no
general algorithm to solve systems of non-linear equations. Moreover, all of the usual hazards of
non-linear equations like extraneous solutions and unusual function domains are once again present.
Along with the tried and true techniques of substitution and elimination, we shall often need equal
parts tenacity and ingenuity to see a problem through to the end. You may find it necessary to
review topics throughout the text which pertain to solving equations involving the various functions
we have studied thus far. To get the section rolling we begin with a fairly routine example.

Example 8.7.1. Solve the following systems of equations. Verify your answers algebraically and
graphically.

1.

{
x2 + y2 = 4

4x2 + 9y2 = 36

2.

{
x2 + y2 = 4

4x2 − 9y2 = 36

3.

{
x2 + y2 = 4
y − 2x = 0

4.

{
x2 + y2 = 4
y − x2 = 0

Solution:

1. Since both equations contain x2 and y2 only, we can eliminate one of the variables as we did
in Section 8.1.

{
(E1) x2 + y2 = 4
(E2) 4x2 + 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) 5y2 = 20

From 5y2 = 20, we get y2 = 4 or y = ±2. To find the associated x values, we substitute each
value of y into one of the equations to find the resulting value of x. Choosing x2 + y2 = 4,
we find that for both y = −2 and y = 2, we get x = 0. Our solution is thus {(0, 2), (0,−2)}.
To check this algebraically, we need to show that both points satisfy both of the original
equations. We leave it to the reader to verify this. To check our answer graphically, we sketch
both equations and look for their points of intersection. The graph of x2 + y2 = 4 is a circle
centered at (0, 0) with a radius of 2, whereas the graph of 4x2 +9y2 = 36, when written in the

standard form x2

9 + y2

4 = 1 is easily recognized as an ellipse centered at (0, 0) with a major
axis along the x-axis of length 6 and a minor axis along the y-axis of length 4. We see from
the graph that the two curves intersect at their y-intercepts only, (0,±2).

2. We proceed as before to eliminate one of the variables

{
(E1) x2 + y2 = 4
(E2) 4x2 − 9y2 = 36

Replace E2 with−−−−−−−−−−→
−4E1 + E2

{
(E1) x2 + y2 = 4
(E2) −13y2 = 20
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Since the equation −13y2 = 20 admits no real solution, the system is inconsistent. To verify
this graphically, we note that x2 + y2 = 4 is the same circle as before, but when writing the

second equation in standard form, x
2

9 −
y2

4 = 1, we find a hyperbola centered at (0, 0) opening
to the left and right with a transverse axis of length 6 and a conjugate axis of length 4. We
see that the circle and the hyperbola have no points in common.

x

y

−3 −2 −1 1 2 3

−1

1

x

y

−3 −2 −1 1 2 3

−1

1

Graphs for

{
x2 + y2 = 4

4x2 + 9y2 = 36
Graphs for

{
x2 + y2 = 4

4x2 − 9y2 = 36

3. Since there are no like terms among the two equations, elimination won’t do us any good.
We turn to substitution and from the equation y − 2x = 0, we get y = 2x. Substituting this

into x2 + y2 = 4 gives x2 + (2x)2 = 4. Solving, we find 5x2 = 4 or x = ±2
√

5
5 . Returning

to the equation we used for the substitution, y = 2x, we find y = 4
√

5
5 when x = 2

√
5

5 , so

one solution is
(

2
√

5
5 , 4

√
5

5

)
. Similarly, we find the other solution to be

(
−2
√

5
5 ,−4

√
5

5

)
. We

leave it to the reader that both points satisfy both equations, so that our final answer is{(
2
√

5
5 , 4

√
5

5

)
,
(
−2
√

5
5 ,−4

√
5

5

)}
. The graph of x2 + y2 = 4 is our circle from before and the

graph of y − 2x = 0 is a line through the origin with slope 2. Though we cannot verify the
numerical values of the points of intersection from our sketch, we do see that we have two
solutions: one in Quadrant I and one in Quadrant III as required.

4. While it may be tempting to solve y − x2 = 0 as y = x2 and substitute, we note that this
system is set up for elimination.1

{
(E1) x2 + y2 = 4
(E2) y − x2 = 0

Replace E2 with−−−−−−−−−−→
E1 + E2

{
(E1) x2 + y2 = 4
(E2) y2 + y = 4

From y2 + y = 4 we get y2 + y − 4 = 0 which gives y = −1±
√

17
2 . Due to the complicated

nature of these answers, it is worth our time to make a quick sketch of both equations to head
off any extraneous solutions we may encounter. We see that the circle x2 + y2 = 4 intersects
the parabola y = x2 exactly twice, and both of these points have a positive y value. Of the

two solutions for y, only y = −1+
√

17
2 is positive, so to get our solution, we substitute this

1We encourage the reader to solve the system using substitution to see that you get the same solution.
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into y − x2 = 0 and solve for x. We get x = ±
√
−1+

√
17

2 = ±
√
−2+2

√
17

2 . Our solution is{(√
−2+2

√
17

2 , −1+
√

17
2

)
,

(
−
√
−2+2

√
17

2 , −1+
√

17
2

)}
, which we leave to the reader to verify.

x

y

−3 −2 −1 1 2 3

1

x

y

−3 −2 −1 1 2 3

−1

1

Graphs for

{
x2 + y2 = 4
y − 2x = 0

Graphs for

{
x2 + y2 = 4
y − x2 = 36

A couple of remarks about Example 8.7.1 are in order. First note that, unlike systems of linear
equations, it is possible for a system of non-linear equations to have more than one solution without
having infinitely many solutions. In fact, while we characterize systems of nonlinear equations as
being ‘consistent’ or ‘inconsistent,’ we generally don’t use the labels ‘dependent’ or ‘independent’.
Secondly, as we saw with number 4, sometimes making a quick sketch of the problem situation can
save a lot of time and effort. While in general the curves in a system of non-linear equations may
not be easily visualized, it sometimes pays to take advantage when they are. Our next example
provides some considerable review of many of the topics introduced in this text.

Example 8.7.2. Solve the following systems of equations. Verify your answers algebraically and
graphically, as appropriate.

1.

{
x2 + 2xy − 16 = 0
y2 + 2xy − 16 = 0

2.

{
y + 4e2x = 1
y2 + 2ex = 1 3.


z(x− 2) = x

yz = y
(x− 2)2 + y2 = 1

Solution.

1. At first glance, it doesn’t appear as though elimination will do us any good since it’s clear
that we cannot completely eliminate one of the variables. The alternative, solving one of
the equations for one variable and substituting it into the other, is full of unpleasantness.
Returning to elimination, we note that it is possible to eliminate the troublesome xy term,
and the constant term as well, by elimination and doing so we get a more tractable relationship
between x and y

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 + 2xy − 16 = 0

Replace E2 with−−−−−−−−−−→
−E1 + E2

{
(E1) x2 + 2xy − 16 = 0
(E2) y2 − x2 = 0
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We get y2 − x2 = 0 or y = ±x. Substituting y = x into E1 we get x2 + 2x2 − 16 = 0 so

that x2 = 16
3 or x = ±4

√
3

3 . On the other hand, when we substitute y = −x into E1, we get

x2 − 2x2 − 16 = 0 or x2 = −16 which gives no real solutions. Substituting each of x = ±4
√

3
3

into the substitution equation y = x yields the solution
{(

4
√

3
3 , 4

√
3

3

)
,
(
−4
√

3
3 ,−4

√
3

3

)}
. We

leave it to the reader to show that both points satisfy both equations and now turn to verifying
our solution graphically. We begin by solving x2+2xy−16 = 0 for y to obtain y = 16−x2

2x . This
function is easily graphed using the techniques of Section 4.2. Solving the second equation,
y2 + 2xy − 16 = 0, for y, however, is more complicated. We use the quadratic formula to
obtain y = −x±

√
x2 + 16 which would require the use of Calculus or a calculator to graph.

Believe it or not, we don’t need either because the equation y2 +2xy−16 = 0 can be obtained
from the equation x2 + 2xy − 16 = 0 by interchanging y and x. Thinking back to Section
5.2, this means we can obtain the graph of y2 + 2xy − 16 = 0 by reflecting the graph of
x2 + 2xy − 16 = 0 across the line y = x. Doing so confirms that the two graphs intersect
twice: once in Quadrant I, and once in Quadrant III as required.

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graphs of x2 + 2xy − 16 = 0 and y2 + 2xy − 16 = 0

2. Unlike the previous problem, there seems to be no avoiding substitution and a bit of algebraic
unpleasantness. Solving y+ 4e2x = 1 for y, we get y = 1− 4e2x which, when substituted into
the second equation, yields

(
1− 4e2x

)2
+ 2ex = 1. After expanding and gathering like terms,

we get 16e4x− 8e2x + 2ex = 0. Factoring gives us 2ex
(
8e3x − 4ex + 1

)
= 0, and since 2ex 6= 0

for any real x, we are left with solving 8e3x − 4ex + 1 = 0. We have three terms, and even
though this is not a ‘quadratic in disguise’, we can benefit from the substitution u = ex. The
equation becomes 8u3−4u+1 = 0. Using the techniques set forth in Section 3.3, we find u = 1

2
is a zero and use synthetic division to factor the left hand side as

(
u− 1

2

) (
8u2 + 4u− 2

)
. We

use the quadratic formula to solve 8u2 + 4u − 2 = 0 and find u = −1±
√

5
4 . Since u = ex, we

now must solve ex = 1
2 and ex = −1±

√
5

4 . From ex = 1
2 , we get x = ln

(
1
2

)
= − ln(2). As

for ex = −1±
√

5
4 , we first note that −1−

√
5

4 < 0, so ex = −1−
√

5
4 has no real solutions. We are



8.7 Systems of Non-Linear Equations and Inequalities 641

left with ex = −1+
√

5
4 , so that x = ln

(
−1+

√
5

4

)
. We now return to y = 1 − 4e2x to find the

accompanying y values for each of our solutions for x. For x = − ln(2), we get

y = 1− 4e2x

= 1− 4e−2 ln(2)

= 1− 4eln( 1
4)

= 1− 4
(

1
4

)
= 0

For x = ln
(
−1+

√
5

4

)
, we have

y = 1− 4e2x

= 1− 4e
2 ln
(
−1+

√
5

4

)
= 1− 4e

ln
(
−1+

√
5

4

)2

= 1− 4
(
−1+

√
5

4

)2

= 1− 4
(

3−
√

5
8

)
= −1+

√
5

2

We get two solutions,
{

(0,− ln(2)),
(

ln
(
−1+

√
5

4

)
, −1+

√
5

2

)}
. It is a good review of the prop-

erties of logarithms to verify both solutions, so we leave that to the reader. We are able to
sketch y = 1 − 4e2x using transformations, but the second equation is more difficult and we
resort to the calculator. We note that to graph y2 + 2ex = 1, we need to graph both the
positive and negative roots, y = ±

√
1− 2ex. After some careful zooming,2 we get

The graphs of y = 1− 4e2x and y = ±
√

1− 2ex.

3. Our last system involves three variables and gives some insight on how to keep such systems
organized. Labeling the equations as before, we have

2The calculator has trouble confirming the solution (− ln(2), 0) due to its issues in graphing square root functions.
If we mentally connect the two branches of the thicker curve, we see the intersection.
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
E1 z(x− 2) = x
E2 yz = y
E3 (x− 2)2 + y2 = 1

The easiest equation to start with appears to be E2. While it may be tempting to divide
both sides of E2 by y, we caution against this practice because it presupposes y 6= 0. Instead,
we take E2 and rewrite it as yz − y = 0 so y(z − 1) = 0. From this, we get two cases: y = 0
or z = 1. We take each case in turn.

Case 1: y = 0. Substituting y = 0 into E1 and E3, we get{
E1 z(x− 2) = x
E3 (x− 2)2 = 1

Solving E3 for x gives x = 1 or x = 3. Substituting these values into E1 gives z = −1 when
x = 1 and z = 3 when x = 3. We obtain two solutions, (1, 0,−1) and (3, 0, 3).

Case 2: z = 1. Substituting z = 1 into E1 and E3 gives us{
E1 (1)(x− 2) = x
E3 (1− 2)2 + y2 = 1

Equation E1 gives us x − 2 = x or −2 = 0, which is a contradiction. This means we have
no solution to the system in this case, even though E3 is solvable and gives y = 0. Hence,
our final answer is {(1, 0,−1), (3, 0, 3)}. These points are easy enough to check algebraically
in our three original equations, so that is left to the reader. As for verifying these solutions
graphically, they require plotting surfaces in three dimensions and looking for intersection
points. While this is beyond the scope of this book, we provide a snapshot of the graphs of
our three equations near one of the solution points, (1, 0,−1).

Example 8.7.2 showcases some of the ingenuity and tenacity mentioned at the beginning of the
section. Sometimes you just have to look at a system the right way to find the most efficient
method to solve it. Sometimes you just have to try something.
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We close this section discussing how non-linear inequalities can be used to describe regions in
the plane which we first introduced in Section 2.4. Before we embark on some examples, a little
motivation is in order. Suppose we wish to solve x2 < 4−y2. If we mimic the algorithms for solving
nonlinear inequalities in one variable, we would gather all of the terms on one side and leave a 0
on the other to obtain x2 + y2 − 4 < 0. Then we would find the zeros of the left hand side, that
is, where is x2 + y2 − 4 = 0, or x2 + y2 = 4. Instead of obtaining a few numbers which divide the
real number line into intervals, we get an equation of a curve, in this case, a circle, which divides
the plane into two regions - the ‘inside’ and ‘outside’ of the circle - with the circle itself as the
boundary between the two. Just like we used test values to determine whether or not an interval
belongs to the solution of the inequality, we use test points in the each of the regions to see which
of these belong to our solution set.3 We choose (0, 0) to represent the region inside the circle and
(0, 3) to represent the points outside of the circle. When we substitute (0, 0) into x2 + y2 − 4 < 0,
we get −4 < 4 which is true. This means (0, 0) and all the other points inside the circle are part of
the solution. On the other hand, when we substitute (0, 3) into the same inequality, we get 5 < 0
which is false. This means (0, 3) along with all other points outside the circle are not part of the
solution. What about points on the circle itself? Choosing a point on the circle, say (0, 2), we get
0 < 0, which means the circle itself does not satisfy the inequality.4 As a result, we leave the circle
dashed in the final diagram.

x

y

2

−2

−2 2

The solution to x2 < 4− y2

We put this technique to good use in the following example.

Example 8.7.3. Sketch the solution to the following nonlinear inequalities in the plane.

1. y2 − 4 ≤ x < y + 2 2.

{
x2 + y2 ≥ 4

x2 − 2x+ y2 − 2y ≤ 0

Solution.

1. The inequality y2 − 4 ≤ x < y + 2 is a compound inequality. It translates as y2 − 4 ≤ x
and x < y + 2. As usual, we solve each inequality and take the set theoretic intersection
to determine the region which satisfies both inequalities. To solve y2 − 4 ≤ x, we write

3The theory behind why all this works is, surprisingly, the same theory which guarantees that sign diagrams work
the way they do - continuity and the Intermediate Value Theorem - but in this case, applied to functions of more
than one variable.

