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PREFACE

Thank you for your interest in our book, but more importantly, thank you for taking the time to
read the Preface. I always read the Prefaces of the textbooks which I use in my classes because
I believe it is in the Preface where I begin to understand the authors - who they are, what their
motivation for writing the book was, and what they hope the reader will get out of reading the
text. Pedagogical issues such as content organization and how professors and students should best
use a book can usually be gleaned out of its Table of Contents, but the reasons behind the choices
authors make should be shared in the Preface. Also, I feel that the Preface of a textbook should
demonstrate the authors’ love of their discipline and passion for teaching, so that I come away
believing that they really want to help students and not just make money. Thus, I thank my fellow
Preface-readers again for giving me the opportunity to share with you the need and vision which
guided the creation of this book and passion which both Carl and I hold for Mathematics and the
teaching of it.

Carl and I are natives of Northeast Ohio. We met in graduate school at Kent State University
in 1997. I finished my Ph.D in Pure Mathematics in August 1998 and started teaching at Lorain
County Community College in Elyria, Ohio just two days after graduation. Carl earned his Ph.D in
Pure Mathematics in August 2000 and started teaching at Lakeland Community College in Kirtland,
Ohio that same month. Our schools are fairly similar in size and mission and each serves a similar
population of students. The students range in age from about 16 (Ohio has a Post-Secondary
Enrollment Option program which allows high school students to take college courses for free while
still in high school.) to over 65. Many of the “non-traditional” students are returning to school in
order to change careers. A majority of the students at both schools receive some sort of financial
aid, be it scholarships from the schools’ foundations, state-funded grants or federal financial aid
like student loans, and many of them have lives busied by family and job demands. Some will
be taking their Associate degrees and entering (or re-entering) the workforce while others will be
continuing on to a four-year college or university. Despite their many differences, our students
share one common attribute: they do not want to spend $200 on a College Algebra book.

The challenge of reducing the cost of textbooks is one that many states, including Ohio, are taking
quite seriously. Indeed, state-level leaders have started to work with faculty from several of the
colleges and universities in Ohio and with the major publishers as well. That process will take
considerable time so Carl and I came up with a plan of our own. We decided that the best
way to help our students right now was to write our own College Algebra book and give it away
electronically for free. We were granted sabbaticals from our respective institutions for the Spring
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semester of 2009 and actually began writing the textbook on December 16, 2008. Using an open-
source text editor called TexNicCenter and an open-source distribution of LaTeX called MikTex
2.7, Carl and I wrote and edited all of the text, exercises and answers and created all of the graphs
(using Metapost within LaTeX) for Version 0.9 in about eight months. (We choose to create a
text in only black and white to keep printing costs to a minimum for those students who prefer
a printed edition. This somewhat Spartan page layout stands in sharp relief to the explosion of
colors found in most other College Algebra texts, but neither Carl nor I believe the four-color
print adds anything of value.) I used the book in three sections of College Algebra at Lorain
County Community College in the Fall of 2009 and Carl’s colleague, Dr. Bill Previts, taught a
section of College Algebra at Lakeland with the book that semester as well. Students had the
option of downloading the book as a .pdf file from our website www.stitz-zeager.com or buying a
low-cost printed version from our colleges’ respective bookstores. (By giving this book away for
free electronically, we end the cycle of new editions appearing every 18 months to curtail the used
book market.) During Thanksgiving break in November 2009, many additional exercises written
by Dr. Previts were added and the typographical errors found by our students and others were
corrected. On December 10, 2009, Version v/2 was released. The book remains free for download at
our website and by using Lulu.com as an on-demand printing service, our bookstores are now able
to provide a printed edition for just under $19. Neither Carl nor I have, or will ever, receive any
royalties from the printed editions. As a contribution back to the open-source community, all of
the LaTeX files used to compile the book are available for free under a Creative Commons License
on our website as well. That way, anyone who would like to rearrange or edit the content for their
classes can do so as long as it remains free.

The only disadvantage to not working for a publisher is that we don’t have a paid editorial staff.
What we have instead, beyond ourselves, is friends, colleagues and unknown people in the open-
source community who alert us to errors they find as they read the textbook. What we gain in not
having to report to a publisher so dramatically outweighs the lack of the paid staff that we have
turned down every offer to publish our book. (As of the writing of this Preface, we’ve had three
offers.) By maintaining this book by ourselves, Carl and I retain all creative control and keep the
book our own. We control the organization, depth and rigor of the content which means we can resist
the pressure to diminish the rigor and homogenize the content so as to appeal to a mass market.
A casual glance through the Table of Contents of most of the major publishers’ College Algebra
books reveals nearly isomorphic content in both order and depth. Our Table of Contents shows a
different approach, one that might be labeled “Functions First.” To truly use The Rule of Four,
that is, in order to discuss each new concept algebraically, graphically, numerically and verbally, it
seems completely obvious to us that one would need to introduce functions first. (Take a moment
and compare our ordering to the classic “equations first, then the Cartesian Plane and THEN
functions” approach seen in most of the major players.) We then introduce a class of functions
and discuss the equations, inequalities (with a heavy emphasis on sign diagrams) and applications
which involve functions in that class. The material is presented at a level that definitely prepares a
student for Calculus while giving them relevant Mathematics which can be used in other classes as
well. Graphing calculators are used sparingly and only as a tool to enhance the Mathematics, not
to replace it. The answers to nearly all of the computational homework exercises are given in the


http://www.stitz-zeager.com
http://www.lulu.com/content/paperback-book/college-algebra/7513097
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text and we have gone to great lengths to write some very thought provoking discussion questions
whose answers are not given. One will notice that our exercise sets are much shorter than the
traditional sets of nearly 100 “drill and kill” questions which build skill devoid of understanding.
Our experience has been that students can do about 15-20 homework exercises a night so we very
carefully chose smaller sets of questions which cover all of the necessary skills and get the students
thinking more deeply about the Mathematics involved.

Critics of the Open Educational Resource movement might quip that “open-source is where bad
content goes to die,” to which I say this: take a serious look at what we offer our students. Look
through a few sections to see if what we’ve written is bad content in your opinion. I see this open-
source book not as something which is “free and worth every penny”, but rather, as a high quality
alternative to the business as usual of the textbook industry and I hope that you agree. If you have
any comments, questions or concerns please feel free to contact me at jeffQ@stitz-zeager.com or Carl
at carl@stitz-zeager.com.

Jeff Zeager
Lorain County Community College
January 25, 2010
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CHAPTER 1

RELATIONS AND FUNCTIONS

1.1 SETS OF REAL NUMBERS AND THE CARTESIAN COORDINATE PLANE

1.1.1 SETS OF NUMBERS

While the authors would like nothing more than to delve quickly and deeply into the sheer excite-
ment that is Precalculus, experience! has taught us that a brief refresher on some basic notions is
welcome, if not completely necessary, at this stage. To that end, we present a brief summary of
‘set theory’ and some of the associated vocabulary and notations we use in the text. Like all good
Math books, we begin with a definition.