4Another way to see this is that points on the circle satisfy x2 + y2− 4 = 0, so they do not satisfy x2 + y2− 4 < 0.
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y2 − x − 4 ≤ 0. The curve y2 − x − 4 = 0 describes a parabola since exactly one of the
variables is squared. Rewriting this in standard form, we get y2 = x+ 4 and we see that the
vertex is (−4, 0) and the parabola opens to the right. Using the test points (−5, 0) and (0, 0),
we find that the solution to the inequality includes the region to the right of, or ‘inside’, the
parabola. The points on the parabola itself are also part of the solution, since the vertex
(−4, 0) satisfies the inequality. We now turn our attention to x < y+2. Proceeding as before,
we write x− y − 2 < 0 and focus our attention on x− y − 2 = 0, which is the line y = x− 2.
Using the test points (0, 0) and (0,−4), we find points in the region above the line y = x− 2
satisfy the inequality. The points on the line y = x − 2 do not satisfy the inequality, since
the y-intercept (0,−2) does not. We see that these two regions do overlap, and to make the
graph more precise, we seek the intersection of these two curves. That is, we need to solve
the system of nonlinear equations

{
(E1) y2 = x+ 4
(E2) y = x− 2

Solving E1 for x, we get x = y2 − 4. Substituting this into E2 gives y = y2 − 4 − 2, or
y2 − y − 6 = 0. We find y = −2 and y = 3 and since x = y2 − 4, we get that the graphs
intersect at (0,−2) and (5, 3). Putting all of this together, we get our final answer below.

x

y

−5−4

−3

3

x

y

2 3 4 5

−3

x

y

−5−4 2 3 4 5

−3

y2 − 4 ≤ x x < y + 2 y2 − 4 ≤ x < y + 2

2. To solve this system of inequalities, we need to find all of the points (x, y) which satisfy
both inequalities. To do this, we solve each inequality separately and take the set theoretic
intersection of the solution sets. We begin with the inequality x2 +y2 ≥ 4 which we rewrite as
x2 + y2− 4 ≥ 0. The points which satisfy x2 + y2− 4 = 0 form our friendly circle x2 + y2 = 4.
Using test points (0, 0) and (0, 3) we find that our solution comprises the region outside the
circle. As far as the circle itself, the point (0, 2) satisfies the inequality, so the circle itself
is part of the solution set. Moving to the inequality x2 − 2x + y2 − 2y ≤ 0, we start with
x2 − 2x + y2 − 2y = 0. Completing the squares, we obtain (x − 1)2 + (y − 1)2 = 2, which is
a circle centered at (1, 1) with a radius of

√
2. Choosing (1, 1) to represent the inside of the

circle, (1, 3) as a point outside of the circle and (0, 0) as a point on the circle, we find that
the solution to the inequality is the inside of the circle, including the circle itself. Our final
answer, then, consists of the points on or outside of the circle x2 + y2 = 4 which lie on or
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inside the circle (x− 1)2 + (y− 1)2 = 2. To produce the most accurate graph, we need to find
where these circles intersect. To that end, we solve the system{

(E1) x2 + y2 = 4
(E2) x2 − 2x+ y2 − 2y = 0

We can eliminate both the x2 and y2 by replacing E2 with −E1 + E2. Doing so produces
−2x − 2y = −4. Solving this for y, we get y = 2 − x. Substituting this into E1 gives
x2 + (2− x)2 = 4 which simplifies to x2 + 4− 4x+ x2 = 4 or 2x2 − 4x = 0. Factoring yields
2x(x − 2) which gives x = 0 or x = 2. Substituting these values into y = 2 − x gives the
points (0, 2) and (2, 0). The intermediate graphs and final solution are below.

x

y

1

−1

1

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x

y

−3 −2 −1 2

−3

−2

−1

2

3

x2 + y2 ≥ 4 x2 − 2x+ y2 − 2y ≤ 0 Solution to the system.
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8.7.1 Exercises

In Exercises 1 - 6, solve the given system of nonlinear equations. Sketch the graph of both equations
on the same set of axes to verify the solution set.

1.

{
x2 − y = 4
x2 + y2 = 4

2.

{
x2 + y2 = 4
x2 − y = 5

3.

{
x2 + y2 = 16

16x2 + 4y2 = 64

4.

{
x2 + y2 = 16

9x2 − 16y2 = 144
5.

{
x2 + y2 = 16

1
9y

2 − 1
16x

2 = 1
6.

{
x2 + y2 = 16
x− y = 2

In Exercises 9 - 15, solve the given system of nonlinear equations. Use a graph to help you avoid
any potential extraneous solutions.

7.

{
x2 − y2 = 1
x2 + 4y2 = 4

8.

{ √
x+ 1− y = 0
x2 + 4y2 = 4

9.

{
x+ 2y2 = 2
x2 + 4y2 = 4

10.

{
(x− 2)2 + y2 = 1

x2 + 4y2 = 4
11.

{
x2 + y2 = 25
y − x = 1

12.

{
x2 + y2 = 25

x2 + (y − 3)2 = 10

13.

{
y = x3 + 8
y = 10x− x2 14.

{
x2 − xy = 8
y2 − xy = 8

15.


x2 + y2 = 25

4x2 − 9y = 0
3y2 − 16x = 0

16. A certain bacteria culture follows the Law of Uninbited Growth, Equation 6.4. After 10
minutes, there are 10,000 bacteria. Five minutes later, there are 14,000 bacteria. How many
bacteria were present initially? How long before there are 50,000 bacteria?

Consider the system of nonlinear equations below
4

x
+

3

y
= 1

3

x
+

2

y
= −1

If we let u = 1
x and v = 1

y then the system becomes{
4u+ 3v = 1
3u+ 2v = −1

This associated system of linear equations can then be solved using any of the techniques presented
earlier in the chapter to find that u = −5 and v = 7. Thus x = 1

u = −1
5 and y = 1

v = 1
7 .

We say that the original system is linear in form because its equations are not linear but a few
substitutions reveal a structure that we can treat like a system of linear equations. Each system in
Exercises 17 - 19 is linear in form. Make the appropriate substitutions and solve for x and y.
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17.

{
4x3 + 3

√
y = 1

3x3 + 2
√
y = −1

18.

{
4ex + 3e−y = 1
3ex + 2e−y = −1

19.

{
4 ln(x) + 3y2 = 1
3 ln(x) + 2y2 = −1

20. Solve the following system 
x2 +

√
y + log2(z) = 6

3x2 − 2
√
y + 2 log2(z) = 5

−5x2 + 3
√
y + 4 log2(z) = 13

In Exercises 21 - 26, sketch the solution to each system of nonlinear inequalities in the plane.

21.

{
x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

22.

{
x2 + y2 < 25

x2 + (y − 3)2 ≥ 10

23.

{
(x− 2)2 + y2 < 1

x2 + 4y2 < 4
24.

{
y > 10x− x2

y < x3 + 8

25.

{
x+ 2y2 > 2
x2 + 4y2 ≤ 4

26.

{
x2 + y2 ≥ 25
y − x ≤ 1

27. Systems of nonlinear equations show up in third semester Calculus in the midst of some really
cool problems. The system below came from a problem in which we were asked to find the
dimensions of a rectangular box with a volume of 1000 cubic inches that has minimal surface
area. The variables x, y and z are the dimensions of the box and λ is called a Lagrange
multiplier. With the help of your classmates, solve the system.5

2y + 2z = λyz
2x+ 2z = λxz
2y + 2x = λxy

xyz = 1000

28. According to Theorem 3.16 in Section 3.4, the polynomial p(x) = x4 + 4 can be factored into
the product linear and irreducible quadratic factors. In this exercise, we present a method
for obtaining that factorization.

(a) Show that p has no real zeros.

(b) Because p has no real zeros, its factorization must be of the form (x2+ax+b)(x2+cx+d)
where each factor is an irreducible quadratic. Expand this quantity and gather like terms
together.

(c) Create and solve the system of nonlinear equations which results from equating the
coefficients of the expansion found above with those of x4 + 4. You should get four
equations in the four unknowns a, b, c and d. Write p(x) in factored form.

29. Factor q(x) = x4 + 6x2 − 5x+ 6.

5If using λ bothers you, change it to w when you solve the system.
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8.7.2 Answers

1. (±2, 0),
(
±
√

3,−1
)

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

2. No solution

x

y

−2 −1 1 2

−4

−3

−2

−1

1

2

3. (0,±4)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

4. (±4, 0)

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−4

−3

−2

−1

1

2

3

4

5.
(
±4
√

7
5 ,±12

√
2

5

)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

6.
(
1 +
√

7,−1 +
√

7
)
,
(
1−
√

7,−1−
√

7
)

x

y

−4−3−2−1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

7.
(
±2
√

10
5 ,±

√
15
5

)
8. (0, 1) 9. (0,±1), (2, 0)

10.
(

4
3 ,±

√
5

3

)
11. (3, 4), (−4,−3) 12. (±3, 4)

13. (−4,−56), (1, 9), (2, 16) 14. (−2, 2), (2,−2) 15. (3, 4)

16. Initially, there are 250000
49 ≈ 5102 bacteria. It will take 5 ln(49/5)

ln(7/5) ≈ 33.92 minutes for the colony
to grow to 50,000 bacteria.
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17.
(
− 3
√

5, 49
)

18. No solution 19.
(
e−5,±

√
7
)

20. (1, 4, 8), (−1, 4, 8)

21.

{
x2 − y2 ≤ 1
x2 + 4y2 ≥ 4

x

y

−2 −1 1 2

−2

−1

1

2

22.

{
x2 + y2 < 25

x2 + (y − 3)2 ≥ 10

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

23.

{
(x− 2)2 + y2 < 1

x2 + 4y2 < 4

x

y

1 2

−1

1

24.

{
y > 10x− x2

y < x3 + 8

x

y

−4−3−2−1 1 2

−56

9
16

25.

{
x+ 2y2 > 2
x2 + 4y2 ≤ 4

x

y

1 2

−1

1

26.

{
x2 + y2 ≥ 25
y − x ≤ 1

x

y

−5 −3 −1 1 3 5

−5

−3

1

3

5

7
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27. x = 10, y = 10, z = 10, λ = 2
5

28. (c) x4 + 4 = (x2 − 2x+ 2)(x2 + 2x+ 2)

29. x4 + 6x2 − 5x+ 6 = (x2 − x+ 1)(x2 + x+ 6)



Chapter 9

Sequences and the Binomial
Theorem

9.1 Sequences

When we first introduced a function as a special type of relation in Section 1.3, we did not put
any restrictions on the domain of the function. All we said was that the set of x-coordinates of the
points in the function F is called the domain, and it turns out that any subset of the real numbers,
regardless of how weird that subset may be, can be the domain of a function. As our exploration
of functions continued beyond Section 1.3, we saw fewer and fewer functions with ‘weird’ domains.
It is worth your time to go back through the text to see that the domains of the polynomial,
rational, exponential, logarithmic and algebraic functions discussed thus far have fairly predictable
domains which almost always consist of just a collection of intervals on the real line. This may lead
some readers to believe that the only important functions in a College Algebra text have domains
which consist of intervals and everything else was just introductory nonsense. In this section, we
introduce sequences which are an important class of functions whose domains are the set of natural
numbers.1 Before we get to far ahead of ourselves, let’s look at what the term ‘sequence’ means
mathematically. Informally, we can think of a sequence as an infinite list of numbers. For example,
consider the sequence

1

2
,−3

4
,
9

8
,−27

16
, . . . (1)

As usual, the periods of ellipsis, . . ., indicate that the proposed pattern continues forever. Each of
the numbers in the list is called a term, and we call 1

2 the ‘first term’, −3
4 the ‘second term’, 9

8 the
‘third term’ and so forth. In numbering them this way, we are setting up a function, which we’ll
call a per tradition, between the natural numbers and the terms in the sequence.

1Recall that this is the set {1, 2, 3, . . .}.



652 Sequences and the Binomial Theorem

n a(n)

1 1
2

2 −3
4

3 9
8

4 −27
16

...
...

In other words, a(n) is the nth term in the sequence. We formalize these ideas in our definition of
a sequence and introduce some accompanying notation.

Definition 9.1. A sequence is a function a whose domain is the natural numbers. The value
a(n) is often written as an and is called the nth term of the sequence. The sequence itself is
usually denoted using the notation: an, n ≥ 1 or the notation: {an}∞n=1.

Applying the notation provided in Definition 9.1 to the sequence given (1), we have a1 = 1
2 , a2 = −3

4 ,
a3 = 9

8 and so forth. Now suppose we wanted to know a117, that is, the 117th term in the sequence.
While the pattern of the sequence is apparent, it would benefit us greatly to have an explicit formula
for an. Unfortunately, there is no general algorithm that will produce a formula for every sequence,
so any formulas we do develop will come from that greatest of teachers, experience. In other words,
it is time for an example.

Example 9.1.1. Write the first four terms of the following sequences.

1. an =
5n−1

3n
, n ≥ 1 2. bk =

(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1 4.

{
1 + (−1)i

i

}∞
i=2

5. a1 = 7, an+1 = 2− an, n ≥ 1 6. f0 = 1, fn = n · fn−1, n ≥ 1

Solution.

1. Since we are given n ≥ 1, the first four terms of the sequence are a1, a2, a3 and a4. Since
the notation a1 means the same thing as a(1), we obtain our first term by replacing every

occurrence of n in the formula for an with n = 1 to get a1 = 51−1

31 = 1
3 . Proceeding similarly,

we get a2 = 52−1

32 = 5
9 , a3 = 53−1

33 = 25
27 and a4 = 54−1

34 = 125
81 .

2. For this sequence we have k ≥ 0, so the first four terms are b0, b1, b2 and b3. Proceeding as
before, replacing in this case the variable k with the appropriate whole number, beginning

with 0, we get b0 = (−1)0

2(0)+1 = 1, b1 = (−1)1

2(1)+1 = −1
3 , b2 = (−1)2

2(2)+1 = 1
5 and b3 = (−1)3

2(3)+1 = −1
7 .

(This sequence is called an alternating sequence since the signs alternate between + and −.
The reader is encouraged to think what component of the formula is producing this effect.)
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3. From {2n− 1}∞n=1, we have that an = 2n − 1, n ≥ 1. We get a1 = 1, a2 = 3, a3 = 5 and
a4 = 7. (The first four terms are the first four odd natural numbers. The reader is encouraged
to examine whether or not this pattern continues indefinitely.)

4. Here, we are using the letter i as a counter, not as the imaginary unit we saw in Section 3.4.

Proceeding as before, we set ai = 1+(−1)i

i , i ≥ 2. We find a2 = 1, a3 = 0, a4 = 1
2 and a5 = 0.

5. To obtain the terms of this sequence, we start with a1 = 7 and use the equation an+1 = 2−an
for n ≥ 1 to generate successive terms. When n = 1, this equation becomes a1 + 1 = 2 − a1

which simplifies to a2 = 2−a1 = 2−7 = −5. When n = 2, the equation becomes a2 + 1 = 2−a2

so we get a3 = 2 − a2 = 2 − (−5) = 7. Finally, when n = 3, we get a3 + 1 = 2 − a3 so
a4 = 2− a3 = 2− 7 = −5.

6. As with the problem above, we are given a place to start with f0 = 1 and given a formula
to build other terms of the sequence. Substituting n = 1 into the equation fn = n · fn−1,
we get f1 = 1 · f0 = 1 · 1 = 1. Advancing to n = 2, we get f2 = 2 · f1 = 2 · 1 = 2. Finally,
f3 = 3 · f2 = 3 · 2 = 6.

Some remarks about Example 9.1.1 are in order. We first note that since sequences are functions,
we can graph them in the same way we graph functions. For example, if we wish to graph the
sequence {bk}∞k=0 from Example 9.1.1, we graph the equation y = b(k) for the values k ≥ 0. That
is, we plot the points (k, b(k)) for the values of k in the domain, k = 0, 1, 2, . . .. The resulting
collection of points is the graph of the sequence. Note that we do not connect the dots in a pleasing
fashion as we are used to doing, because the domain is just the whole numbers in this case, not a
collection of intervals of real numbers. If you feel a sense of nostalgia, you should see Section 1.2.

x

y

1 2 3

− 3
2

−1

− 1
2

1
2

1

3
2

Graphing y = bk =
(−1)k

2k + 1
, k ≥ 0

Speaking of {bk}∞k=0, the astute and mathematically minded reader will correctly note that this
technically isn’t a sequence, since according to Definition 9.1, sequences are functions whose domains
are the natural numbers, not the whole numbers, as is the case with {bk}∞k=0. In other words, to
satisfy Definition 9.1, we need to shift the variable k so it starts at k = 1 instead of k = 0. To
see how we can do this, it helps to think of the problem graphically. What we want is to shift
the graph of y = b(k) to the right one unit, and thinking back to Section 1.7, we can accomplish
this by replacing k with k − 1 in the definition of {bk}∞k=0. Specifically, let ck = bk−1 where

k − 1 ≥ 0. We get ck = (−1)k−1

2(k−1)+1 = (−1)k−1

2k−1 , where now k ≥ 1. We leave to the reader to verify

that {ck}∞k=1 generates the same list of numbers as does {bk}∞k=0, but the former satisfies Definition
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9.1, while the latter does not. Like so many things in this text, we acknowledge that this point
is pedantic and join the vast majority of authors who adopt a more relaxed view of Definition 9.1
to include any function which generates a list of numbers which can then be matched up with
the natural numbers.2 Finally, we wish to note the sequences in parts 5 and 6 are examples of
sequences described recursively. In each instance, an initial value of the sequence is given which
is then followed by a recursion equation − a formula which enables us to use known terms of
the sequence to determine other terms. The terms of the sequence in part 6 are given a special
name: fn = n! is called n-factorial. Using the ‘!’ notation, we can describe the factorial sequence
as: 0! = 1 and n! = n(n− 1)! for n ≥ 1. After 0! = 1 the next four terms, written out in detail, are
1! = 1 · 0! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 · 1 = 6 and 4! = 4 · 3! = 4 · 3 · 2 · 1 = 24.
From this, we see a more informal way of computing n!, which is n! = n · (n − 1) · (n − 2) · · · 2 · 1
with 0! = 1 as a special case. (We will study factorials in greater detail in Section 9.4.) The world
famous Fibonacci Numbers are defined recursively and are explored in the exercises. While none
of the sequences worked out to be the sequence in (1), they do give us some insight into what kinds
of patterns to look for. Two patterns in particular are given in the next definition.

Definition 9.2. Arithmetic and Geometric Sequences: Suppose {an}∞n=k is a sequencea

� If there is a number d so that an+1 = an + d for all n ≥ k, then {an}∞n=k is called an
arithmetic sequence. The number d is called the common difference.

� If there is a number r so that an+1 = ran for all n ≥ k, then {an}∞n=k is called a geometric
sequence. The number r is called the common ratio.

aNote that we have adjusted for the fact that not all ‘sequences’ begin at n = 1.

Both arithmetic and geometric sequences are defined in terms of recursion equations. In English,
an arithmetic sequence is one in which we proceed from one term to the next by always adding
the fixed number d. The name ‘common difference’ comes from a slight rewrite of the recursion
equation from an+1 = an + d to an+1 − an = d. Analogously, a geometric sequence is one in which
we proceed from one term to the next by always multiplying by the same fixed number r. If r 6= 0,
we can rearrange the recursion equation to get an+1

an
= r, hence the name ‘common ratio.’ Some

sequences are arithmetic, some are geometric and some are neither as the next example illustrates.3

Example 9.1.2. Determine if the following sequences are arithmetic, geometric or neither. If
arithmetic, find the common difference d; if geometric, find the common ratio r.

1. an =
5n−1

3n
, n ≥ 1 2. bk =

(−1)k

2k + 1
, k ≥ 0

3. {2n− 1}∞n=1 4.
1

2
,−3

4
,
9

8
,−27

16
, . . .

2We’re basically talking about the ‘countably infinite’ subsets of the real number line when we do this.
3Sequences which are both arithmetic and geometric are discussed in the Exercises.

http://en.wikipedia.org/wiki/Fibonacci_number
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Solution. A good rule of thumb to keep in mind when working with sequences is “When in doubt,
write it out!” Writing out the first several terms can help you identify the pattern of the sequence
should one exist.

1. From Example 9.1.1, we know that the first four terms of this sequence are 1
3 ,

5
9 ,

25
27 and 125

81 .
To see if this is an arithmetic sequence, we look at the successive differences of terms. We
find that a2 − a1 = 5

9 −
1
3 = 2

9 and a3 − a2 = 25
27 −

5
9 = 10

27 . Since we get different numbers,
there is no ‘common difference’ and we have established that the sequence is not arithmetic.
To investigate whether or not it is geometric, we compute the ratios of successive terms. The
first three ratios

a2

a1

=
5
9
1
3

=
5

3
,

a3

a2

=
25
27
5
9

=
5

3
and

a4

a3

=
125
81
25
27

=
5

3

suggest that the sequence is geometric. To prove it, we must show that an+1

an
= r for all n.

an+1

an
=

5(n+1)−1

3n+1

5n−1

3n

=
5n

3n+1
· 3n

5n−1
=

5

3

This sequence is geometric with common ratio r = 5
3 .

2. Again, we have Example 9.1.1 to thank for providing the first four terms of this sequence:
1, −1

3 ,
1
5 and −1

7 . We find b1 − b0 = −4
3 and b2 − b1 = 8

15 . Hence, the sequence is not

arithmetic. To see if it is geometric, we compute b1
b0

= −1
3 and b2

b1
= −3

5 . Since there is no
‘common ratio,’ we conclude the sequence is not geometric, either.

3. As we saw in Example 9.1.1, the sequence {2n− 1}∞n=1 generates the odd numbers: 1, 3, 5, 7, . . ..
Computing the first few differences, we find a2 − a1 = 2, a3 − a2 = 2, and a4 − a3 = 2. This
suggests that the sequence is arithmetic. To verify this, we find

an+1 − an = (2(n+ 1)− 1)− (2n− 1) = 2n+ 2− 1− 2n+ 1 = 2

This establishes that the sequence is arithmetic with common difference d = 2. To see if it is
geometric, we compute a2

a1
= 3 and a3

a2
= 5

3 . Since these ratios are different, we conclude the
sequence is not geometric.

4. We met our last sequence at the beginning of the section. Given that a2 − a1 = −5
4 and

a3−a2 = 15
8 , the sequence is not arithmetic. Computing the first few ratios, however, gives us

a2
a1

= −3
2 , a3

a2
= −3

2 and a4
a3

= −3
2 . Since these are the only terms given to us, we assume that

the pattern of ratios continue in this fashion and conclude that the sequence is geometric.

We are now one step away from determining an explicit formula for the sequence given in (1). We
know that it is a geometric sequence and our next result gives us the explicit formula we require.
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Equation 9.1. Formulas for Arithmetic and Geometric Sequences:

� An arithmetic sequence with first term a and common difference d is given by

an = a+ (n− 1)d, n ≥ 1

� A geometric sequence with first term a and common ratio r 6= 0 is given by

an = arn−1, n ≥ 1

While the formal proofs of the formulas in Equation 9.1 require the techniques set forth in Section
9.3, we attempt to motivate them here. According to Definition 9.2, given an arithmetic sequence
with first term a and common difference d, the way we get from one term to the next is by adding
d. Hence, the terms of the sequence are: a, a+ d, a+ 2d, a+ 3d, . . . . We see that to reach the nth
term, we add d to a exactly (n − 1) times, which is what the formula says. The derivation of the
formula for geometric series follows similarly. Here, we start with a and go from one term to the
next by multiplying by r. We get a, ar, ar2, ar3 and so forth. The nth term results from multiplying
a by r exactly (n− 1) times. We note here that the reason r = 0 is excluded from Equation 9.1 is
to avoid an instance of 00 which is an indeterminant form.4 With Equation 9.1 in place, we finally
have the tools required to find an explicit formula for the nth term of the sequence given in (1).
We know from Example 9.1.2 that it is geometric with common ratio r = −3

2 . The first term is

a = 1
2 so by Equation 9.1 we get an = arn−1 = 1

2

(
−3

2

)n−1
for n ≥ 1. After a touch of simplifying,

we get an = (−3)n−1

2n for n ≥ 1. Note that we can easily check our answer by substituting in values
of n and seeing that the formula generates the sequence given in (1). We leave this to the reader.
Our next example gives us more practice finding patterns.

Example 9.1.3. Find an explicit formula for the nth term of the following sequences.

1. 0.9, 0.09, 0.009, 0.0009, . . . 2.
2

5
, 2,−2

3
,−2

7
, . . . 3. 1,−2

7
,

4

13
,− 8

19
, . . .

Solution.

1. Although this sequence may seem strange, the reader can verify it is actually a geometric
sequence with common ratio r = 0.1 = 1

10 . With a = 0.9 = 9
10 , we get an = 9

10

(
1
10

)n−1
for

n ≥ 0. Simplifying, we get an = 9
10n , n ≥ 1. There is more to this sequence than meets the

eye and we shall return to this example in the next section.

2. As the reader can verify, this sequence is neither arithmetic nor geometric. In an attempt
to find a pattern, we rewrite the second term with a denominator to make all the terms
appear as fractions. We have 2

5 ,
2
1 ,−

2
3 ,−

2
7 , . . .. If we associate the negative ‘−’ of the last two

terms with the denominators we get 2
5 ,

2
1 ,

2
−3 ,

2
−7 , . . .. This tells us that we can tentatively

sketch out the formula for the sequence as an = 2
dn

where dn is the sequence of denominators.

4See the footnotes on page 237 in Section 3.1 and page 418 of Section 6.1.
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Looking at the denominators 5, 1,−3,−7, . . ., we find that they go from one term to the next
by subtracting 4 which is the same as adding −4. This means we have an arithmetic sequence
on our hands. Using Equation 9.1 with a = 5 and d = −4, we get the nth denominator by
the formula dn = 5 + (n− 1)(−4) = 9− 4n for n ≥ 1. Our final answer is an = 2

9−4n , n ≥ 1.

3. The sequence as given is neither arithmetic nor geometric, so we proceed as in the last problem
to try to get patterns individually for the numerator and denominator. Letting cn and dn
denote the sequence of numerators and denominators, respectively, we have an = cn

dn
. After

some experimentation,5 we choose to write the first term as a fraction and associate the
negatives ‘−’ with the numerators. This yields 1

1 ,
−2
7 ,

4
13 ,
−8
19 , . . .. The numerators form the

sequence 1,−2, 4,−8, . . . which is geometric with a = 1 and r = −2, so we get cn = (−2)n−1,
for n ≥ 1. The denominators 1, 7, 13, 19, . . . form an arithmetic sequence with a = 1 and
d = 6. Hence, we get dn = 1 + 6(n − 1) = 6n − 5, for n ≥ 1. We obtain our formula for

an = cn
dn

= (−2)n−1

6n−5 , for n ≥ 1. We leave it to the reader to show that this checks out.

While the last problem in Example 9.1.3 was neither geometric nor arithmetic, it did resolve into
a combination of these two kinds of sequences. If handed the sequence 2, 5, 10, 17, . . ., we would
be hard-pressed to find a formula for an if we restrict our attention to these two archetypes. We
said before that there is no general algorithm for finding the explicit formula for the nth term of
a given sequence, and it is only through experience gained from evaluating sequences from explicit
formulas that we learn to begin to recognize number patterns. The pattern 1, 4, 9, 16, . . . is rather
recognizable as the squares, so the formula an = n2, n ≥ 1 may not be too hard to determine.
With this in mind, it’s possible to see 2, 5, 10, 17, . . . as the sequence 1 + 1, 4 + 1, 9 + 1, 16 + 1, . . .,
so that an = n2 + 1, n ≥ 1. Of course, since we are given only a small sample of the sequence, we
shouldn’t be too disappointed to find out this isn’t the only formula which generates this sequence.
For example, consider the sequence defined by bn = −1

4n
4 + 5

2n
3 − 31

4 n
2 + 25

2 n − 5, n ≥ 1. The
reader is encouraged to verify that it also produces the terms 2, 5, 10, 17. In fact, it can be shown
that given any finite sample of a sequence, there are infinitely many explicit formulas all of which
generate those same finite points. This means that there will be infinitely many correct answers to
some of the exercises in this section.6 Just because your answer doesn’t match ours doesn’t mean
it’s wrong. As always, when in doubt, write your answer out. As long as it produces the same
terms in the same order as what the problem wants, your answer is correct.

Sequences play a major role in the Mathematics of Finance, as we have already seen with Equation
6.2 in Section 6.5. Recall that if we invest P dollars at an annual percentage rate r and compound
the interest n times per year, the formula for Ak, the amount in the account after k compounding

periods, is Ak = P
(
1 + r

n

)k
=
[
P
(
1 + r

n

)] (
1 + r

n

)k−1
, k ≥ 1. We now spot this as a geometric

sequence with first term P
(
1 + r

n

)
and common ratio

(
1 + r

n

)
. In retirement planning, it is seldom

the case that an investor deposits a set amount of money into an account and waits for it to
grow. Usually, additional payments of principal are made at regular intervals and the value of the
investment grows accordingly. This kind of investment is called an annuity and will be discussed
in the next section once we have developed more mathematical machinery.

5Here we take ‘experimentation’ to mean a frustrating guess-and-check session.
6For more on this, see When Every Answer is Correct: Why Sequences and Number Patterns Fail the Test.

http://www.math.kent.edu/~white/papers/pattern.pdf
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9.1.1 Exercises

In Exercises 1 - 13, write out the first four terms of the given sequence.

1. an = 2n − 1, n ≥ 0
2. dj = (−1)

j(j+1)
2 , j ≥ 1

3. {5k − 2}∞k=1 4.

{
n2 + 1

n+ 1

}∞
n=0

5.

{
xn

n2

}∞
n=1

6.

{
ln(n)

n

}∞
n=1

7. a1 = 3, an+1 = an − 1, n ≥ 1 8. d0 = 12, dm =
dm-1

100
, m ≥ 1

9. b1 = 2, bk+1 = 3bk + 1, k ≥ 1 10. c0 = −2, cj =
cj-1

(j + 1)(j + 2)
, j ≥ 1

11. a1 = 117, an+1 =
1

an
, n ≥ 1 12. s0 = 1, sn+1 = xn+1 + sn, n ≥ 0

13. F0 = 1, F1 = 1, Fn = Fn-1 + Fn-2, n ≥ 2 (This is the famous Fibonacci Sequence )

In Exercises 14 - 21 determine if the given sequence is arithmetic, geometric or neither. If it is
arithmetic, find the common difference d; if it is geometric, find the common ratio r.

14. {3n− 5}∞n=1 15. an = n2 + 3n+ 2, n ≥ 1

16.
1

3
,

1

6
,

1

12
,

1

24
, . . . 17.

{
3

(
1

5

)n−1
}∞
n=1

18. 17, 5, −7, −19, . . . 19. 2, 22, 222, 2222, . . .

20. 0.9, 9, 90, 900, . . . 21. an =
n!

2
, n ≥ 0.

In Exercises 22 - 30, find an explicit formula for the nth term of the given sequence. Use the
formulas in Equation 9.1 as needed.

22. 3, 5, 7, 9, . . . 23. 1, −1

2
,

1

4
, −1

8
, . . . 24. 1,

2

3
,

4

5
,

8

7
, . . .

25. 1,
2

3
,

1

3
,

4

27
, . . . 26. 1,

1

4
,

1

9
,

1

16
, . . . 27. x, −x

3

3
,
x5

5
, −x

7

7
, . . .

http://en.wikipedia.org/wiki/Fibonacci_number
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28. 0.9, 0.99, 0.999, 0.9999, . . . 29. 27, 64, 125, 216, . . . 30. 1, 0, 1, 0, . . .

31. Find a sequence which is both arithmetic and geometric. (Hint: Start with an = c for all n.)

32. Show that a geometric sequence can be transformed into an arithmetic sequence by taking
the natural logarithm of the terms.

33. Thomas Robert Malthus is credited with saying, “The power of population is indefinitely
greater than the power in the earth to produce subsistence for man. Population, when
unchecked, increases in a geometrical ratio. Subsistence increases only in an arithmetical
ratio. A slight acquaintance with numbers will show the immensity of the first power in
comparison with the second.” (See this webpage for more information.) Discuss this quote
with your classmates from a sequences point of view.

34. This classic problem involving sequences shows the power of geometric sequences. Suppose
that a wealthy benefactor agrees to give you one penny today and then double the amount
she gives you each day for 30 days. So, for example, you get two pennies on the second day
and four pennies on the third day. How many pennies do you get on the 30th day? What is
the total dollar value of the gift you have received?

35. Research the terms ‘arithmetic mean’ and ‘geometric mean.’ With the help of your classmates,
show that a given term of a arithmetic sequence ak, k ≥ 2 is the arithmetic mean of the
term immediately preceding, ak−1 it and immediately following it, ak+1. State and prove an
analogous result for geometric sequences.