Definition 1.1. A set is a well-defined collection of objects which are called the ‘elements’ of
the set. Here, ‘well-defined” means that it is possible to determine if something belongs to the
collection or not, without prejudice.

For example, the collection of letters that make up the word “smolko” is well-defined and is a set,
but the collection of the worst math teachers in the world is not well-defined, and so is not a set.?
In general, there are three ways to describe sets. They are

Ways to Describe Sets
1. The Verbal Method: Use a sentence to define a set.

2. The Roster Method: Begin with a left brace ‘{’, list each element of the set only once
and then end with a right brace ‘}’.

3. The Set-Builder Method: A combination of the verbal and roster methods using a
“dummy variable” such as x.

For example, let S be the set described verbally as the set of letters that make up the word “smolko”.
A roster description of S would be {s,m,0,l,k}. Note that we listed ‘0’ only once, even though it

1...to be read as ‘good, solid feedback from colleagues’ ...
2For a more thought-provoking example, consider the collection of all things that do not contain themselves - this

leads to the famous Russell’s Paradox.


http://en.wikipedia.org/wiki/Russell's_paradox
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appears twice in “smolko.” Also, the order of the elements doesn’t matter, so {k,l,m,o,s} is also
a roster description of S. A set-builder description of S is:

{z|x is a letter in the word “smolko”.}

The way to read this is: ‘The set of elements x such that = is a letter in the word “smolko.”’ In
each of the above cases, we may use the familiar equals sign ‘=" and write S = {s,m,o0,l,k} or
S = {x|z is a letter in the word “smolko”.}. Clearly m is in S and ¢ is not in S. We express
these sentiments mathematically by writing m € S and ¢ ¢ S. Throughout your mathematical

upbringing, you have encountered several famous sets of numbers. They are listed below.

Sets of Numbers

1. The Empty Set: 0 = {} = {z|x # x}. This is the set with no elements. Like the number
‘0,” it plays a vital role in mathematics.®

2. The Natural Numbers: N = {1,2,3,...} The periods of ellipsis here indicate that the
natural numbers contain 1, 2, 3, ‘and so forth’.

3. The Whole Numbers: W = {0,1,2,...}
4. The Integers: Z ={...,-3,-2,—-1,0,1,2,3,...}

5. The Rational Numbers: Q = {¢|a € Zandb € Z}. Rational numbers are the ratios of
integers (provided the denominator is not zero!) It turns out that another way to describe
the rational numbers® is:

Q = {z| = possesses a repeating or terminating decimal representation.}

6. The Real Numbers: R = {z |z possesses a decimal representation. }

7. The Irrational Numbers: P = {x |z is a non-rational real number.} Said another way,
an irrational number is a decimal which neither repeats nor terminates.®

8. The Complex Numbers: C = {a + bi|a,b € R and i = /—1} Despite their importance,
the complex numbers play only a minor role in the text.?

... which, sadly, we will not explore in this text.

®See Section 9.2.

°The classic example is the number 7 (See Section 10.1), but numbers like v/2 and 0.101001000100001 . . . are
other fine representatives.

YThey first appear in Section 3.4 and return in Section 11.7.

It is important to note that every natural number is a whole number, which, in turn, is an integer.
Each integer is a rational number (take b = 1 in the above definition for Q) and the rational
numbers are all real numbers, since they possess decimal representations.® If we take b = 0 in the

3Long division, anyone?
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above definition of C, we see that every real number is a complex number. In this sense, the sets
N, W, Z, Q, R, and C are ‘nested’ like Matryoshka dolls.

For the most part, this textbook focuses on sets whose elements come from the real numbers R.
Recall that we may visualize R as a line. Segments of this line are called intervals of numbers.
Below is a summary of the so-called interval notation associated with given sets of numbers. For
intervals with finite endpoints, we list the left endpoint, then the right endpoint. We use square
brackets, ‘[* or ‘], if the endpoint is included in the interval and use a filled-in or ‘closed’ dot to
indicate membership in the interval. Otherwise, we use parentheses, ‘(" or )’ and an ‘open’ circle to
indicate that the endpoint is not part of the set. If the interval does not have finite endpoints, we
use the symbols —oo to indicate that the interval extends indefinitely to the left and oo to indicate
that the interval extends indefinitely to the right. Since infinity is a concept, and not a number,
we always use parentheses when using these symbols in interval notation, and use an appropriate
arrow to indicate that the interval extends indefinitely in one (or both) directions.

Interval Notation

Let a and b be real numbers with a < b.

Set of Real Numbers | Interval Notation | Region on the Real Number Line
{x]a<z<b} (a,b) a b
{z]a <z <b} [a,b) a b
{z]a <z < b} (a,b] e b
{x|a<az<b} [a, b] "

{z|x < b} (=00, b) N
{z]z <b} (=00, b) D
{z|x > a} (a,00) ao—>
(x| > a} [a, 00) a

R (—o0,00) -



http://en.wikipedia.org/wiki/Matryoshka_doll
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For an example, consider the sets of real numbers described below.

Set of Real Numbers | Interval Notation | Region on the Real Number Line
{z|1<z<3} [1,3) ! 3
{z] —1<z<4} [—1,4] S E—
oo <5) (~o0,5] —
{z|x> -2} (—2,00) I T

We will often have occasion to combine sets. There are two basic ways to combine sets: intersec-
tion and union. We define both of these concepts below.

Definition 1.2. Suppose A and B are two sets.

e The intersection of A and B: AN B ={x|x € Aand x € B}

e The union of A and B: AUB = {z|x € Aor x € B (or both)}

Said differently, the intersection of two sets is the overlap of the two sets — the elements which the
sets have in common. The union of two sets consists of the totality of the elements in each of the
sets, collected together.* For example, if A = {1,2,3} and B = {2,4,6}, then AN B = {2} and
AUB =1{1,2,3,4,6}. If A =[-5,3) and B = (1, 00), then we can find ANB and AU B graphically.
To find AN B, we shade the overlap of the two and obtain AN B = (1,3). To find AU B, we shade
each of A and B and describe the resulting shaded region to find AU B = [—5,00).

@ o [, 0 ® ]
O O Ol

5 T 3 _5 1 3 _5 1 3 ”

A=[-53), B=(1,0) ANB=(1,3) AUB = [-5,0)

While both intersection and union are important, we have more occasion to use union in this text
than intersection, simply because most of the sets of real numbers we will be working with are
either intervals or are unions of intervals, as the following example illustrates.

4The reader is encouraged to research Venn Diagrams for a nice geometric interpretation of these concepts.
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Example 1.1.1. Express the following sets of numbers using interval notation.

. {z|z < —2o0rz>2} 2. {z|z # 3}
3. {x|z # £3} 4. {x| —1<zx<3orz=5}
Solution.