36. Discuss with your classmates how the results of this section might change if we were to
examine sequences of other mathematical things like complex numbers or matrices. Find an
explicit formula for the nth term of the sequence i,−1,−i, 1, i, . . .. List out the first four terms
of the matrix sequences we discussed in Exercise 8.3.1 in Section 8.3.

http://en.wikipedia.org/wiki/Malthus
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9.1.2 Answers

1. 0, 1, 3, 7 2. −1,−1, 1, 1

3. 3, 8, 13, 18 4. 1, 1, 5
3 ,

5
2

5. x, x
2

4 ,
x3

9 ,
x4

16 6. 0, ln(2)
2 , ln(3)

3 , ln(4)
4

7. 3, 2, 1, 0 8. 12, 0.12, 0.0012, 0.000012

9. 2, 7, 22, 67 10. −2,−1
3 ,−

1
36 ,−

1
720

11. 117, 1
117 , 117, 1

117 12. 1, x+ 1, x2 + x+ 1, x3 + x2 + x+ 1

13. 1, 1, 2, 3

14. arithmetic, d = 3 15. neither

16. geometric, r = 1
2 17. geometric, r = 1

5

18. arithmetic, d = −12 19. neither

20. geometric, r = 10 21. neither

22. an = 1 + 2n, n ≥ 1 23. an =
(
−1

2

)n−1
, n ≥ 1 24. an = 2n−1

2n−1 , n ≥ 1

25. an = n
3n−1 , n ≥ 1 26. an = 1

n2 , n ≥ 1 27. (−1)n−1x2n−1

2n−1 , n ≥ 1

28. an = 10n−1
10n , n ≥ 1 29. an = (n+ 2)3, n ≥ 1 30. an = 1+(−1)n−1

2 , n ≥ 1
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9.2 Summation Notation

In the previous section, we introduced sequences and now we shall present notation and theorems
concerning the sum of terms of a sequence. We begin with a definition, which, while intimidating,
is meant to make our lives easier.

Definition 9.3. Summation Notation: Given a sequence {an}∞n=k and numbers m and p
satisfying k ≤ m ≤ p, the summation from m to p of the sequence {an} is written

p∑
n=m

an = am + am+1 + . . .+ ap

The variable n is called the index of summation. The number m is called the lower limit of
summation while the number p is called the upper limit of summation.

In English, Definition 9.3 is simply defining a short-hand notation for adding up the terms of the
sequence {an}∞n=k from am through ap. The symbol Σ is the capital Greek letter sigma and is
shorthand for ‘sum’. The lower and upper limits of the summation tells us which term to start
with and which term to end with, respectively. For example, using the sequence an = 2n − 1 for
n ≥ 1, we can write the sum a3 + a4 + a5 + a6 as

6∑
n=3

(2n− 1) = (2(3)− 1) + (2(4)− 1) + (2(5)− 1) + (2(6)− 1)

= 5 + 7 + 9 + 11
= 32

The index variable is considered a ‘dummy variable’ in the sense that it may be changed to any
letter without affecting the value of the summation. For instance,

6∑
n=3

(2n− 1) =
6∑

k=3

(2k − 1) =
6∑
j=3

(2j − 1)

One place you may encounter summation notation is in mathematical definitions. For example,
summation notation allows us to define polynomials as functions of the form

f(x) =
n∑
k=0

akx
k

for real numbers ak, k = 0, 1, . . . n. The reader is invited to compare this with what is given in
Definition 3.1. Summation notation is particularly useful when talking about matrix operations.
For example, we can write the product of the ith row Ri of a matrix A = [aij ]m×n and the jth

column Cj of a matrix B = [bij ]n×r as

Ri · Cj =

n∑
k=1

aikbkj
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Again, the reader is encouraged to write out the sum and compare it to Definition 8.9. Our next
example gives us practice with this new notation.

Example 9.2.1.

1. Find the following sums.

(a)
4∑

k=1

13

100k
(b)

4∑
n=0

n!

2
(c)

5∑
n=1

(−1)n+1

n
(x− 1)n

2. Write the following sums using summation notation.

(a) 1 + 3 + 5 + . . .+ 117

(b) 1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117

(c) 0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9

Solution.

1. (a) We substitute k = 1 into the formula 13
100k

and add successive terms until we reach k = 4.

4∑
k=1

13

100k
=

13

1001
+

13

1002
+

13

1003
+

13

1004

= 0.13 + 0.0013 + 0.000013 + 0.00000013
= 0.13131313

(b) Proceeding as in (a), we replace every occurrence of n with the values 0 through 4. We
recall the factorials, n! as defined in number Example 9.1.1, number 6 and get:

4∑
n=0

n!

2
=

0!

2
+

1!

2
+

2!

2
+

3!

2
=

4!

2

=
1

2
+

1

2
+

2 · 1
2

+
3 · 2 · 1

2
+

4 · 3 · 2 · 1
2

=
1

2
+

1

2
+ 1 + 3 + 12

= 17

(c) We proceed as before, replacing the index n, but not the variable x, with the values 1
through 5 and adding the resulting terms.
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5∑
n=1

(−1)n+1

n
(x− 1)n =

(−1)1+1

1
(x− 1)1 +

(−1)2+1

2
(x− 1)2 +

(−1)3+1

3
(x− 1)3

+
(−1)1+4

4
(x− 1)4 +

(−1)1+5

5
(x− 1)5

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+

(x− 1)5

5

2. The key to writing these sums with summation notation is to find the pattern of the terms.
To that end, we make good use of the techniques presented in Section 9.1.

(a) The terms of the sum 1, 3, 5, etc., form an arithmetic sequence with first term a = 1
and common difference d = 2. We get a formula for the nth term of the sequence using
Equation 9.1 to get an = 1+(n−1)2 = 2n−1, n ≥ 1. At this stage, we have the formula
for the terms, namely 2n − 1, and the lower limit of the summation, n = 1. To finish
the problem, we need to determine the upper limit of the summation. In other words,
we need to determine which value of n produces the term 117. Setting an = 117, we get
2n− 1 = 117 or n = 59. Our final answer is

1 + 3 + 5 + . . .+ 117 =

59∑
n=1

(2n− 1)

(b) We rewrite all of the terms as fractions, the subtraction as addition, and associate the
negatives ‘−’ with the numerators to get

1

1
+
−1

2
+

1

3
+
−1

4
+ . . .+

1

117

The numerators, 1, −1, etc. can be described by the geometric sequence1 cn = (−1)n−1

for n ≥ 1, while the denominators are given by the arithmetic sequence2 dn = n for

n ≥ 1. Hence, we get the formula an = (−1)n−1

n for our terms, and we find the lower and
upper limits of summation to be n = 1 and n = 117, respectively. Thus

1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117
=

117∑
n=1

(−1)n−1

n

(c) Thanks to Example 9.1.3, we know that one formula for the nth term is an = 9
10n for

n ≥ 1. This gives us a formula for the summation as well as a lower limit of summation.
To determine the upper limit of summation, we note that to produce the n− 1 zeros to
the right of the decimal point before the 9, we need a denominator of 10n. Hence, n is

1This is indeed a geometric sequence with first term a = 1 and common ratio r = −1.
2It is an arithmetic sequence with first term a = 1 and common difference d = 1.



664 Sequences and the Binomial Theorem

the upper limit of summation. Since n is used in the limits of the summation, we need
to choose a different letter for the index of summation.3 We choose k and get

0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =

n∑
k=1

9

10k

The following theorem presents some general properties of summation notation. While we shall not
have much need of these properties in Algebra, they do play a great role in Calculus. Moreover,
there is much to be learned by thinking about why the properties hold. We invite the reader to
prove these results. To get started, remember, “When in doubt, write it out!”

Theorem 9.1. Properties of Summation Notation: Suppose {an} and {bn} are sequences
so that the following sums are defined.

�

p∑
n=m

(an ± bn) =

p∑
n=m

an ±
p∑

n=m

bn

�

p∑
n=m

c an = c

p∑
n=m

an, for any real number c.

�

p∑
n=m

an =

j∑
n=m

an +

p∑
n=j+1

an, for any natural number m ≤ j < j + 1 ≤ p.

�

p∑
n=m

an =

p+r∑
n=m+r

an−r, for any whole number r.

We now turn our attention to the sums involving arithmetic and geometric sequences. Given an
arithmetic sequence ak = a+ (k − 1)d for k ≥ 1, we let S denote the sum of the first n terms. To
derive a formula for S, we write it out in two different ways

S = a + (a+ d) + . . . + (a+ (n− 2)d) + (a+ (n− 1)d)
S = (a+ (n− 1)d) + (a+ (n− 2)d) + . . . + (a+ d) + a

If we add these two equations and combine the terms which are aligned vertically, we get

2S = (2a+ (n− 1)d) + (2a+ (n− 1)d) + . . .+ (2a+ (n− 1)d) + (2a+ (n− 1)d)

The right hand side of this equation contains n terms, all of which are equal to (2a+ (n− 1)d) so
we get 2S = n(2a+ (n− 1)d). Dividing both sides of this equation by 2, we obtain the formula

3To see why, try writing the summation using ‘n’ as the index.
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S =
n

2
(2a+ (n− 1)d)

If we rewrite the quantity 2a+ (n− 1)d as a+ (a+ (n− 1)d) = a1 + an, we get the formula

S = n

(
a1 + an

2

)

A helpful way to remember this last formula is to recognize that we have expressed the sum as the
product of the number of terms n and the average of the first and nth terms.

To derive the formula for the geometric sum, we start with a geometric sequence ak = ark−1, k ≥ 1,
and let S once again denote the sum of the first n terms. Comparing S and rS, we get

S = a + ar + ar2 + . . . + arn−2 + arn−1

rS = ar + ar2 + . . . + arn−2 + arn−1 + arn

Subtracting the second equation from the first forces all of the terms except a and arn to cancel
out and we get S− rS = a− arn. Factoring, we get S(1− r) = a (1− rn). Assuming r 6= 1, we can
divide both sides by the quantity (1− r) to obtain

S = a

(
1− rn

1− r

)

If we distribute a through the numerator, we get a− arn = a1 − an+1 which yields the formula

S =
a1 − an+1

1− r

In the case when r = 1, we get the formula

S = a+ a+ . . .+ a︸ ︷︷ ︸
n times

= na

Our results are summarized below.
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Equation 9.2. Sums of Arithmetic and Geometric Sequences:

� The sum S of the first n terms of an arithmetic sequence ak = a+ (k − 1)d for k ≥ 1 is

S =
n∑
k=1

ak = n

(
a1 + an

2

)
=
n

2
(2a+ (n− 1)d)

� The sum S of the first n terms of a geometric sequence ak = ark−1 for k ≥ 1 is

1. S =
n∑
k=1

ak =
a1 − an+1

1− r
= a

(
1− rn

1− r

)
, if r 6= 1.

2. S =
n∑
k=1

ak =

n∑
k=1

a = na, if r = 1.

While we have made an honest effort to derive the formulas in Equation 9.2, formal proofs require
the machinery in Section 9.3. An application of the arithmetic sum formula which proves useful
in Calculus results in formula for the sum of the first n natural numbers. The natural numbers
themselves are a sequence4 1, 2, 3, . . . which is arithmetic with a = d = 1. Applying Equation 9.2,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2

So, for example, the sum of the first 100 natural numbers5 is 100(101)
2 = 5050.

An important application of the geometric sum formula is the investment plan called an annuity.
Annuities differ from the kind of investments we studied in Section 6.5 in that payments are
deposited into the account on an on-going basis, and this complicates the mathematics a little.6

Suppose you have an account with annual interest rate r which is compounded n times per year.
We let i = r

n denote the interest rate per period. Suppose we wish to make ongoing deposits of P
dollars at the end of each compounding period. Let Ak denote the amount in the account after k
compounding periods. Then A1 = P , because we have made our first deposit at the end of the first
compounding period and no interest has been earned. During the second compounding period, we
earn interest on A1 so that our initial investment has grown to A1(1 + i) = P (1 + i) in accordance
with Equation 6.1. When we add our second payment at the end of the second period, we get

A2 = A1(1 + i) + P = P (1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
The reason for factoring out the P (1 + i) will become apparent in short order. During the third
compounding period, we earn interest on A2 which then grows to A2(1 + i). We add our third

4This is the identity function on the natural numbers!
5There is an interesting anecdote which says that the famous mathematician Carl Friedrich Gauss was given this

problem in primary school and devised a very clever solution.
6The reader may wish to re-read the discussion on compound interest in Section 6.5 before proceeding.

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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payment at the end of the third compounding period to obtain

A3 = A2(1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
(1 + i) + P = P (1 + i)2

(
1 +

1

1 + i
+

1

(1 + i)2

)
During the fourth compounding period, A3 grows to A3(1+i), and when we add the fourth payment,
we factor out P (1 + i)3 to get

A4 = P (1 + i)3

(
1 +

1

1 + i
+

1

(1 + i)2
+

1

(1 + i)3

)
This pattern continues so that at the end of the kth compounding, we get

Ak = P (1 + i)k−1

(
1 +

1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1

)
The sum in the parentheses above is the sum of the first k terms of a geometric sequence with
a = 1 and r = 1

1+i . Using Equation 9.2, we get

1 +
1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1
= 1

1− 1

(1 + i)k

1− 1

1 + i

 =
(1 + i)

(
1− (1 + i)−k

)
i

Hence, we get

Ak = P (1 + i)k−1

(
(1 + i)

(
1− (1 + i)−k

)
i

)
=
P
(
(1 + i)k − 1

)
i

If we let t be the number of years this investment strategy is followed, then k = nt, and we get the
formula for the future value of an ordinary annuity.

Equation 9.3. Future Value of an Ordinary Annuity: Suppose an annuity offers an annual
interest rate r compounded n times per year. Let i = r

n be the interest rate per compounding
period. If a deposit P is made at the end of each compounding period, the amount A in the
account after t years is given by

A =
P
(
(1 + i)nt − 1

)
i

The reader is encouraged to substitute i = r
n into Equation 9.3 and simplify. Some familiar

equations arise which are cause for pause and meditation. One last note: if the deposit P is made
a the beginning of the compounding period instead of at the end, the annuity is called an annuity-
due. We leave the derivation of the formula for the future value of an annuity-due as an exercise
for the reader.
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Example 9.2.2. An ordinary annuity offers a 6% annual interest rate, compounded monthly.

1. If monthly payments of $50 are made, find the value of the annuity in 30 years.

2. How many years will it take for the annuity to grow to $100,000?

Solution.

1. We have r = 0.06 and n = 12 so that i = r
n = 0.06

12 = 0.005. With P = 50 and t = 30,

A =
50
(
(1 + 0.005)(12)(30) − 1

)
0.005

≈ 50225.75

Our final answer is $50,225.75.

2. To find how long it will take for the annuity to grow to $100,000, we set A = 100000 and
solve for t. We isolate the exponential and take natural logs of both sides of the equation.

100000 =
50
(
(1 + 0.005)12t − 1

)
0.005

10 = (1.005)12t − 1

(1.005)12t = 11

ln
(
(1.005)12t

)
= ln(11)

12t ln(1.005) = ln(11)

t = ln(11)
12 ln(1.005) ≈ 40.06

This means that it takes just over 40 years for the investment to grow to $100,000. Comparing
this with our answer to part 1, we see that in just 10 additional years, the value of the annuity
nearly doubles. This is a lesson worth remembering.

We close this section with a peek into Calculus by considering infinite sums, called series. Consider
the number 0.9. We can write this number as

0.9 = 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009 + . . .

From Example 9.2.1, we know we can write the sum of the first n of these terms as

0. 9 · · · 9︸ ︷︷ ︸
n nines

= .9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =

n∑
k=1

9

10k

Using Equation 9.2, we have
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n∑
k=1

9

10k
=

9

10

1− 1

10n+1

1− 1

10

 = 1− 1

10n+1

It stands to reason that 0.9 is the same value of 1− 1
10n+1 as n→∞. Our knowledge of exponential

expressions from Section 6.1 tells us that 1
10n+1 → 0 as n → ∞, so 1 − 1

10n+1 → 1. We have
just argued that 0.9 = 1, which may cause some distress for some readers.7 Any non-terminating
decimal can be thought of as an infinite sum whose denominators are the powers of 10, so the
phenomenon of adding up infinitely many terms and arriving at a finite number is not as foreign
of a concept as it may appear. We end this section with a theorem concerning geometric series.

Theorem 9.2. Geometric Series: Given the sequence ak = ark−1 for k ≥ 1, where |r| < 1,

a+ ar + ar2 + . . . =

∞∑
k=1

ark−1 =
a

1− r

If |r| ≥ 1, the sum a+ ar + ar2 + . . . is not defined.

The justification of the result in Theorem 9.2 comes from taking the formula in Equation 9.2 for the
sum of the first n terms of a geometric sequence and examining the formula as n→∞. Assuming
|r| < 1 means −1 < r < 1, so rn → 0 as n→∞. Hence as n→∞,

n∑
k=1

ark−1 = a

(
1− rn

1− r

)
→ a

1− r

As to what goes wrong when |r| ≥ 1, we leave that to Calculus as well, but will explore some cases
in the exercises.

7To make this more palatable, it is usually accepted that 0.3 = 1
3

so that 0.9 = 3
(
0.3
)

= 3
(

1
3

)
= 1. Feel better?
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9.2.1 Exercises

In Exercises 1 - 8, find the value of each sum using Definition 9.3.