1. The best way to proceed here is to graph the set of numbers on the number line and glean
the answer from it. The inequality x < —2 corresponds to the interval (—oo,—2] and the
inequality = > 2 corresponds to the interval [2,00). Since we are looking to describe the real
numbers z in one of these or the other, we have {x |z < =2 or x > 2} = (—o00, —2| U [2,0).

—2 2
(—o0, —2] U [2, 00)

2. For the set {z |z # 3}, we shade the entire real number line except x = 3, where we leave
an open circle. This divides the real number line into two intervals, (—oo,3) and (3,00).
Since the values of z could be in either one of these intervals or the other, we have that

{z|z #3}=(-00,3)U(3,00)

wo

(—00,3) U (3,00)

3. For the set {x |z # £3}, we proceed as before and exclude both z = 3 and x = —3 from our
set. This breaks the number line into three intervals, (—oo, —3), (—3,3) and (3,00). Since
the set describes real numbers which come from the first, second or third interval, we have
{z|z # £3} = (—00,—3) U (—3,3) U (3,00).

-“-—— 0>

-3 3
(=00, —3) U (—3,3) U (3,00)

4. Graphing the set {x| —1 <z < 3 or z = 5}, we get one interval, (—1, 3] along with a single
number, or point, {5}. While we could express the latter as [5,5] (Can you see why?), we
choose to write our answer as {z| —1 <z <3 or xz =5} =(—1,3|U{5}.
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1.1.2 THE CARTESIAN COORDINATE PLANE

In order to visualize the pure excitement that is Precalculus, we need to unite Algebra and Ge-
ometry. Simply put, we must find a way to draw algebraic things. Let’s start with possibly the
greatest mathematical achievement of all time: the Cartesian Coordinate Plane.® Imagine two
real number lines crossing at a right angle at 0 as drawn below.

Yy

The horizontal number line is usually called the x-axis while the vertical number line is usually
called the y-axis.® As with the usual number line, we imagine these axes extending off indefinitely
in both directions.” Having two number lines allows us to locate the positions of points off of the
number lines as well as points on the lines themselves.

For example, consider the point P on the next page. To use the numbers on the axes to label this
point, we imagine dropping a vertical line from the z-axis to P and extending a horizontal line from
the y-axis to P. This process is sometimes called ‘projecting’ the point P to the x- (respectively
y-) axis. We then describe the point P using the ordered pair (2, —4). The first number in the
ordered pair is called the abscissa or x-coordinate and the second is called the ordinate or
y-coordinate.® Taken together, the ordered pair (2, —4) comprise the Cartesian coordinates’
of the point P. In practice, the distinction between a point and its coordinates is blurred; for
example, we often speak of ‘the point (2,—4).” We can think of (2, —4) as instructions on how to

530 named in honor of René Descartes.

5The labels can vary depending on the context of application.

"Usually extending off towards infinity is indicated by arrows, but here, the arrows are used to indicate the
direction of increasing values of z and y.

8 Again, the names of the coordinates can vary depending on the context of the application. If, for example, the
horizontal axis represented time we might choose to call it the f-axis. The first number in the ordered pair would
then be the t-coordinate.

9Also called the ‘rectangular coordinates’ of P — see Section 11.4 for more details.


http://en.wikipedia.org/wiki/Descartes
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reach P from the origin (0,0) by moving 2 units to the right and 4 units downwards. Notice that
the order in the ordered pair is important — if we wish to plot the point (—4,2), we would move
to the left 4 units from the origin and then move upwards 2 units, as below on the right.

y y
4 4
3 3
(_472)
24 ®e——————— - 2
|
|
14 | 14
|
4 -3 —2 -1 1 2 3 4 4 4 -3 —2 —1 1 2 3 4 4
—14 | —14 |
| |
| |
—924 | —2 |
| |
_a | _a ] |
3 | 3 |
| |
VY o P —41--—- o P(2,-4)

When we speak of the Cartesian Coordinate Plane, we mean the set of all possible ordered pairs
(z,y) as x and y take values from the real numbers. Below is a summary of important facts about
Cartesian coordinates.

Important Facts about the Cartesian Coordinate Plane

(a,b) and (c,d) represent the same point in the plane if and only if a = ¢ and b = d.

(x,y) lies on the z-axis if and only if y = 0.

(x,y) lies on the y-axis if and only if z = 0.

The origin is the point (0,0). It is the only point common to both axes.

Example 1.1.2. Plot the following points: A(5,8), B (—%,3), C(-5.8,-3), D(4.5,—-1), E(5,0),
F(075)¢ G(_77 0)7 H(Ov _9)7 O(an)'lo

Solution. To plot these points, we start at the origin and move to the right if the x-coordinate is
positive; to the left if it is negative. Next, we move up if the y-coordinate is positive or down if it
is negative. If the z-coordinate is 0, we start at the origin and move along the y-axis only. If the
y-coordinate is 0 we move along the z-axis only.

10T he letter O is almost always reserved for the origin.
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4

[\ w > ot [« ~ co ©
4 4 4 | | 4 |
T T T T T T T

RELATIONS AND FUNCTIONS

A(5,8)

L F(0,5)

—9 -8 —7 —6 —5 —4 —3 —2 —1

O(—578, —3)

The axes divide the plane into four regions called quadrants.

L H (0, —9)

O
They are labeled with Roman

numerals and proceed counterclockwise around the plane:

Y
Quadrant II Quadrant I
rz<0,y>0 , z>0,y>0
14
N IR

Quadrant IIT
r<0,y<0

Quadrant IV
z>0,y<0




1.1 SETS OF REAL NUMBERS AND THE CARTESIAN COORDINATE PLANE 9

For example, (1,2) lies in Quadrant I, (—1,2) in Quadrant II, (=1, —2) in Quadrant IIT and (1, —2)
in Quadrant IV. If a point other than the origin happens to lie on the axes, we typically refer to
that point as lying on the positive or negative z-axis (if y = 0) or on the positive or negative y-axis
(if x = 0). For example, (0,4) lies on the positive y-axis whereas (—117,0) lies on the negative
z-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of Mathematics is symmetry.!! There are many types of
symmetry in Mathematics, but three of them can be discussed easily using Cartesian Coordinates.

Definition 1.3. Two points (a,b) and (¢, d) in the plane are said to be
e symmetric about the xz-axis if a = c and b = —d
e symmetric about the y-axis if a = —cand b=d
e symmetric about the origin if a = —c and b = —d
Schematically,
y
0 P
R(—CU, _y) S(.Z', _y)

In the above figure, P and S are symmetric about the z-axis, as are Q and R; P and @) are
symmetric about the y-axis, as are R and S; and P and R are symmetric about the origin, as are

Q and S.

Example 1.1.3. Let P be the point (—2,3). Find the points which are symmetric to P about the:
1. z-axis 2. y-axis 3. origin

Check your answer by plotting the points.

Solution. The figure after Definition 1.3 gives us a good way to think about finding symmetric
points in terms of taking the opposites of the z- and/or y-coordinates of P(—2,3).

11 According to Carl. Jeff thinks symmetry is overrated.
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1. To find the point symmetric about the x-axis, we replace the y-coordinate with its opposite
to get (—2,—3).

2. To find the point symmetric about the y-axis, we replace the z-coordinate with its opposite
to get (2,3).

3. To find the point symmetric about the origin, we replace the x- and y-coordinates with their
opposites to get (2, —3).

Y
° 3+ °
P(-2,3) 2+ (2,3)
14
5 5 1 TR
14
—21
° -3+ °
(-2, -3) (2,-3) [

One way to visualize the processes in the previous example is with the concept of a reflection. If
we start with our point (—2,3) and pretend that the z-axis is a mirror, then the reflection of (-2, 3)
across the z-axis would lie at (—2,—3). If we pretend that the y-axis is a mirror, the reflection
of (—2,3) across that axis would be (2,3). If we reflect across the z-axis and then the y-axis, we
would go from (—2,3) to (=2, —3) then to (2, —3), and so we would end up at the point symmetric
to (—2,3) about the origin. We summarize and generalize this process below.

Reflections
To reflect a point (z,y) about the:

e z-axis, replace y with —y.
e y-axis, replace x with —zx.

e origin, replace x with —x and y with —y.

1.1.3 DISTANCE IN THE PLANE

Another important concept in Geometry is the notion of length. If we are going to unite Algebra
and Geometry using the Cartesian Plane, then we need to develop an algebraic understanding of
what distance in the plane means. Suppose we have two points, P (x,y,) and Q (z,,¥,), in the
plane. By the distance d between P and (), we mean the length of the line segment joining P with
Q. (Remember, given any two distinct points in the plane, there is a unique line containing both
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points.) Our goal now is to create an algebraic formula to compute the distance between these two
points. Consider the generic situation below on the left.

o Q(x1,1)

o - - ——— El

P (20, Yo) P (z0,9o) (21, 90)

With a little more imagination, we can envision a right triangle whose hypotenuse has length d as
drawn above on the right. From the latter figure, we see that the lengths of the legs of the triangle
are |z, — x| and |y, — y,| so the Pythagorean Theorem gives us

Ty — 5’50|2 + [y — 3Jo|2 =d’
(7, — x0)2 + (g1 — yo)2 =d

(Do you remember why we can replace the absolute value notation with parentheses?) By extracting
the square root of both sides of the second equation and using the fact that distance is never
negative, we get

Equation 1.1. The Distance Formula: The distance d between the points P (z,,¥,) and
Q (‘Tla yl) is:

d= \/(xl - xo)Q + (y1 — y0)2

It is not always the case that the points P and () lend themselves to constructing such a triangle.
If the points P and @ are arranged vertically or horizontally, or describe the exact same point, we
cannot use the above geometric argument to derive the distance formula. It is left to the reader in
Exercise 35 to verify Equation 1.1 for these cases.

Example 1.1.4. Find and simplify the distance between P(—2,3) and Q(1,—3).

Solution.

4 = @ —20)’ + (- w0
= VI = (-2)2+(-3-3)?
— Vo+36
= 35

So the distance is 3v/5. O


http://en.wikipedia.org/wiki/Pythagorean_Theorem
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Example 1.1.5. Find all of the points with z-coordinate 1 which are 4 units from the point (3, 2).

Solution. We shall soon see that the points we wish to find are on the line x = 1, but for now
we’ll just view them as points of the form (1,y). Visually,

Yy
31
2l
o (32
/
14+ /
/’ distance is 4 units
19 3 7
/
-4 |y
s (Ly)
21
31

We require that the distance from (3,2) to (1,y) be 4. The Distance Formula, Equation 1.1, yields

= \/(1‘1 - xo)z + (1 — 90)2
4 = /1-3)2+(y—2)7?

4 = 4+ (y—2)?
2
42 = ( 44 (y — 2)2) squaring both sides
16 = 4+ (y—2)>
12 = (y—2)?
(y-2? = 12
y—2 = +v12 extracting the square root
y—2 = 423
y = 2+2V3

We obtain two answers: (1,2 + 2v/3) and (1,2 — 2v/3). The reader is encouraged to think about
why there are two answers. O

Related to finding the distance between two points is the problem of finding the midpoint of the
line segment connecting two points. Given two points, P (z,,y,) and @ (z,,y,), the midpoint M
of P and @ is defined to be the point on the line segment connecting P and @) whose distance from
P is equal to its distance from Q.
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Q(Iluyl)
M

P (17073/0)

If we think of reaching M by going ‘halfway over’ and ‘halfway up’ we get the following formula.

Equation 1.2. The Midpoint Formula: The midpoint M of the line segment connecting
P(%ayo) and Q (xlayl) is:

M= $0+$1,y0+y1
2 2

If we let d denote the distance between P and (), we leave it as Exercise 36 to show that the distance
between P and M is d/2 which is the same as the distance between M and . This suffices to
show that Equation 1.2 gives the coordinates of the midpoint.

Example 1.1.6. Find the midpoint of the line segment connecting P(—2,3) and Q(1, —3).

Solution.
M = <$o+x1’yo+y1>
2 2
_ ((=2)+13+(=3)\_[ 10
N 2 72 S\ 272
1
- (29)
The midpoint is (—%, O). O

We close with a more abstract application of the Midpoint Formula. We will revisit the following
example in Exercise 72 in Section 2.1.

Example 1.1.7. If a # b, prove that the line y = x equally divides the line segment with endpoints
(a,b) and (b, a).

Solution. To prove the claim, we use Equation 1.2 to find the midpoint

Moo= a—i—b’b—i-a
2 2

B a+b a+d

B 2 72
Since the x and y coordinates of this point are the same, we find that the midpoint lies on the line
y = x, as required. O
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1.1.4 EXERCISES

1. Fill in the chart below:

Set of Real Numbers | Interval Notation | Region on the Real Number Line
{z| -1<z <5}
[0,3)
o—
2 7
{z| -5 <z<0}
(_37 3)
5 7
{z|z<3}
(_OO’ 9)
o>
4
{v]z > -3}

In Exercises 2 - 7, find the indicated intersection or union and simplify if possible. Express your
answers in interval notation.

2. (-1,5]N]0,8) 3. (-1,1)uUo,6] 4. (—00,4] N (0,00)
5. (—00,0) N [1,5] 6. (—o0,0)U[L,5] 7. (—00,5]N[5,8)
In Exercises 8 - 19, write the set using interval notation.

8. {x|z #5} 9. {zx|z# -1} 10. {z|x # -3, 4}
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11. {z|z #0, 2} 12. {z|z #2, -2} 13. {x |z #0, £4}
4. {z|z < —lorx >1} 15. {z|z <3orz > 2} 16. {z|z < —-3orz > 0}
17. {x|x < b5orx =6} 18. {z|x >20rx =+1} 19. {z| -3 <z <3o0rz=4}

20. Plot and label the points A(—3,-7), B(1.3,-2), C(xw,+/10), D(0,8), E(—5.5,0), F(—8,4),
G(9.2,—7.8) and H(7,5) in the Cartesian Coordinate Plane given below.