1.
9∑
g=4

(5g + 3) 2.
8∑

k=3

1

k
3.

5∑
j=0

2j 4.
2∑

k=0

(3k − 5)xk

5.

4∑
i=1

1

4
(i2 + 1) 6.

100∑
n=1

(−1)n 7.

5∑
n=1

(n+ 1)!

n!
8.

3∑
j=1

5!

j! (5− j)!

In Exercises 9 - 16, rewrite the sum using summation notation.

9. 8 + 11 + 14 + 17 + 20 10. 1− 2 + 3− 4 + 5− 6 + 7− 8

11. x− x3

3
+
x5

5
− x7

7
12. 1 + 2 + 4 + · · ·+ 229

13. 2 + 3
2 + 4

3 + 5
4 + 6

5 14. − ln(3) + ln(4)− ln(5) + · · ·+ ln(20)

15. 1− 1
4 + 1

9 −
1
16 + 1

25 −
1
36 16. 1

2(x−5)+ 1
4(x−5)2 + 1

6(x−5)3 + 1
8(x−5)4

In Exercises 17 - 28, use the formulas in Equation 9.2 to find the sum.

17.
10∑
n=1

5n+ 3 18.
20∑
n=1

2n− 1 19.
15∑
k=0

3− k

20.

10∑
n=1

(
1

2

)n
21.

5∑
n=1

(
3

2

)n
22.

5∑
k=0

2

(
1

4

)k

23. 1 + 4 + 7 + . . .+ 295 24. 4 + 2 + 0− 2− . . .− 146 25. 1 + 3 + 9 + . . .+ 2187

26. 1
2 + 1

4 + 1
8 + . . .+ 1

256 27. 3− 3
2 + 3

4 −
3
8 +− · · ·+ 3

256 28.

10∑
n=1

−2n+

(
5

3

)n

In Exercises 29 - 32, use Theorem 9.2 to express each repeating decimal as a fraction of integers.

29. 0.7 30. 0.13 31. 10.159 32. −5.867
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In Exercises 33 - 38, use Equation 9.3 to compute the future value of the annuity with the given
terms. In all cases, assume the payment is made monthly, the interest rate given is the annual rate,
and interest is compounded monthly.

33. payments are $300, interest rate is 2.5%, term is 17 years.

34. payments are $50, interest rate is 1.0%, term is 30 years.

35. payments are $100, interest rate is 2.0%, term is 20 years

36. payments are $100, interest rate is 2.0%, term is 25 years

37. payments are $100, interest rate is 2.0%, term is 30 years

38. payments are $100, interest rate is 2.0%, term is 35 years

39. Suppose an ordinary annuity offers an annual interest rate of 2%, compounded monthly, for
30 years. What should the monthly payment be to have $100,000 at the end of the term?

40. Prove the properties listed in Theorem 9.1.

41. Show that the formula for the future value of an annuity due is

A = P (1 + i)

[
(1 + i)nt − 1

i

]

42. Discuss with your classmates what goes wrong when trying to find the following sums.8

(a)

∞∑
k=1

2k−1 (b)

∞∑
k=1

(1.0001)k−1 (c)

∞∑
k=1

(−1)k−1

8When in doubt, write them out!
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9.2.2 Answers

1. 213 2. 341
280 3. 63 4. −5− 2x+ x2

5. 17
2 6. 0 7. 20 8. 25

9.
5∑

k=1

(3k + 5) 10.
8∑

k=1

(−1)k−1k 11.
4∑

k=1

(−1)k−1 x
2k−1

2k − 1
12.

30∑
k=1

2k−1

13.

5∑
k=1

k + 1

k
14.

20∑
k=3

(−1)k ln(k) 15.

6∑
k=1

(−1)k−1

k2
16.

4∑
k=1

1

2k
(x− 5)k

17. 305 18. 400 19. −72 20.
1023

1024

21.
633

32
22.

1365

512
23. 14652 24. −5396

25. 3280 26.
255

256
27.

513

256
28.

17771050

59049

29.
7

9
30.

13

99
31.

3383

333
32. −5809

990

33. $76,163.67 34. $20,981.40 35. $29,479.69 36. $38,882.12

37. 49,272.55 38. 60,754.80

39. For $100,000, the monthly payment is ≈ $202.95.
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9.3 Mathematical Induction

The Chinese philosopher Confucius is credited with the saying, “A journey of a thousand miles
begins with a single step.” In many ways, this is the central theme of this section. Here we introduce
a method of proof, Mathematical Induction, which allows us to prove many of the formulas we have
merely motivated in Sections 9.1 and 9.2 by starting with just a single step. A good example is
the formula for arithmetic sequences we touted in Equation 9.1. Arithmetic sequences are defined
recursively, starting with a1 = a and then an+1 = an + d for n ≥ 1. This tells us that we start the
sequence with a and we go from one term to the next by successively adding d. In symbols,

a, a+ d, a+ 2d, a+ 3d, a+ 4d+ . . .

The pattern suggested here is that to reach the nth term, we start with a and add d to it exactly
n− 1 times, which lead us to our formula an = a+ (n− 1)d for n ≥ 1. But how do we prove this
to be the case? We have the following.

The Principle of Mathematical Induction (PMI): Suppose P (n) is a sentence involving
the natural number n.

IF

1. P (1) is true and

2. whenever P (k) is true, it follows that P (k + 1) is also true

THEN the sentence P (n) is true for all natural numbers n.

The Principle of Mathematical Induction, or PMI for short, is exactly that - a principle.1 It is a
property of the natural numbers we either choose to accept or reject. In English, it says that if we
want to prove that a formula works for all natural numbers n, we start by showing it is true for
n = 1 (the ‘base step’) and then show that if it is true for a generic natural number k, it must be
true for the next natural number, k + 1 (the ‘inductive step’). The notation P (n) acts just like
function notation. For example, if P (n) is the sentence (formula) ‘n2 + 1 = 3’, then P (1) would
be ‘12 + 1 = 3’, which is false. The construction P (k + 1) would be ‘(k + 1)2 + 1 = 3’. As usual,
this new concept is best illustrated with an example. Returning to our quest to prove the formula
for an arithmetic sequence, we first identify P (n) as the formula an = a+ (n− 1)d. To prove this
formula is valid for all natural numbers n, we need to do two things. First, we need to establish
that P (1) is true. In other words, is it true that a1 = a + (1 − 1)d? The answer is yes, since this
simplifies to a1 = a, which is part of the definition of the arithmetic sequence. The second thing
we need to show is that whenever P (k) is true, it follows that P (k+ 1) is true. In other words, we
assume P (k) is true (this is called the ‘induction hypothesis’) and deduce that P (k + 1) is also
true. Assuming P (k) to be true seems to invite disaster - after all, isn’t this essentially what we’re
trying to prove in the first place? To help explain this step a little better, we show how this works
for specific values of n. We’ve already established P (1) is true, and we now want to show that P (2)

1Another word for this you may have seen is ‘axiom.’

http://en.wikipedia.org/wiki/Confucius
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is true. Thus we need to show that a2 = a+(2−1)d. Since P (1) is true, we have a1 = a, and by the
definition of an arithmetic sequence, a2 = a1 +d = a+d = a+(2−1)d. So P (2) is true. We now use
the fact that P (2) is true to show that P (3) is true. Using the fact that a2 = a+ (2− 1)d, we show
a3 = a+(3−1)d. Since a3 = a2 +d, we get a3 = (a+(2−1)d)+d = a+2d = a+(3−1)d, so we have
shown P (3) is true. Similarly, we can use the fact that P (3) is true to show that P (4) is true, and so
forth. In general, if P (k) is true (i.e., ak = a+(k−1)d) we set out to show that P (k+1) is true (i.e.,
ak+1 = a+ ((k+ 1)− 1)d). Assuming ak = a+ (k− 1)d, we have by the definition of an arithmetic
sequence that ak+1 = ak + d so we get ak+1 = (a + (k − 1)d) + d = a + kd = a + ((k + 1) − 1)d.
Hence, P (k + 1) is true.

In essence, by showing that P (k + 1) must always be true when P (k) is true, we are showing that
the formula P (1) can be used to get the formula P (2), which in turn can be used to derive the
formula P (3), which in turn can be used to establish the formula P (4), and so on. Thus as long
as P (k) is true for some natural number k, P (n) is true for all of the natural numbers n which
follow k. Coupling this with the fact P (1) is true, we have established P (k) is true for all natural
numbers which follow n = 1, in other words, all natural numbers n. One might liken Mathematical
Induction to a repetitive process like climbing stairs.2 If you are sure that (1) you can get on the
stairs (the base case) and (2) you can climb from any one step to the next step (the inductive step),
then presumably you can climb the entire staircase.3 We get some more practice with induction in
the following example.

Example 9.3.1. Prove the following assertions using the Principle of Mathematical Induction.

1. The sum formula for arithmetic sequences:

n∑
j=1

(a+ (j − 1)d) =
n

2
(2a+ (n− 1)d).

2. For a complex number z, (z)n = zn for n ≥ 1.

3. 3n > 100n for n > 5.

4. Let A be an n× n matrix and let A′ be the matrix obtained by replacing a row R of A with
cR for some real number c. Use the definition of determinant to show det(A′) = cdet(A).

Solution.

1. We set P (n) to be the equation we are asked to prove. For n = 1, we compare both sides of
the equation given in P (n)

1∑
j=1

(a+ (j − 1)d)
?
=

1

2
(2a+ (1− 1)d)

a+ (1− 1)d
?
=

1

2
(2a)

a = aX

2Falling dominoes is the most widely used metaphor in the mainstream College Algebra books.
3This is how Carl climbed the stairs in the Cologne Cathedral. Well, that, and encouragement from Kai.
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This shows the base case P (1) is true. Next we assume P (k) is true, that is, we assume

k∑
j=1

(a+ (j − 1)d) =
k

2
(2a+ (k − 1)d)

and attempt to use this to show P (k + 1) is true. Namely, we must show

k+1∑
j=1

(a+ (j − 1)d) =
k + 1

2
(2a+ (k + 1− 1)d)

To see how we can use P (k) in this case to prove P (k+ 1), we note that the sum in P (k+ 1)
is the sum of the first k + 1 terms of the sequence ak = a+ (k − 1)d for k ≥ 1 while the sum
in P (k) is the sum of the first k terms. We compare both side of the equation in P (k + 1).

k+1∑
j=1

(a+ (j − 1)d)︸ ︷︷ ︸
summing the first k + 1 terms

?
=

k + 1

2
(2a+ (k + 1− 1)d)

k∑
j=1

(a+ (j − 1)d)︸ ︷︷ ︸
summing the first k terms

+ (a+ (k + 1− 1)d)︸ ︷︷ ︸
adding the (k + 1)st term

?
=

k + 1

2
(2a+ kd)

k

2
(2a+ (k − 1)d)︸ ︷︷ ︸

Using P (k)

+(a+ kd)
?
=

(k + 1)(2a+ kd)

2

k(2a+ (k − 1)d) + 2(a+ kd)

2

?
=

2ka+ k2d+ 2a+ kd

2

2ka+ 2a+ k2d+ kd

2
=

2ka+ 2a+ k2d+ kd

2
X

Since all of our steps on both sides of the string of equations are reversible, we conclude that
the two sides of the equation are equivalent and hence, P (k + 1) is true. By the Principle of
Mathematical Induction, we have that P (n) is true for all natural numbers n.

2. We let P (n) be the formula (z)n = zn. The base case P (1) is (z)1 = z1, which reduces to

z = z which is true. We now assume P (k) is true, that is, we assume (z)k = zk and attempt
to show that P (k+1) is true. Since (z)k+1 = (z)k z, we can use the induction hypothesis and
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write (z)k = zk. Hence, (z)k+1 = (z)k z = zk z. We now use the product rule for conjugates4

to write zk z = zkz = zk+1. This establishes (z)k+1 = zk+1, so that P (k + 1) is true. Hence,
by the Principle of Mathematical Induction, (z)n = zn for all n ≥ 1.

3. The first wrinkle we encounter in this problem is that we are asked to prove this formula for
n > 5 instead of n ≥ 1. Since n is a natural number, this means our base step occurs at
n = 6. We can still use the PMI in this case, but our conclusion will be that the formula is
valid for all n ≥ 6. We let P (n) be the inequality 3n > 100n, and check that P (6) is true.
Comparing 36 = 729 and 100(6) = 600, we see 36 > 100(6) as required. Next, we assume
that P (k) is true, that is we assume 3k > 100k. We need to show that P (k + 1) is true, that
is, we need to show 3k+1 > 100(k + 1). Since 3k+1 = 3 · 3k, the induction hypothesis gives
3k+1 = 3 · 3k > 3(100k) = 300k. We are done if we can show 300k > 100(k + 1) for k ≥ 6.
Solving 300k > 100(k + 1) we get k > 1

2 . Since k ≥ 6, we know this is true. Putting all of
this together, we have 3k+1 = 3 · 3k > 3(100k) = 300k > 100(k + 1), and hence P (k + 1) is
true. By induction, 3n > 100n for all n ≥ 6.

4. To prove this determinant property, we use induction on n, where we take P (n) to be that
the property we wish to prove is true for all n×n matrices. For the base case, we note that if
A is a 1× 1 matrix, then A = [a] so A′ = [ca]. By definition, det(A) = a and det(A′) = ca so
we have det(A′) = cdet(A) as required. Now suppose that the property we wish to prove is
true for all k×k matrices. Let A be a (k+1)× (k+1) matrix. We have two cases, depending
on whether or not the row R being replaced is the first row of A.

Case 1: The row R being replaced is the first row of A. By definition,

det(A′) =
n∑
p=1

a′1pC
′
1p

where the 1p cofactor of A′ is C ′1p = (−1)(1+p) det
(
A′1p
)

and A′1p is the k× k matrix obtained
by deleting the 1st row and pth column of A′.5 Since the first row of A′ is c times the first
row of A, we have a′1p = c a1p. In addition, since the remaining rows of A′ are identical to
those of A, A′1p = A1p. (To obtain these matrices, the first row of A′ is removed.) Hence
det
(
A′1p
)

= det (A1p), so that C ′1p = C1p. As a result, we get

det(A′) =
n∑
p=1

a′1pC
′
1p =

n∑
p=1

c a1pC1p = c
n∑
p=1

a1pC1p = c det(A),

as required. Hence, P (k + 1) is true in this case, which means the result is true in this case
for all natural numbers n ≥ 1. (You’ll note that we did not use the induction hypothesis at
all in this case. It is possible to restructure the proof so that induction is only used where

4See Exercise 54 in Section 3.4.
5See Section 8.5 for a review of this notation.
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it is needed. While mathematically more elegant, it is less intuitive, and we stand by our
approach because of its pedagogical value.)

Case 2: The row R being replaced is the not the first row of A. By definition,

det(A′) =
n∑
p=1

a′1pC
′
1p,

where in this case, a′1p = a1p, since the first rows of A and A′ are the same. The matrices
A′1p and A1p, on the other hand, are different but in a very predictable way − the row in A′1p
which corresponds to the row cR in A′ is exactly c times the row in A1p which corresponds to
the row R in A. In other words, A′1p and A1p are k × k matrices which satisfy the induction
hypothesis. Hence, we know det

(
A′1p
)

= cdet (A1p) and C ′1p = cC1p. We get

det(A′) =

n∑
p=1

a′1pC
′
1p =

n∑
p=1

a1pcC1p = c
n∑
p=1

a1pC1p = cdet(A),

which establishes P (k + 1) to be true. Hence by induction, we have shown that the result
holds in this case for n ≥ 1 and we are done.

While we have used the Principle of Mathematical Induction to prove some of the formulas we have
merely motivated in the text, our main use of this result comes in Section 9.4 to prove the celebrated
Binomial Theorem. The ardent Mathematics student will no doubt see the PMI in many courses
yet to come. Sometimes it is explicitly stated and sometimes it remains hidden in the background.
If ever you see a property stated as being true ‘for all natural numbers n’, it’s a solid bet that the
formal proof requires the Principle of Mathematical Induction.
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9.3.1 Exercises

In Exercises 1 - 7, prove each assertion using the Principle of Mathematical Induction.