N W s~ ot O 3 00 ©
| | 4 | ' | | '
T T T T T T T T

—'9—%;—'7—6—5—21—5—'2_'11 1 2 3 45 6 7 8 9 =

21. For each point given in Exercise 20 above

e Identify the quadrant or axis in/on which the point lies.
e Find the point symmetric to the given point about the z-axis.
e Find the point symmetric to the given point about the y-axis.

e Find the point symmetric to the given point about the origin.
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In Exercises 22 - 29, find the distance d between the points and the midpoint M of the line segment
which connects them.

22.

24.

26.

28.

30.
31.
32.
33.
34.

35.

36.

37.

38.

39.
40.

(1,2), (—3,5) 23. (3,-10), (—1,2)

(34) G 5 (-52) (52)

(%jg) (_151_159) 27. (V2.V3), (~V8, —V12)
(2. VTD), (VIO VD). % (0,0), (1.9

Find all of the points of the form (x,—1) which are 4 units from the point (3, 2).
Find all of the points on the y-axis which are 5 units from the point (-5, 3).
Find all of the points on the z-axis which are 2 units from the point (—1,1).
Find all of the points of the form (x, —z) which are 1 unit from the origin.

Let’s assume for a moment that we are standing at the origin and the positive y-axis points
due North while the positive z-axis points due East. Our Sasquatch-o-meter tells us that
Sasquatch is 3 miles West and 4 miles South of our current position. What are the coordinates
of his position? How far away is he from us? If he runs 7 miles due East what would his new
position be?

Verify the Distance Formula 1.1 for the cases when:

(a) The points are arranged vertically. (Hint: Use P(a,y,) and Q(a,y;).)
(b) The points are arranged horizontally. (Hint: Use P(z,,b) and Q(x,,b).)

(c) The points are actually the same point. (You shouldn’t need a hint for this one.)

Verify the Midpoint Formula by showing the distance between P(z,,y,) and M and the
distance between M and Q(z,,y,) are both half of the distance between P and Q.

Show that the points A, B and C' below are the vertices of a right triangle.

(a) A(=3,2), B(—6,4), and C(1,8) (b) A(=3,1), B(4,0) and C(0, —3)

Find a point D(z,y) such that the points A(—3,1), B(4,0), C(0,—3) and D are the corners
of a square. Justify your answer.

Discuss with your classmates how many numbers are in the interval (0, 1).

The world is not flat.!? Thus the Cartesian Plane cannot possibly be the end of the story.
Discuss with your classmates how you would extend Cartesian Coordinates to represent the
three dimensional world. What would the Distance and Midpoint formulas look like, assuming
those concepts make sense at all?

12There are those who disagree with this statement. Look them up on the Internet some time when you're bored.
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1.1.5 ANSWERS

1.
Set of Real Numbers | Interval Notation | Region on the Real Number Line
{z| —1<z <5} [—1,5) I
{z]0<z <3} [0,3) 3
{z]|2<2<7} (2,7] s 7
(x| -5 <z <0} (~5.,0] 50
{z| -3 <2<3} (—3,3) _3 3
{z|5<x<T7} [5, 7] 5
{z|z <3} (—o0, 3] 3
{z|z <9} (—0,9) 9
{z|xz >4} (4, 00) 5
{z|z> -3} [—3,00) _3 ”
2. (—-1,5]N[0,8) = [0, 5] 3. (-1,1)uU]0,6] = (—1,6]
4. (—00,4] N (0,00) = (0,4] 5. (—00,0)N[1,5] =10
6. (—00,0)UL,5] = (—00,0)U[L,5] 7. (—00,5]N[5,8) = {5}
8. (—00,5) U (5,00) 9. (—o0,—1)U(—1,00)
10. (=00, —3) U (—3,4) U (4,00) 11. (—00,0) U (0,2) U (2,00)

12. (—o00, —2) U (=2,2) U (2, 00) 13. (—00, —4) U (—4,0) U (0,4) U (4, 00)
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14. (—o0, —1] U1, 00) 15. (—00,00)
16. (—o0, —3] U (0, 00) 17. (—o0,5]U {6}
18. {1} U{1} U (2,00) 19. (-3,3)U{4}

20. The required points A(-3,-7), B(1.3,-2), C(w,v10), D(0,8), E(-5.5,0), F(-8,4),
G(9.2,—7.8), and H(7,5) are plotted in the Cartesian Coordinate Plane below.

8e D(O, 8)

G(9.2,-7.8)
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21.

22.

24.

26.

28.

30.

32.

34.
37.

(a) The

d=5M
d = /26,
d =74,
d = /83,

point A(—3,-7) is

in Quadrant ITI

symmetric about x-axis with (—3,7)
symmetric about y-axis with (3, —7)
symmetric about origin with (3,7

point C(m,+/10) is

in Quadrant I

symmetric about z-axis with (7, —v/10)
symmetric about y-axis with (—m, 1/10)
symmetric about origin with (-, —/10)

point E(—5.5,0) is

on the negative z-axis

symmetric about x-axis with (—5.5,0)
symmetric about y-axis with (5.5,0)
symmetric about origin with (5.5,0)

point G(9.2,—7.8) is

in Quadrant IV

symmetric about x-axis with (9.2,7.8)

symmetric about y-axis with (—9.2, —7.8)
symmetric about origin with (—9.2,7.8)

= (-1.3)

M= (1,3)

M = (1 —1
M = (4v5,24)

(3+V7,-1), (3—=+7,—-1)
(—14++/3,0), (-1 —+/3,0)

(_37 _4)7

5 miles, (4,—4)

23.

25.

27.

29.

31.

33.

(b) The

19

point B(1.3,—2) is

in Quadrant IV

symmetric about x-axis with (1.3, 2)
symmetric about y-axis with (—1.3, —2)
symmetric about origin with (—1.3,2)

point D(0,8) is

on the positive y-axis

symmetric about x-axis with (0, —8)
symmetric about y-axis with (0, 8)
symmetric about origin with (0, —8)

point F'(—8,4) is

in Quadrant IT

symmetric about x-axis with (—8,—4)
symmetric about y-axis with (8,4)
symmetric about origin with (8, —4)

point H(7,5) is

in Quadrant I

symmetric about z-axis with (7, —5)
symmetric about y-axis with (—7,5)
symmetric about origin with (=7, —5)

d =410, M = (1,—4)
1= 4F M= (3]

a4 =3v5, M = (%2, -¥F)
4= VTR M = (5.9)
(0,3)

(a) The distance from A to B is |AB| = /13, the distance from A to C is |AC| = /52,

and the distance from B to C is |BC| = v/65. Since (\/ﬁ)2 + (\/57)2

(VB5)", we

are guaranteed by the converse of the Pythagorean Theorem that the triangle is a right
triangle.