1.
n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6

2.

n∑
j=1

j3 =
n2(n+ 1)2

4

3. 2n > 500n for n > 12

4. 3n ≥ n3 for n ≥ 4

5. Use the Product Rule for Absolute Value to show |xn| = |x|n for all real numbers x and all
natural numbers n ≥ 1

6. Use the Product Rule for Logarithms to show log (xn) = n log(x) for all real numbers x > 0
and all natural numbers n ≥ 1.

7.

[
a 0
0 b

]n
=

[
an 0
0 bn

]
for n ≥ 1.

8. Prove Equations 9.1 and 9.2 for the case of geometric sequences. That is:

(a) For the sequence a1 = a, an+1 = ran, n ≥ 1, prove an = arn−1, n ≥ 1.

(b)
n∑
j=1

arn−1 = a

(
1− rn

1− r

)
, if r 6= 1,

n∑
j=1

arn−1 = na, if r = 1.

9. Prove that the determinant of a lower triangular matrix is the product of the entries on the
main diagonal. (See Exercise 8.3.1 in Section 8.3.) Use this result to then show det (In) = 1
where In is the n× n identity matrix.

10. Discuss the classic ‘paradox’ All Horses are the Same Color problem with your classmates.

http://en.wikipedia.org/wiki/All_horses_are_the_same_color
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9.3.2 Selected Answers

1. Let P (n) be the sentence

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
. For the base case, n = 1, we get

1∑
j=1

j2 ?
=

(1)(1 + 1)(2(1) + 1)

6

12 = 1X

We now assume P (k) is true and use it to show P (k + 1) is true. We have

k+1∑
j=1

j2 ?
=

(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

k∑
j=1

j2 + (k + 1)2 ?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1)

6︸ ︷︷ ︸
Using P (k)

+(k + 1)2 ?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1)

6
+

6(k + 1)2

6

?
=

(k + 1)(k + 2)(2k + 3)

6

k(k + 1)(2k + 1) + 6(k + 1)2

6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)(k(2k + 1) + 6(k + 1))

6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)
(
2k2 + 7k + 6

)
6

?
=

(k + 1)(k + 2)(2k + 3)

6

(k + 1)(k + 2)(2k + 3)

6
=

(k + 1)(k + 2)(2k + 3)

6
X

By induction,

n∑
j=1

j2 =
n(n+ 1)(2n+ 1)

6
is true for all natural numbers n ≥ 1.

4. Let P (n) be the sentence 3n > n3. Our base case is n = 4 and we check 34 = 81 and
43 = 64 so that 34 > 43 as required. We now assume P (k) is true, that is 3k > k3, and
try to show P (k + 1) is true. We note that 3k+1 = 3 · 3k > 3k3 and so we are done if
we can show 3k3 > (k + 1)3 for k ≥ 4. We can solve the inequality 3x3 > (x + 1)3 using
the techniques of Section 5.3, and doing so gives us x > 1

3√3−1
≈ 2.26. Hence, for k ≥ 4,

3k+1 = 3 · 3k > 3k3 > (k + 1)3 so that 3k+1 > (k + 1)3. By induction, 3n > n3 is true for all
natural numbers n ≥ 4.
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6. Let P (n) be the sentence log (xn) = n log(x). For the duration of this argument, we assume
x > 0. The base case P (1) amounts checking that log

(
x1
)

= 1 log(x) which is clearly true.
Next we assume P (k) is true, that is log

(
xk
)

= k log(x) and try to show P (k + 1) is true.
Using the Product Rule for Logarithms along with the induction hypothesis, we get

log
(
xk+1

)
= log

(
xk · x

)
= log

(
xk
)

+ log(x) = k log(x) + log(x) = (k + 1) log(x)

Hence, log
(
xk+1

)
= (k + 1) log(x). By induction log (xn) = n log(x) is true for all x > 0 and

all natural numbers n ≥ 1.

9. Let A be an n×n lower triangular matrix. We proceed to prove the det(A) is the product of
the entries along the main diagonal by inducting on n. For n = 1, A = [a] and det(A) = a,
so the result is (trivially) true. Next suppose the result is true for k × k lower triangular
matrices. Let A be a (k + 1)× (k + 1) lower triangular matrix. Expanding det(A) along the
first row, we have

det(A) =
n∑
p=1

a1pC1p

Since a1p = 0 for 2 ≤ p ≤ k + 1, this simplifies det(A) = a11C11. By definition, we know that
C11 = (−1)1+1 det (A11) = det (A11) where A11 is k × k matrix obtained by deleting the first
row and first column of A. Since A is lower triangular, so is A11 and, as such, the induction
hypothesis applies to A11. In other words, det (A11) is the product of the entries along A11’s
main diagonal. Now, the entries on the main diagonal of A11 are the entries a22, a33, . . . ,
a(k+1)(k+1) from the main diagonal of A. Hence,

det(A) = a11 det (A11) = a11

(
a22a33 · · · a(k+1)(k+1)

)
= a11a22a33 · · · a(k+1)(k+1)

We have det(A) is the product of the entries along its main diagonal. This shows P (k+ 1) is
true, and, hence, by induction, the result holds for all n× n upper triangular matrices. The
n× n identity matrix In is a lower triangular matrix whose main diagonal consists of all 1’s.
Hence, det (In) = 1, as required.
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9.4 The Binomial Theorem

In this section, we aim to prove the celebrated Binomial Theorem. Simply stated, the Binomial
Theorem is a formula for the expansion of quantities (a+b)n for natural numbers n. In Elementary
and Intermediate Algebra, you should have seen specific instances of the formula, namely

(a+ b)1 = a+ b
(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3

If we wanted the expansion for (a+b)4 we would write (a+b)4 = (a+b)(a+b)3 and use the formula
that we have for (a+b)3 to get (a+b)4 = (a+b)

(
a3 + 3a2b+ 3ab2 + b3

)
= a4+4a3b+6a2b2+4ab3+b4.

Generalizing this a bit, we see that if we have a formula for (a + b)k, we can obtain a formula for
(a+ b)k+1 by rewriting the latter as (a+ b)k+1 = (a+ b)(a+ b)k. Clearly this means Mathematical
Induction plays a major role in the proof of the Binomial Theorem.1 Before we can state the
theorem we need to revisit the sequence of factorials which were introduced in Example 9.1.1
number 6 in Section 9.1.

Definition 9.4. Factorials: For a whole number n, n factorial, denoted n!, is the term fn of
the sequence f0 = 1, fn = n · fn−1, n ≥ 1.

Recall this means 0! = 1 and n! = n(n − 1)! for n ≥ 1. Using the recursive definition, we get:
1! = 1 · 0! = 1 · 1 = 1, 2! = 2 · 1! = 2 · 1 = 2, 3! = 3 · 2! = 3 · 2 · 1 = 6 and 4! = 4 · 3! = 4 · 3 · 2 · 1 = 24.
Informally, n! = n · (n − 1) · (n − 2) · · · 2 · 1 with 0! = 1 as our ‘base case.’ Our first example
familiarizes us with some of the basic computations involving factorials.

Example 9.4.1.

1. Simplify the following expressions.

(a)
3! 2!

0!
(b)

7!

5!
(c)

1000!

998! 2!
(d)

(k + 2)!

(k − 1)!
, k ≥ 1

2. Prove n! > 3n for all n ≥ 7.

Solution.

1. We keep in mind the mantra, “When in doubt, write it out!” as we simplify the following.

(a) We have been programmed to react with alarm to the presence of a 0 in the denominator,
but in this case 0! = 1, so the fraction is defined after all. As for the numerator,
3! = 3 · 2 · 1 = 6 and 2! = 2 · 1 = 2, so we have 3! 2!

0! = (6)(2)
1 = 12.

1It’s pretty much the reason Section 9.3 is in the book.
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(b) We have 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 while 5! = 5 · 4 · 3 · 2 · 1 = 120. Dividing, we get
7!
5! = 5040

120 = 42. While this is correct, we note that we could have saved ourselves some
of time had we proceeded as follows

7!

5!
=

7 · 6 · 5 · 4 · 3 · 2 · 1
5 · 4 · 3 · 2 · 1

=
7 · 6 · �5 · �4 · �3 · �2 · �1
�5 · �4 · �3 · �2 · �1

= 7 · 6 = 42

In fact, should we want to fully exploit the recursive nature of the factorial, we can write

7!

5!
=

7 · 6 · 5!

5!
=

7 · 6 ·��5!

��5!
= 42

(c) Keeping in mind the lesson we learned from the previous problem, we have

1000!

998! 2!
=

1000 · 999 · 998!

998! · 2!
=

1000 · 999 ·���998!

���998! · 2!
=

999000

2
= 499500

(d) This problem continues the theme which we have seen in the previous two problems.
We first note that since k + 2 is larger than k − 1, (k + 2)! contains all of the factors
of (k − 1)! and as a result we can get the (k − 1)! to cancel from the denominator. To
see this, we begin by writing out (k+ 2)! starting with (k+ 2) and multiplying it by the
numbers which precede it until we reach (k − 1): (k + 2)! = (k + 2)(k + 1)(k)(k − 1)!.
As a result, we have

(k + 2)!

(k − 1)!
=

(k + 2)(k + 1)(k)(k − 1)!

(k − 1)!
=

(k + 2)(k + 1)(k)���
�(k − 1)!

���
�(k − 1)!

= k(k + 1)(k + 2)

The stipulation k ≥ 1 is there to ensure that all of the factorials involved are defined.

2. We proceed by induction and let P (n) be the inequality n! > 3n. The base case here is n = 7
and we see that 7! = 5040 is larger than 37 = 2187, so P (7) is true. Next, we assume that P (k)
is true, that is, we assume k! > 3k and attempt to show P (k+1) follows. Using the properties
of the factorial, we have (k + 1)! = (k + 1)k! and since k! > 3k, we have (k + 1)! > (k + 1)3k.
Since k ≥ 7, k + 1 ≥ 8, so (k + 1)3k ≥ 8 · 3k > 3 · 3k = 3k+1. Putting all of this together, we
have (k + 1)! = (k + 1)k! > (k + 1)3k > 3k+1 which shows P (k + 1) is true. By the Principle
of Mathematical Induction, we have n! > 3n for all n ≥ 7.

Of all of the mathematical animals we have discussed in the text, factorials grow most quickly. In
problem 2 of Example 9.4.1, we proved that n! overtakes 3n at n = 7. ‘Overtakes’ may be too
polite a word, since n! thoroughly trounces 3n for n ≥ 7, as any reasonable set of data will show.
It can be shown that for any real number x > 0, not only does n! eventually overtake xn, but the
ratio xn

n! → 0 as n→∞.2

Applications of factorials in the wild often involve counting arrangements. For example, if you have
fifty songs on your mp3 player and wish arrange these songs in a playlist in which the order of the

2This fact is far more important than you could ever possibly imagine.
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songs matters, it turns out that there are 50! different possible playlists. If you wish to select only
ten of the songs to create a playlist, then there are 50!

40! such playlists. If, on the other hand, you just
want to select ten song files out of the fifty to put on a flash memory card so that now the order
no longer matters, there are 50!

40!10! ways to achieve this.3 While some of these ideas are explored
in the Exercises, the authors encourage you to take courses such as Finite Mathematics, Discrete
Mathematics and Statistics. We introduce these concepts here because this is how the factorials
make their way into the Binomial Theorem, as our next definition indicates.

Definition 9.5. Binomial Coefficients: Given two whole numbers n and j with n ≥ j, the

binomial coefficient

(
n

j

)
(read, n choose j) is the whole number given by(

n

j

)
=

n!

j!(n− j)!

The name ‘binomial coefficient’ will be justified shortly. For now, we can physically interpret(
n
j

)
as the number of ways to select j items from n items where the order of the items selected is

unimportant. For example, suppose you won two free tickets to a special screening of the latest
Hollywood blockbuster and have five good friends each of whom would love to accompany you to
the movies. There are

(
5
2

)
ways to choose who goes with you. Applying Definition 9.5, we get

(
5

2

)
=

5!

2!(5− 2)!
=

5!

2!3!
=

5 · 4
2

= 10

So there are 10 different ways to distribute those two tickets among five friends. (Some will see it
as 10 ways to decide which three friends have to stay home.) The reader is encouraged to verify
this by actually taking the time to list all of the possibilities.

We now state anf prove a theorem which is crucial to the proof of the Binomial Theorem.

Theorem 9.3. For natural numbers n and j with n ≥ j,(
n

j − 1

)
+

(
n

j

)
=

(
n+ 1

j

)
The proof of Theorem 9.3 is purely computational and uses the definition of binomial coefficients,
the recursive property of factorials and common denominators.

3For reference,

50! = 30414093201713378043612608166064768844377641568960512000000000000,
50!

40!
= 37276043023296000, and

50!

40!10!
= 10272278170
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(
n

j − 1

)
+

(
n

j

)
=

n!

(j − 1)!(n− (j − 1))!
+

n!

j!(n− j)!

=
n!

(j − 1)!(n− j + 1)!
+

n!

j!(n− j)!

=
n!

(j − 1)!(n− j + 1)(n− j)!
+

n!

j(j − 1)!(n− j)!

=
n! j

j(j − 1)!(n− j + 1)(n− j)!
+

n!(n− j + 1)

j(j − 1)!(n− j + 1)(n− j)!

=
n! j

j!(n− j + 1)!
+
n!(n− j + 1)

j!(n− j + 1)!

=
n! j + n!(n− j + 1)

j!(n− j + 1)!

=
n! (j + (n− j + 1))

j!(n− j + 1)!

=
(n+ 1)n!

j!(n+ 1− j))!

=
(n+ 1)!

j!((n+ 1)− j))!

=

(
n+ 1

j

)
X

We are now in position to state and prove the Binomial Theorem where we see that binomial
coefficients are just that - coefficients in the binomial expansion.

Theorem 9.4. Binomial Theorem: For nonzero real numbers a and b,

(a+ b)n =
n∑
j=0

(
n

j

)
an−jbj

for all natural numbers n.

To get a feel of what this theorem is saying and how it really isn’t as hard to remember as it may
first appear, let’s consider the specific case of n = 4. According to the theorem, we have
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(a+ b)4 =
4∑
j=0

(
4

j

)
a4−jbj

=

(
4

0

)
a4−0b0 +

(
4

1

)
a4−1b1 +

(
4

2

)
a4−2b2 +

(
4

3

)
a4−3b3 +

(
4

4

)
a4−4b4

=

(
4

0

)
a4 +

(
4

1

)
a3b+

(
4

2

)
a2b2 +

(
4

3

)
ab3 +

(
4

4

)
b4

We forgo the simplification of the coefficients in order to note the pattern in the expansion. First
note that in each term, the total of the exponents is 4 which matched the exponent of the binomial
(a+b)4. The exponent on a begins at 4 and decreases by one as we move from one term to the next
while the exponent on b starts at 0 and increases by one each time. Also note that the binomial
coefficients themselves have a pattern. The upper number, 4, matches the exponent on the binomial
(a + b)4 whereas the lower number changes from term to term and matches the exponent of b in
that term. This is no coincidence and corresponds to the kind of counting we discussed earlier. If
we think of obtaining (a+ b)4 by multiplying (a+ b)(a+ b)(a+ b)(a+ b), our answer is the sum of
all possible products with exactly four factors - some a, some b. If we wish to count, for instance,
the number of ways we obtain 1 factor of b out of a total of 4 possible factors, thereby forcing the
remaining 3 factors to be a, the answer is

(
4
1

)
. Hence, the term

(
4
1

)
a3b is in the expansion. The

other terms which appear cover the remaining cases. While this discussion gives an indication as
to why the theorem is true, a formal proof requires Mathematical Induction.4

To prove the Binomial Theorem, we let P (n) be the expansion formula given in the statement of
the theorem and we note that P (1) is true since

(a+ b)1 ?
=

1∑
j=0

(
1

j

)
a1−jbj

a+ b
?
=

(
1

0

)
a1−0b0 +

(
1

1

)
a1−1b1

a+ b = a+ bX

Now we assume that P (k) is true. That is, we assume that we can expand (a + b)k using the
formula given in Theorem 9.4 and attempt to show that P (k + 1) is true.