(b) Show that [AC|? + |BC|? = |ABJ?



http://en.wikipedia.org/wiki/Pythagorean_theorem#Converse
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1.2 RELATIONS

From one point of view,! all of Precalculus can be thought of as studying sets of points in the plane.
With the Cartesian Plane now fresh in our memory we can discuss those sets in more detail and
as usual, we begin with a definition.

Definition 1.4. A relation is a set of points in the plane.

Since relations are sets, we can describe them using the techniques presented in Section 1.1.1. That
is, we can describe a relation verbally, using the roster method, or using set-builder notation. Since
the elements in a relation are points in the plane, we often try to describe the relation graphically or
algebraically as well. Depending on the situation, one method may be easier or more convenient to
use than another. As an example, consider the relation R = {(—2,1), (4,3), (0,—3)}. As written, R
is described using the roster method. Since R consists of points in the plane, we follow our instinct
and plot the points. Doing so produces the graph of R.

Yy
44
3+ °
(4,3)
21
(_27 1)
° 1
i 5 5 1 2 5 4 .
11
—21
-3¢ (0, —3)
41
The graph of R.
In the following example, we graph a variety of relations.
Example 1.2.1. Graph the following relations.
1. A= {(070)7 (_37 1)7 (47 2)7 (_372)} 2. HLS, = {(1‘,3) ‘ —2<z< 4}
3. HLS, = {(z,3)| —2<z <4} 4. V ={(3,y) |y is a real number}
5. H={(z,y)|ly = -2} 6. R={(z,y)|1<y<3}

LCarl’s, of course.
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Solution.

1. To graph A, we simply plot all of the points which belong to A, as shown below on the left.

2. Don’t let the notation in this part fool you. The name of this relation is H LS, just like the
name of the relation in number 1 was A. The letters and numbers are just part of its name,
just like the numbers and letters of the phrase ‘King George III’ were part of George’s name.
In words, {(z,3)| —2 < z < 4} reads ‘the set of points (x,3) such that —2 <z < 4.” All of
these points have the same y-coordinate, 3, but the x-coordinate is allowed to vary between
—2 and 4, inclusive. Some of the points which belong to H LS, include some friendly points
like: (—2,3), (—1,3), (0,3), (1,3), (2,3), (3,3), and (4,3). However, HLS, also contains the
points (0.829, 3), (—%,3), (v/7,3), and so on. It is impossible? to list all of these points,
which is why the variable = is used. Plotting several friendly representative points should
convince you that HLS,; describes the horizontal line segment from the point (—2,3) up to
and including the point (4, 3).

y Yy
44 4
3 . 3 °
° 2+ ° 2+
° 1+ 14
B T2 5 4 . i 5 b 1 T I
The graph of A The graph of HLS,

3. HLS, is hauntingly similar to HLS,. In fact, the only difference between the two is that
instead of ‘—2 < x < 4’ we have ‘—2 < x < 4’. This means that we still get a horizontal line
segment which includes (-2, 3) and extends to (4, 3), but we do not include (4, 3) because of
the strict inequality < 4. How do we denote this on our graph? It is a common mistake to
make the graph start at (—2,3) end at (3, 3) as pictured below on the left. The problem with
this graph is that we are forgetting about the points like (3.1, 3), (3.5,3), (3.9,3), (3.99,3),
and so forth. There is no real number that comes ‘immediately before’ 4, so to describe the
set of points we want, we draw the horizontal line segment starting at (—2,3) and draw an
open circle at (4,3) as depicted below on the right.

2Really impossible. The interested reader is encouraged to research countable versus uncountable sets.


http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Uncountable_set
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y y
4 1 4
° 3 ° L 3 o
2 2
1+ 14
5 5 T 5 5 4 o I T 5 5 4 e
This is NOT the correct graph of HLS, The graph of HLS,

4. Next, we come to the relation V', described as the set of points (3,y) such that y is a real
number. All of these points have an z-coordinate of 3, but the y-coordinate is free to be
whatever it wants to be, without restriction.? Plotting a few ‘friendly’ points of V should
convince you that all the points of V lie on the vertical line* 2 = 3. Since there is no restriction
on the y-coordinate, we put arrows on the end of the portion of the line we draw to indicate
it extends indefinitely in both directions. The graph of V' is below on the left.

5. Though written slightly differently, the relation H = {(x,y) | y = —2} is similar to the relation
V above in that only one of the coordinates, in this case the y-coordinate, is specified, leaving

x to be ‘free’. Plotting some representative points gives us the horizontal line y = —2.
y
44
3 Yy
2+ — A —
-4 -3 -2 -1 1 2 3 4 g
1 1
f ; ; 2
1 2 4 =z
-1 —31
-2 4]
—31
. The graph of H

The graph of V'

6. For our last example, we turn to R = {(z,y) |1 < y < 3}. As in the previous example, z is
free to be whatever it likes. The value of y, on the other hand, while not completely free, is
permitted to roam between 1 and 3 excluding 1, but including 3. After plotting some® friendly
elements of R, it should become clear that R consists of the region between the horizontal

3We'll revisit the concept of a ‘free variable’ in Section 8.1.
4Don’t worry, we’ll be refreshing your memory about vertical and horizontal lines in just a moment!
5The word ‘some’ is a relative term. It may take 5, 10, or 50 points until you see the pattern.
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lines y = 1 and y = 3. Since R requires that the y-coordinates be greater than 1, but not
equal to 1, we dash the line y = 1 to indicate that those points do not belong to R.

Y
44
Q
21
<= == === >
D/ T2 3 4,
The graph of R O

The relations V' and H in the previous example lead us to our final way to describe relations:
algebraically. We can more succinctly describe the points in V' as those points which satisfy the
equation ‘x = 3’. Most likely, you have seen equations like this before. Depending on the context,
‘x = 3’ could mean we have solved an equation for x and arrived at the solution x = 3. In this
case, however, ‘x = 3’ describes a set of points in the plane whose xz-coordinate is 3. Similarly, the
relation H above can be described by the equation ‘y = —2’. At some point in your mathematical
upbringing, you probably learned the following.

Equations of Vertical and Horizontal Lines

e The graph of the equation x = a is a vertical line through (a,0).

e The graph of the equation y = b is a horizontal line through (0, b).

Given that the very simple equations x = a and y = b produced lines, it’s natural to wonder what
shapes other equations might yield. Thus our next objective is to study the graphs of equations in
a more general setting as we continue to unite Algebra and Geometry.

1.2.1 GRAPHS OF EQUATIONS

In this section, we delve more deeply into the connection between Algebra and Geometry by focusing
on graphing relations described by equations. The main idea of this section is the following.

The Fundamental Graphing Principle
The graph of an equation is the set of points which satisfy the equation. That is, a point (z,y)
is on the graph of an equation if and only if x and y satisfy the equation.