4and a fair amount of tenacity and attention to detail.
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(a+ b)k+1 = (a+ b)(a+ b)k

= (a+ b)
k∑
j=0

(
k

j

)
ak−jbj

= a

k∑
j=0

(
k

j

)
ak−jbj + b

k∑
j=0

(
k

j

)
ak−jbj

=

k∑
j=0

(
k

j

)
ak+1−jbj +

k∑
j=0

(
k

j

)
ak−jbj+1

Our goal is to combine as many of the terms as possible within the two summations. As the counter
j in the first summation runs from 0 through k, we get terms involving ak+1, akb, ak−1b2, . . . , abk.
In the second summation, we get terms involving akb, ak−1b2, . . . , abk, bk+1. In other words, apart
from the first term in the first summation and the last term in the second summation, we have
terms common to both summations. Our next move is to ‘kick out’ the terms which we cannot
combine and rewrite the summations so that we can combine them. To that end, we note

k∑
j=0

(
k

j

)
ak+1−jbj = ak+1 +

k∑
j=1

(
k

j

)
ak+1−jbj

and

k∑
j=0

(
k

j

)
ak−jbj+1 =

k−1∑
j=0

(
k

j

)
ak−jbj+1 + bk+1

so that

(a+ b)k+1 = ak+1 +

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1 + bk+1

We now wish to write

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1

as a single summation. The wrinkle is that the first summation starts with j = 1, while the second
starts with j = 0. Even though the sums produce terms with the same powers of a and b, they do
so for different values of j. To resolve this, we need to shift the index on the second summation so
that the index j starts at j = 1 instead of j = 0 and we make use of Theorem 9.1 in the process.
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k−1∑
j=0

(
k

j

)
ak−jbj+1 =

k−1+1∑
j=0+1

(
k

j − 1

)
ak−(j−1)b(j−1)+1

=
k∑
j=1

(
k

j − 1

)
ak+1−jbj

We can now combine our two sums using Theorem 9.1 and simplify using Theorem 9.3

k∑
j=1

(
k

j

)
ak+1−jbj +

k−1∑
j=0

(
k

j

)
ak−jbj+1 =

k∑
j=1

(
k

j

)
ak+1−jbj +

k∑
j=1

(
k

j − 1

)
ak+1−jbj

=
k∑
j=1

[(
k

j

)
+

(
k

j − 1

)]
ak+1−jbj

=

k∑
j=1

(
k + 1

j

)
ak+1−jbj

Using this and the fact that
(
k+1

0

)
= 1 and

(
k+1
k+1

)
= 1, we get

(a+ b)k+1 = ak+1 +

k∑
j=1

(
k + 1

j

)
ak+1−jbj + bk+1

=

(
k + 1

0

)
ak+1b0 +

k∑
j=1

(
k + 1

j

)
ak+1−jbj +

(
k + 1

k + 1

)
a0bk+1

=
k+1∑
j=0

(
k + 1

j

)
a(k+1)−jbj

which shows that P (k + 1) is true. Hence, by induction, we have established that the Binomial
Theorem holds for all natural numbers n.

Example 9.4.2. Use the Binomial Theorem to find the following.

1. (x− 2)4 2. 2.13

3. The term containing x3 in the expansion (2x+ y)5

Solution.

1. Since (x− 2)4 = (x+ (−2))4, we identify a = x, b = −2 and n = 4 and obtain
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(x− 2)4 =

4∑
j=0

(
4

j

)
x4−j(−2)j

=

(
4

0

)
x4−0(−2)0+

(
4

1

)
x4−1(−2)1+

(
4

2

)
x4−2(−2)2+

(
4

3

)
x4−3(−2)3+

(
4

4

)
x4−4(−2)4

= x4 − 8x3 + 24x2 − 32x+ 16

2. At first this problem seem misplaced, but we can write 2.13 = (2 + 0.1)3. Identifying a = 2,
b = 0.1 = 1

10 and n = 3, we get

(
2 +

1

10

)3

=
3∑
j=0

(
3

j

)
23−j

(
1

10

)j
=

(
3

0

)
23−0

(
1

10

)0

+

(
3

1

)
23−1

(
1

10

)1

+

(
3

2

)
23−2

(
1

10

)2

+

(
3

3

)
23−3

(
1

10

)3

= 8 +
12

10
+

6

100
+

1

1000

= 8 + 1.2 + 0.06 + 0.001
= 9.261

3. Identifying a = 2x, b = y and n = 5, the Binomial Theorem gives

(2x+ y)5 =
5∑
j=0

(
5

j

)
(2x)5−jyj

Since we are concerned with only the term containing x3, there is no need to expand the
entire sum. The exponents on each term must add to 5 and if the exponent on x is 3, the
exponent on y must be 2. Plucking out the term j = 2, we get

(
5

2

)
(2x)5−2y2 = 10(2x)3y2 = 80x3y2

We close this section with Pascal’s Triangle, named in honor of the mathematician Blaise Pascal.
Pascal’s Triangle is obtained by arranging the binomial coefficients in the triangular fashion below.

http://en.wikipedia.org/wiki/Pascal's_triangle
http://en.wikipedia.org/wiki/Blaise_Pascal
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(
0

0

)
(

1

0

) (
1

1

)
↘↙(

2

0

) (
2

1

) (
2

2

)
↘↙ ↘↙(

3

0

) (
3

1

) (
3

2

) (
3

3

)
↘↙ ↘↙ ↘↙(

4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)
...

Since
(
n
0

)
= 1 and

(
n
n

)
= 1 for all whole numbers n, we get that each row of Pascal’s Triangle

begins and ends with 1. To generate the numbers in the middle of the rows (from the third row
onwards), we take advantage of the additive relationship expressed in Theorem 9.3. For instance,(

1
0

)
+
(

1
1

)
=
(

2
1

)
,
(

2
0

)
+
(

2
1

)
=
(

3
1

)
and so forth. This relationship is indicated by the arrows in the

array above. With these two facts in hand, we can quickly generate Pascal’s Triangle. We start
with the first two rows, 1 and 1 1. From that point on, each successive row begins and ends with
1 and the middle numbers are generated using Theorem 9.3. Below we attempt to demonstrate
this building process to generate the first five rows of Pascal’s Triangle.

1
1 1
↘↙

1 1 + 1 1

−−−−−−→
1

1 1
1 2 1

1
1 1

1 2 1
↘↙ ↘↙

1 1 + 2 2 + 1 1

−−−−−−→

1
1 1

1 2 1
1 3 3 1

1
1 1

1 2 1
1 3 3 1
↘↙ ↘↙ ↘↙

1 1 + 3 3 + 3 3 + 1 1

−−−−−−→

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
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To see how we can use Pascal’s Triangle to expedite the Binomial Theorem, suppose we wish to
expand (3x − y)4. The coefficients we need are

(
4
j

)
for j = 0, 1, 2, 3, 4 and are the numbers which

form the fifth row of Pascal’s Triangle. Since we know that the exponent of 3x in the first term is
4 and then decreases by one as we go from left to right while the exponent of −y starts at 0 in the
first term and then increases by one as we move from left to right, we quickly obtain

(3x− y)4 = (1)(3x)4 + (4)(3x)3(−y) + (6)(3x)2(−y)2 + 4(3x)(−y)3 + 1(−y)4

= 81x4 − 108x3y + 54x2y2 − 12xy3 + y4

We would like to stress that Pascal’s Triangle is a very quick method to expand an entire binomial.
If only a term (or two or three) is required, then the Binomial Theorem is definitely the way to go.
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9.4.1 Exercises

In Exercises 1 - 9, simplify the given expression.

1. (3!)2
2.

10!

7!
3.

7!

233!

4.
9!

4!3!2!
5.

(n+ 1)!

n!
, n ≥ 0. 6.

(k − 1)!

(k + 2)!
, k ≥ 1.

7.

(
8

3

)
8.

(
117

0

)
9.

(
n

n− 2

)
, n ≥ 2

In Exercises 10 - 13, use Pascal’s Triangle to expand the given binomial.

10. (x+ 2)5 11. (2x− 1)4 12.
(

1
3x+ y2

)3
13.

(
x− x−1

)4
In Exercises 14 - 17, use Pascal’s Triangle to simplify the given power of a complex number.

14. (1 + 2i)4 15.
(
−1 + i

√
3
)3

16.

(√
3

2
+

1

2
i

)3

17.

(√
2

2
−
√

2

2
i

)4

In Exercises 18 - 22, use the Binomial Theorem to find the indicated term.

18. The term containing x3 in the expansion (2x− y)5

19. The term containing x117 in the expansion (x+ 2)118

20. The term containing x
7
2 in the expansion (

√
x− 3)

8

21. The term containing x−7 in the expansion
(
2x− x−3

)5
22. The constant term in the expansion

(
x+ x−1

)8
23. Use the Prinicple of Mathematical Induction to prove n! > 2n for n ≥ 4.

24. Prove

n∑
j=0

(
n

j

)
= 2n for all natural numbers n. (HINT: Use the Binomial Theorem!)

25. With the help of your classmates, research Patterns and Properties of Pascal’s Triangle.

26. You’ve just won three tickets to see the new film, ‘8.9.’ Five of your friends, Albert, Beth,
Chuck, Dan, and Eugene, are interested in seeing it with you. With the help of your class-
mates, list all the possible ways to distribute your two extra tickets among your five friends.
Now suppose you’ve come down with the flu. List all the different ways you can distribute the
three tickets among these five friends. How does this compare with the first list you made?
What does this have to do with the fact that

(
5
2

)
=
(

5
3

)
?

http://en.wikipedia.org/wiki/Pascal's_triangle#Patterns_and_properties
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9.4.2 Answers

1. 36 2. 720 3. 105

4. 1260 5. n+ 1 6. 1
k(k+1)(k+2)

7. 56 8. 1 9. n(n−1)
2

10. (x+ 2)5 = x5 + 10x4 + 40x3 + 80x2 + 80x+ 32

11. (2x− 1)4 = 16x4 − 32x3 + 24x2 − 8x+ 1

12.
(

1
3x+ y2

)3
= 1

27x
3 + 1

3x
2y2 + xy4 + y6

13.
(
x− x−1

)4
= x4 − 4x2 + 6− 4x−2 + x−4

14. −7− 24i 15. 8 16. i 17. −1

18. 80x3y2 19. 236x117 20. −24x
7
2 21. −40x−7 22. 70



Index

nth root

of a complex number, 1000, 1001

principal, 397

nth Roots of Unity, 1006

u-substitution, 273

x-axis, 6

x-coordinate, 6

x-intercept, 25

y-axis, 6

y-coordinate, 6

y-intercept, 25

abscissa, 6

absolute value

definition of, 173

inequality, 211

properties of, 173

acidity of a solution

pH, 432

acute angle, 694

adjoint of a matrix, 622

alkalinity of a solution

pH, 432

amplitude, 794, 881

angle

acute, 694

between two vectors, 1035, 1036

central angle, 701

complementary, 696

coterminal, 698

decimal degrees, 695

definition, 693

degree, 694

DMS, 695

initial side, 698

measurement, 693

negative, 698

obtuse, 694

of declination, 761

of depression, 761

of elevation, 753

of inclination, 753

oriented, 697

positive, 698

quadrantal, 698

radian measure, 701

reference, 721

right, 694

standard position, 698

straight, 693

supplementary, 696

terminal side, 698

vertex, 693

angle side opposite pairs, 896

angular frequency, 708

annuity

annuity-due, 667

ordinary

definition of, 666

future value, 667

applied domain of a function, 60

arccosecant

calculus friendly

definition of, 831

graph of, 830

properties of, 831

1069
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trigonometry friendly

definition of, 828

graph of, 827

properties of, 828

arccosine

definition of, 820

graph of, 819

properties of, 820

arccotangent

definition of, 824

graph of, 824

properties of, 824

arcsecant

calculus friendly

definition of, 831

graph of, 830

properties of, 831

trigonometry friendly

definition of, 828

graph of, 827

properties of, 828

arcsine

definition of, 820

graph of, 820

properties of, 820

arctangent

definition of, 824

graph of, 823

properties of, 824

argument

of a complex number

definition of, 991

properties of, 995

of a function, 55

of a logarithm, 425

of a trigonometric function, 793

arithmetic sequence, 654

associative property

for function composition, 366

matrix

addition, 579

matrix multiplication, 585

scalar multiplication, 581
vector

addition, 1015
scalar multiplication, 1018

asymptote
horizontal

formal definition of, 304
intuitive definition of, 304
location of, 308

of a hyperbola, 531
slant

determination of, 312
formal definition of, 311

slant (oblique), 311
vertical

formal definition of, 304
intuitive definition of, 304
location of, 306

augmented matrix, 568
average angular velocity, 707
average cost, 346
average cost function, 82
average rate of change, 160
average velocity, 706
axis of symmetry, 191

back substitution, 560
bearings, 905
binomial coefficient, 683
Binomial Theorem, 684
Bisection Method, 277
BMI, body mass index, 355
Boyle’s Law, 350
buffer solution, 478

cardioid, 951
Cartesian coordinate plane, 6
Cartesian coordinates, 6
Cauchy’s Bound, 269
center

of a circle, 498
of a hyperbola, 531
of an ellipse, 516



Index 1071

central angle, 701

change of base formulas, 442

characteristic polynomial, 626

Charles’s Law, 355

circle

center of, 498

definition of, 498

from slicing a cone, 495

radius of, 498

standard equation, 498

standard equation, alternate, 519

circular function, 744

cis(θ), 995

coefficient of determination, 226

cofactor, 616

Cofunction Identities, 773

common base, 420

common logarithm, 422

commutative property

function composition does not have, 366

matrix

addition, 579

vector

addition, 1015

dot product, 1034

complementary angles, 696

Complex Factorization Theorem, 290

complex number

nth root, 1000, 1001

nth Roots of Unity, 1006

argument

definition of, 991

properties of, 995

conjugate

definition of, 288

properties of, 289

definition of, 2, 287, 991

imaginary part, 991

imaginary unit, i, 287

modulus

definition of, 991

properties of, 993

polar form

cis-notation, 995

principal argument, 991

real part, 991

rectangular form, 991

set of, 2

complex plane, 991

component form of a vector, 1013

composite function

definition of, 360

properties of, 367

compound interest, 470

conic sections

definition, 495

conjugate axis of a hyperbola, 532

conjugate of a complex number

definition of, 288

properties of, 289

Conjugate Pairs Theorem, 291

consistent system, 553

constant function

as a horizontal line, 156

formal definition of, 101

intuitive definition of, 100

constant of proportionality, 350

constant term of a polynomial, 236

continuous, 241

continuously compounded interest, 472

contradiction, 549

coordinates

Cartesian, 6

polar, 919

rectangular, 919

correlation coefficient, 226

cosecant

graph of, 801

of an angle, 744, 752

properties of, 802

cosine

graph of, 791

of an angle, 717, 730, 744

properties of, 791
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cost
average, 82, 346
fixed, start-up, 82
variable, 159

cost function, 82
cotangent

graph of, 805
of an angle, 744, 752
properties of, 806

coterminal angle, 698
Coulomb’s Law, 355
Cramer’s Rule, 619
curve

orientated, 1048
cycloid, 1056

decibel, 431
decimal degrees, 695
decreasing function

formal definition of, 101
intuitive definition of, 100

degree measure, 694
degree of a polynomial, 236
DeMoivre’s Theorem, 997
dependent system, 554
dependent variable, 55
depreciation, 420
Descartes’ Rule of Signs, 273
determinant of a matrix

definition of, 614
properties of, 616

Difference Identity
for cosine, 771, 775
for sine, 773, 775
for tangent, 775

difference quotient, 79
dimension

of a matrix, 567
direct variation, 350
directrix

of a conic section in polar form, 981
of a parabola, 505

discriminant

of a conic, 979
of a quadratic equation, 195
trichotomy, 195

distance
definition, 10
distance formula, 11

distributive property
matrix

matrix multiplication, 585
scalar multiplication, 581

vector
dot product, 1034
scalar multiplication, 1018

DMS, 695
domain

applied, 60
definition of, 45
implied, 58

dot product
commutative property of, 1034
definition of, 1034
distributive property of, 1034
geometric interpretation, 1035
properties of, 1034
relation to orthogonality, 1037
relation to vector magnitude, 1034
work, 1042

Double Angle Identities, 776

earthquake
Richter Scale, 431

eccentricity, 522, 981
eigenvalue, 626
eigenvector, 626
ellipse

center, 516
definition of, 516
eccentricity, 522
foci, 516
from slicing a cone, 496
guide rectangle, 519
major axis, 516
minor axis, 516