Here, ‘x and y satisfy the equation’ means ‘x and y make the equation true’. It is at this point
that we gain some insight into the word ‘relation’. If the equation to be graphed contains both x
and y, then the equation itself is what is relating the two variables. More specifically, in the next
two examples, we consider the graph of the equation 22 +y3 = 1. Even though it is not specifically
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spelled out, what we are doing is graphing the relation R = {(z,y) | 2% +y* = 1}. The points (x,y)
we graph belong to the relation R and are necessarily related by the equation 2% + y® = 1, since it
is those pairs of x and y which make the equation true.

Example 1.2.2. Determine whether or not (2, —1) is on the graph of 22 + 3> = 1.

Solution. We substitute x = 2 and y = —1 into the equation to see if the equation is satisfied.
(2?4 (-1)* < 1
3 £ 1
Hence, (2, —1) is not on the graph of 22 + ¢% = 1. O

We could spend hours randomly guessing and checking to see if points are on the graph of the
equation. A more systematic approach is outlined in the following example.

Example 1.2.3. Graph 22 +¢3 = 1.

Solution. To efficiently generate points on the graph of this equation, we first solve for y

y3 — 171,2
B = Y122

y = V1—a2
We now substitute a value in for z, determine the corresponding value y, and plot the resulting
point (x,y). For example, substituting x = —3 into the equation yields

y= Y12 = YT= (P = 5= 2

so the point (—3,—2) is on the graph. Continuing in this manner, we generate a table of points
which are on the graph of the equation. These points are then plotted in the plane as shown below.
Yy

34
Tl oy (z,y)

-3 —2 | (=3,-2 24
-2 _\?/g (_2; _%) le
—1 0 (*150) \ \ ;
1 (0,1) 4 -3 -2 -1

0

1] o (1,0) . .

21 —¥/3 (2, _\'f/g) . —24 .
31| —2 (3,—2) _31

Remember, these points constitute only a small sampling of the points on the graph of this equation.
To get a better idea of the shape of the graph, we could plot more points until we feel comfortable
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‘connecting the dots’. Doing so would result in a curve similar to the one pictured below on the
far left.

Flakl Flokz Flots
27 ~EFTC1-K2 00

=
NV Tl

by frfxi khhﬁﬁ
wHeo= L
wWE= |

W=

31

Don’t worry if you don’t get all of the little bends and curves just right — Calculus is where the
art of precise graphing takes center stage. For now, we will settle with our naive ‘plug and plot’
approach to graphing. If you feel like all of this tedious computation and plotting is beneath you,
then you can reach for a graphing calculator, input the formula as shown above, and graph. ]

Of all of the points on the graph of an equation, the places where the graph crosses or touches the
axes hold special significance. These are called the intercepts of the graph. Intercepts come in
two distinct varieties: z-intercepts and y-intercepts. They are defined below.

Definition 1.5. Suppose the graph of an equation is given.

e A point on a graph which is also on the z-axis is called an x-intercept of the graph.

e A point on a graph which is also on the y-axis is called an y-intercept of the graph.

In our previous example the graph had two z-intercepts, (—1,0) and (1,0), and one y-intercept,
(0,1). The graph of an equation can have any number of intercepts, including none at all! Since
z-intercepts lie on the z-axis, we can find them by setting y = 0 in the equation. Similarly, since
y-intercepts lie on the y-axis, we can find them by setting £ = 0 in the equation. Keep in mind,
intercepts are points and therefore must be written as ordered pairs. To summarize,

Finding the Intercepts of the Graph of an Equation

Given an equation involving x and y, we find the intercepts of the graph as follows:

e z-intercepts have the form (z,0); set y = 0 in the equation and solve for x.

e y-intercepts have the form (0,y); set = 0 in the equation and solve for y.

Another fact which you may have noticed about the graph in the previous example is that it seems
to be symmetric about the y-axis. To actually prove this analytically, we assume (z,y) is a generic
point on the graph of the equation. That is, we assume 22 + y3 = 1 is true. As we learned in
Section 1.1, the point symmetric to (x,y) about the y-axis is (—z,y). To show that the graph is
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symmetric about the y-axis, we need to show that (—x,y) satisfies the equation 2% + 3® = 1, too.
Substituting (—z,y) into the equation gives

IR

Since we are assuming the original equation 22 +y3 = 1 is true, we have shown that (—x,%) satisfies
the equation (since it leads to a true result) and hence is on the graph. In this way, we can check
whether the graph of a given equation possesses any of the symmetries discussed in Section 1.1.
We summarize the procedure in the following result.

Testing the Graph of an Equation for Symmetry

To test the graph of an equation for symmetry

e about the y-axis — substitute (—z,y) into the equation and simplify. If the result is
equivalent to the original equation, the graph is symmetric about the y-axis.

e about the z-axis — substitute (x,—y) into the equation and simplify. If the result is
equivalent to the original equation, the graph is symmetric about the z-axis.

e about the origin - substitute (—z,—y) into the equation and simplify. If the result is
equivalent to the original equation, the graph is symmetric about the origin.

Intercepts and symmetry are two tools which can help us sketch the graph of an equation analyti-
cally, as demonstrated in the next example.

Example 1.2.4. Find the z- and y-intercepts (if any) of the graph of (z — 2)? + y? = 1. Test for
symmetry. Plot additional points as needed to complete the graph.

Solution. To look for z-intercepts, we set y = 0 and solve

(z—-22+y? = 1
(z—2)2+0* = 1
(z—-2)? = 1
(r—2)2 = /1  extract square roots
rx—2 = =1
z = 2+£1
r = 3,1

We get two answers for x which correspond to two z-intercepts: (1,0) and (3,0). Turning our
attention to y-intercepts, we set x = 0 and solve
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(x—2%+y* =
(0-2)2+y* =
4+y? =

yQ

-3

27

Since there is no real number which squares to a negative number (Do you remember why?), we

are forced to conclude that the graph has no y-intercepts.

Plotting the data we have so far, we get

Moving along to symmetry, we can immediately dismiss the possibility that the graph is symmetric
about the y-axis or the origin. If the graph possessed either of these symmetries, then the fact
that (1,0) is on the graph would mean (—1,0) would have to be on the graph. (Why?) Since
(—1,0) would be another z-intercept (and we’ve found all of these), the graph can’t have y-axis or
origin symmetry. The only symmetry left to test is symmetry about the x-axis. To that end, we

substitute (x, —y) into the equation and simplify

(x —2)2 + 92
(= 2)* + (—y)?
(z—2)% +y?

NI

1
1
1

Since we have obtained our original equation, we know the graph is symmetric about the z-axis.
This means we can cut our ‘plug and plot’ time in half: whatever happens below the z-axis is
reflected above the x-axis, and vice-versa. Proceeding as we did in the previous example, we obtain

Y
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A couple of remarks are in order. First, it is entirely possible to choose a value for  which does
not correspond to a point on the graph. For example, in the previous example, if we solve for y as
is our custom, we get

y=+y1—(xz—2)2.