Index 1073

reflective property, 523
standard equation, 519
vertices, 516

ellipsis (. . . ), 31, 651
empty set, 2
end behavior

of f(x) = axn, n even, 240
of f(x) = axn, n odd, 240
of a function graph, 239
polynomial, 243

entry
in a matrix, 567

equation
contradiction, 549
graph of, 23
identity, 549
linear of n variables, 554
linear of two variables, 549

even function, 95
Even/Odd Identities, 770
exponential function

algebraic properties of, 437
change of base formula, 442
common base, 420
definition of, 418
graphical properties of, 419
inverse properties of, 437
natural base, 420
one-to-one properties of, 437
solving equations with, 448

extended interval notation, 756

Factor Theorem, 258
factorial, 654, 681
fixed cost, 82
focal diameter of a parabola, 507
focal length of a parabola, 506
focus

of a conic section in polar form, 981
focus (foci)

of a hyperbola, 531
of a parabola, 505
of an ellipse, 516

free variable, 552

frequency

angular, 708, 881

of a sinusoid, 795

ordinary, 708, 881

function

(absolute) maximum, 101

(absolute, global) minimum, 101

absolute value, 173

algebraic, 399

argument, 55

arithmetic, 76

as a process, 55, 378

average cost, 82

circular, 744

composite

definition of, 360

properties of, 367

constant, 100, 156

continuous, 241

cost, 82

decreasing, 100

definition as a relation, 43

dependent variable of, 55

difference, 76

difference quotient, 79

domain, 45

even, 95

exponential, 418

Fundamental Graphing Principle, 93

identity, 168

increasing, 100

independent variable of, 55

inverse

definition of, 379

properties of, 379

solving for, 384

uniqueness of, 380

linear, 156

local (relative) maximum, 101

local (relative) minimum, 101

logarithmic, 422
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notation, 55
odd, 95
one-to-one, 381
periodic, 790
piecewise-defined, 62
polynomial, 235
price-demand, 82
product, 76
profit, 82
quadratic, 188
quotient, 76
range, 45
rational, 301
revenue, 82
smooth, 241
sum, 76
transformation of graphs, 120, 135
zero, 95

fundamental cycle
of y = cos(x), 791

Fundamental Graphing Principle
for equations, 23
for functions, 93
for polar equations, 938

Fundamental Theorem of Algebra, 290

Gauss-Jordan Elimination, 571
Gaussian Elimination, 557
geometric sequence, 654
geometric series, 669
graph

hole in, 305
horizontal scaling, 132
horizontal shift, 123
of a function, 93
of a relation, 20
of an equation, 23
rational function, 321
reflection about an axis, 126
transformations, 135
vertical scaling, 130
vertical shift, 121

greatest integer function, 67

growth model
limited, 475
logistic, 475
uninhibited, 472

guide rectangle
for a hyperbola, 532
for an ellipse, 519

Half-Angle Formulas, 779
harmonic motion, 885
Henderson-Hasselbalch Equation, 446
Heron’s Formula, 914
hole

in a graph, 305
location of, 306

Hooke’s Law, 350
horizontal asymptote

formal definition of, 304
intuitive definition of, 304
location of, 308

horizontal line, 23
Horizontal Line Test (HLT), 381
hyperbola

asymptotes, 531
branch, 531
center, 531
conjugate axis, 532
definition of, 531
foci, 531
from slicing a cone, 496
guide rectangle, 532
standard equation

horizontal, 534
vertical, 534

transverse axis, 531
vertices, 531

hyperbolic cosine, 1062
hyperbolic sine, 1062
hyperboloid, 542

identity
function, 367
matrix, additive, 579
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matrix, multiplicative, 585

statement which is always true, 549

imaginary axis, 991

imaginary part of a complex number, 991

imaginary unit, i, 287

implied domain of a function, 58

inconsistent system, 553

increasing function

formal definition of, 101

intuitive definition of, 100

independent system, 554

independent variable, 55

index of a root, 397

induction

base step, 673

induction hypothesis, 673

inductive step, 673

inequality

absolute value, 211

graphical interpretation, 209

non-linear, 643

quadratic, 215

sign diagram, 214

inflection point, 477

information entropy, 477

initial side of an angle, 698

instantaneous rate of change, 161, 472, 707

integer

definition of, 2

greatest integer function, 67

set of, 2

intercept

definition of, 25

location of, 25

interest

compound, 470

compounded continuously, 472

simple, 469

Intermediate Value Theorem

polynomial zero version, 241

interrobang, 321

intersection of two sets, 4

interval
definition of, 3
notation for, 3
notation, extended, 756

inverse
matrix, additive, 579, 581
matrix, multiplicative, 602
of a function

definition of, 379
properties of, 379
solving for, 384
uniqueness of, 380

inverse variation, 350
invertibility

function, 382
invertible

function, 379
matrix, 602

irrational number
definition of, 2
set of, 2

irreducible quadratic, 291

joint variation, 350

Kepler’s Third Law of Planetary Motion, 355
Kirchhoff’s Voltage Law, 605

latus rectum of a parabola, 507
Law of Cosines, 910
Law of Sines, 897
leading coefficient of a polynomial, 236
leading term of a polynomial, 236
Learning Curve Equation, 315
least squares regression line, 225
lemniscate, 950
limaçon, 950
line

horizontal, 23
least squares regression, 225
linear function, 156
of best fit, 225
parallel, 166



1076 Index

perpendicular, 167
point-slope form, 155
slope of, 151
slope-intercept form, 155
vertical, 23

linear equation
n variables, 554
two variables, 549

linear function, 156
local maximum

formal definition of, 102
intuitive definition of, 101

local minimum
formal definition of, 102
intuitive definition of, 101

logarithm
algebraic properties of, 438
change of base formula, 442
common, 422
general, “base b”, 422
graphical properties of, 423
inverse properties of, 437
natural, 422
one-to-one properties of, 437
solving equations with, 459

logarithmic scales, 431
logistic growth, 475
LORAN, 538
lower triangular matrix, 593

main diagonal, 585
major axis of an ellipse, 516
Markov Chain, 592
mathematical model, 60
matrix

addition
associative property, 579
commutative property, 579
definition of, 578
properties of, 579

additive identity, 579
additive inverse, 579
adjoint, 622

augmented, 568

characteristic polynomial, 626

cofactor, 616

definition, 567

determinant

definition of, 614

properties of, 616

dimension, 567

entry, 567

equality, 578

invertible, 602

leading entry, 569

lower triangular, 593

main diagonal, 585

matrix multiplication

associative property of, 585

definition of, 584

distributive property, 585

identity for, 585

properties of, 585

minor, 616

multiplicative inverse, 602

product of row and column, 584

reduced row echelon form, 570

rotation, 986

row echelon form, 569

row operations, 568

scalar multiplication

associative property of, 581

definition of, 580

distributive properties, 581

identity for, 581

properties of, 581

zero product property, 581

size, 567

square matrix, 586

sum, 578

upper triangular, 593

maximum

formal definition of, 102

intuitive definition of, 101

measure of an angle, 693
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midpoint
definition of, 12
midpoint formula, 13

minimum
formal definition of, 102
intuitive definition of, 101

minor, 616
minor axis of an ellipse, 516
model

mathematical, 60
modulus of a complex number

definition of, 991
properties of, 993

multiplicity
effect on the graph of a polynomial, 245, 249
of a zero, 244

natural base, 420
natural logarithm, 422
natural number

definition of, 2
set of, 2

negative angle, 698
Newton’s Law of Cooling, 421, 474
Newton’s Law of Universal Gravitation, 351

oblique asymptote, 311
obtuse angle, 694
odd function, 95
Ohm’s Law, 350, 605
one-to-one function, 381
ordered pair, 6
ordinary frequency, 708
ordinate, 6
orientation, 1048
oriented angle, 697
oriented arc, 704
origin, 7
orthogonal projection, 1038
orthogonal vectors, 1037
overdetermined system, 554

parabola

axis of symmetry, 191

definition of, 505

directrix, 505

focal diameter, 507

focal length, 506

focus, 505

from slicing a cone, 496

graph of a quadratic function, 188

latus rectum, 507

reflective property, 510

standard equation

horizontal, 508

vertical, 506

vertex, 188, 505

vertex formulas, 194

paraboloid, 510

parallel vectors, 1030

parameter, 1048

parametric equations, 1048

parametric solution, 552

parametrization, 1048

partial fractions, 628

Pascal’s Triangle, 688

password strength, 477

period

circular motion, 708

of a function, 790

of a sinusoid, 881

periodic function, 790

pH, 432

phase, 795, 881

phase shift, 795, 881

pi, π, 700

piecewise-defined function, 62

point of diminishing returns, 477

point-slope form of a line, 155

polar coordinates

conversion into rectangular, 924

definition of, 919

equivalent representations of, 923

polar axis, 919

pole, 919
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polar form of a complex number, 995

polar rose, 950

polynomial division

dividend, 258

divisor, 258

factor, 258

quotient, 258

remainder, 258

synthetic division, 260

polynomial function

completely factored

over the complex numbers, 291

over the real numbers, 291

constant term, 236

definition of, 235

degree, 236

end behavior, 239

leading coefficient, 236

leading term, 236

variations in sign, 273

zero

lower bound, 274

multiplicity, 244

upper bound, 274

positive angle, 698

Power Reduction Formulas, 778

power rule

for absolute value, 173

for complex numbers, 997

for exponential functions, 437

for logarithms, 438

for radicals, 398

for the modulus of a complex number, 993

price-demand function, 82

principal, 469

principal nth root, 397

principal argument of a complex number, 991

principal unit vectors, ı̂, ̂, 1024

Principle of Mathematical Induction, 673

product rule

for absolute value, 173

for complex numbers, 997

for exponential functions, 437
for logarithms, 438
for radicals, 398
for the modulus of a complex number, 993

Product to Sum Formulas, 780
profit function, 82
projection

x−axis, 45
y−axis, 46
orthogonal, 1038

Pythagorean Conjugates, 751
Pythagorean Identities, 749

quadrantal angle, 698
quadrants, 8
quadratic formula, 194
quadratic function

definition of, 188
general form, 190
inequality, 215
irreducible quadratic, 291
standard form, 190

quadratic regression, 228
Quotient Identities, 745
quotient rule

for absolute value, 173
for complex numbers, 997
for exponential functions, 437
for logarithms, 438
for radicals, 398
for the modulus of a complex number, 993

radian measure, 701
radical

properties of, 398
radicand, 397
radioactive decay, 473
radius

of a circle, 498
range

definition of, 45
rate of change

average, 160
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instantaneous, 161, 472

slope of a line, 154

rational exponent, 398

rational functions, 301

rational number

definition of, 2

set of, 2

Rational Zeros Theorem, 269

ray

definition of, 693

initial point, 693

real axis, 991

Real Factorization Theorem, 292

real number

definition of, 2

set of, 2

real part of a complex number, 991

Reciprocal Identities, 745

rectangular coordinates

also known as Cartesian coordinates, 919

conversion into polar, 924

rectangular form of a complex number, 991

recursion equation, 654

reduced row echelon form, 570

reference angle, 721

Reference Angle Theorem

for cosine and sine, 722

for the circular functions, 747

reflection

of a function graph, 126

of a point, 10

regression

coefficient of determination, 226

correlation coefficient, 226

least squares line, 225

quadratic, 228

total squared error, 225

relation

algebraic description, 23

definition, 20

Fundamental Graphing Principle, 23

Remainder Theorem, 258

revenue function, 82
Richter Scale, 431
right angle, 694
root

index, 397
radicand, 397

Roots of Unity, 1006
rotation matrix, 986
rotation of axes, 974
row echelon form, 569
row operations for a matrix, 568

scalar multiplication
matrix

associative property of, 581
definition of, 580
distributive properties of, 581
properties of, 581

vector
associative property of, 1018
definition of, 1017
distributive properties of, 1018
properties of, 1018

scalar projection, 1039
secant

graph of, 800
of an angle, 744, 752
properties of, 802

secant line, 160
sequence

nth term, 652
alternating, 652
arithmetic

common difference, 654
definition of, 654
formula for nth term, 656
sum of first n terms, 666

definition of, 652
geometric

common ratio, 654
definition of, 654
formula for nth term, 656
sum of first n terms, 666
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recursive, 654

series, 668

set

definition of, 1

empty, 2

intersection, 4

roster method, 1

set-builder notation, 1

sets of numbers, 2

union, 4

verbal description, 1

set-builder notation, 1

Side-Angle-Side triangle, 910

Side-Side-Side triangle, 910

sign diagram

algebraic function, 399

for quadratic inequality, 214

polynomial function, 242

rational function, 321

simple interest, 469

sine

graph of, 792

of an angle, 717, 730, 744

properties of, 791

sinusoid

amplitude, 794, 881

baseline, 881

frequency

angular, 881

ordinary, 881

graph of, 795, 882

period, 881

phase, 881

phase shift, 795, 881

properties of, 881

vertical shift, 881

slant asymptote, 311

slant asymptote

determination of, 312

formal definition of, 311

slope

definition, 151

of a line, 151

rate of change, 154

slope-intercept form of a line, 155

smooth, 241

sound intensity level

decibel, 431

square matrix, 586

standard position of a vector, 1019

standard position of an angle, 698

start-up cost, 82

steady state, 592

stochastic process, 592

straight angle, 693

Sum Identity

for cosine, 771, 775

for sine, 773, 775

for tangent, 775

Sum to Product Formulas, 781

summation notation

definition of, 661

index of summation, 661

lower limit of summation, 661

properties of, 664

upper limit of summation, 661

supplementary angles, 696

symmetry

about the x-axis, 9

about the y-axis, 9

about the origin, 9

testing a function graph for, 95

testing an equation for, 26

synthetic division tableau, 260

system of equations

back-substitution, 560

coefficient matrix, 590

consistent, 553

constant matrix, 590

definition, 549

dependent, 554

free variable, 552

Gauss-Jordan Elimination, 571

Gaussian Elimination, 557
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inconsistent, 553
independent, 554
leading variable, 556
linear
n variables, 554
two variables, 550

linear in form, 646
non-linear, 637
overdetermined, 554
parametric solution, 552
triangular form, 556
underdetermined, 554
unknowns matrix, 590

tangent
graph of, 804
of an angle, 744, 752
properties of, 806

terminal side of an angle, 698
Thurstone, Louis Leon, 315
total squared error, 225
transformation

non-rigid, 129
rigid, 129

transformations of function graphs, 120, 135
transverse axis of a hyperbola, 531
Triangle Inequality, 183
triangular form, 556

underdetermined system, 554
uninhibited growth, 472
union of two sets, 4
Unit Circle

definition of, 501
important points, 724

unit vector, 1023
Upper and Lower Bounds Theorem, 274
upper triangular matrix, 593

variable
dependent, 55
independent, 55

variable cost, 159

variation

constant of proportionality, 350

direct, 350

inverse, 350

joint, 350

variations in sign, 273

vector

x-component, 1012

y-component, 1012

addition

associative property, 1015

commutative property, 1015

definition of, 1014

properties of, 1015

additive identity, 1015

additive inverse, 1015, 1018

angle between two, 1035, 1036

component form, 1012

Decomposition Theorem

Generalized, 1040

Principal, 1024

definition of, 1012

direction

definition of, 1020

properties of, 1020

dot product

commutative property of, 1034

definition of, 1034

distributive property of, 1034

geometric interpretation, 1035

properties of, 1034

relation to magnitude, 1034

relation to orthogonality, 1037

work, 1042

head, 1012

initial point, 1012

magnitude

definition of, 1020

properties of, 1020

relation to dot product, 1034

normalization, 1024

orthogonal projection, 1038
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orthogonal vectors, 1037
parallel, 1030
principal unit vectors, ı̂, ̂, 1024
resultant, 1013
scalar multiplication

associative property of, 1018
definition of, 1017
distributive properties, 1018
identity for, 1018
properties of, 1018
zero product property, 1018

scalar product
definition of, 1034
properties of, 1034

scalar projection, 1039
standard position, 1019
tail, 1012
terminal point, 1012
triangle inequality, 1044
unit vector, 1023

velocity
average angular, 707
instantaneous, 707
instantaneous angular, 707

vertex
of a hyperbola, 531
of a parabola, 188, 505
of an angle, 693
of an ellipse, 516

vertical asymptote
formal definition of, 304
intuitive definition of, 304
location of, 306

vertical line, 23
Vertical Line Test (VLT), 43

whole number
definition of, 2
set of, 2

work, 1041
wrapping function, 704

zero

multiplicity of, 244
of a function, 95
upper and lower bounds, 274