Upon substituting = 0 into the equation, we would obtain

y=41-(0-2)2=+V1—-4=4/-3,

which is not a real number. This means there are no points on the graph with an z-coordinate
of 0. When this happens, we move on and try another point. This is another drawback of the
‘plug-and-plot’ approach to graphing equations. Luckily, we will devote much of the remainder of
this book to developing techniques which allow us to graph entire families of equations quickly.
Second, it is instructive to show what would have happened had we tested the equation in the last
example for symmetry about the y-axis. Substituting (—x,y) into the equation yields

(z—2)* +y°

(2 —2)?+y°
(=D +2))* +y
(2 +2)* +¢?

—_ e e e

[~ Jl~ {11l

This last equation does not appear to be equivalent to our original equation. However, to actually
prove that the graph is not symmetric about the y-axis, we need to find a point (z,y) on the graph
whose reflection (—z,y) is not. Our a-intercept (1,0) fits this bill nicely, since if we substitute
(—1,0) into the equation we get

(x-22+y° = 1
(-1 —-2)2+0?
9

RININ N

This proves that (—1,0) is not on the graph.

SWithout the use of a calculator, if you can believe it!
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1.2.2 EXERCISES

In Exercises 1 - 20, graph the given relation.

11.

13.

15.

17.

19.

- {(m,2m) |m = 0,+1,+2} 4.
{(n,4—=n?) |n=0,%1,+2} 6.
{(z,=2) |z > -4} 8.

A=Ly) [y >1} 10.
{(=2,y)] —3<y<4} 12.
{(,2)] —2 <z <3} 14.
{(z,9) [z > -2} 16.
{(z,9) |y <4} 18.
{(z,y) [2>0,y <4} 20.

29

. {(_379)7 (_274)7 (_171)7 (070)7 (171)7 (274)7 (3)9)}

: {(_an)v (_171)’ (_17_1)7 (072)7 (03_2)3 (173)a (17_3)}

{(8,k) |k =£1,+2,£3 4, +5 +6}
{(\4,5) |7 =0,1,4,9}

{(z,3) |z < 4}

{2,9) ly <5}
{By) | —4<y<3}
{(z,-3) | —4 <z <4}
{(z,y) |z <3}
{(z,y) |z <3,y <2}

{(z,y)| —V2<a<2 r<y<3}

In Exercises 21 - 30, describe the given relation using either the roster or set-builder method.

21.

22.

° 1+

—4 -3 -2 -1 1w
° -1

Relation A

= N @
| 4
T T

—4 -3 -2 -1 1 2 3 4 2

Relation B
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23. 24.
Yy
54 y
4+ 1) 34
3+ 2
2+ 14
14 :
-3 - —1 x
: —14
1 2 3 =
-1+ -2
—21 3]
—-34 1) —4
Relation C Relation D
25. 26.
Yy
31
2 o
14
R I R
Relation F
Relation F'
27. 28.

Relation G Relation H
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29. 30.
y
y
51
e e a
41 | L |
i T |
37 i : |
21 —%1 -3 -2 1 1 2 3 4 #m
1L | - |
| _a2l |
t | |
-1 12345 e — 3 I 4
Relation I Relation J

In Exercises 31 - 36, graph the given line.

3. 2= -2 32. 2 =3
33. y=3 34 y=—2
35. 2=0 36. y =0

Some relations are fairly easy to describe in words or with the roster method but are rather difficult,
if not impossible, to graph. Discuss with your classmates how you might graph the relations given
in Exercises 37 - 40. Please note that in the notation below we are using the ellipsis, ..., to denote
that the list does not end, but rather, continues to follow the established pattern indefinitely. For
the relations in Exercises 37 and 38, give two examples of points which belong to the relation and
two points which do not belong to the relation.

37. {(z,y)| = is an odd integer, and y is an even integer.}
38. {(,1)

39. {(1,0),(2,1),(4,2),(8,3), (16,4), (32,5),...}

40. {...,(=3,9),(=2,4),(~1,1),(0,0),(1,1),(2,4),(3,9),...}

For each equation given in Exercises 41 - 52:

| z is an irrational number }

e Find the z- and y-intercept(s) of the graph, if any exist.

e Follow the procedure in Example 1.2.3 to create a table of sample points on the graph of the
equation.

e Plot the sample points and create a rough sketch of the graph of the equation.

e Test for symmetry. If the equation appears to fail any of the symmetry tests, find a point on
the graph of the equation whose reflection fails to be on the graph as was done at the end of
Example 1.2.4
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41, y=2>+1 42, y=x?—2x —8
43. y =23 —x 44.y:§—3x

45. y=+x —2 46. y =2z +4—-2
47. 3z —y =17 48. 3x — 2y =10
49. (x+2)2 +y? =16 50. 22 —y? =1

51. 4y? — 922 = 36 52. a3y = —4

The procedures which we have outlined in the Examples of this section and used in Exercises 41 - 52
all rely on the fact that the equations were “well-behaved”. Not everything in Mathematics is quite
so tame, as the following equations will show you. Discuss with your classmates how you might
approach graphing the equations given in Exercises 53 - 56. What difficulties arise when trying
to apply the various tests and procedures given in this section? For more information, including
pictures of the curves, each curve name is a link to its page at www.wikipedia.org. For a much
longer list of fascinating curves, click here.

53. % + 93 — 3zy = 0 Folium of Descartes 54. z* = 22 + y? Kampyle of Eudoxus

55. y? = 23 4 322 Tschirnhausen cubic 56. (22 +9%)? = 23 + 9y Crooked egg

57. With the help of your classmates, find examples of equations whose graphs possess

e symmetry about the x-axis only
e symmetry about the y-axis only
e symmetry about the origin only

e symmetry about the z-axis, y-axis, and origin

Can you find an example of an equation whose graph possesses exactly two of the symmetries
listed above? Why or why not?


http://en.wikipedia.org/wiki/List_of_curves
http://en.wikipedia.org/wiki/Folium_of_descartes
http://en.wikipedia.org/wiki/Kampyle_of_Eudoxus
http://en.wikipedia.org/wiki/Tschirnhausen_cubic
http://en.wikipedia.org/wiki/Crooked_egg_curve
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1.2.3 ANSWERS
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34

21

54
44
34
24
1

11

921

_31

10.

31

84
74
64
54
44
31
24
o 14

12.

11.

31

2l

14

44

3l

21

31
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14.

1

13.

B

15.

8

17.

Y

20.

19.
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21. A= {(_47 _1)7 (_27 1)7 (073)7 (174)} 22. B= {(.’E,g) ‘!E 2 _3}
23. C={(2,9)|y> -3} 24. D={(-2,y)| —4<y <3}
25. E={(z,2) | —4 <z <3} 26. F={(x,y)|y >0}
27. G ={(x,y) |z > -2} 28. H={(z,y) | —3<z<2}
29. I ={(z,y)|x >0,y >0} 30. J={(z,y)| —4<z<5b, -3<y<2}
31. 32.
y y
3 3
2 2
1 1
-3 -2 —1 T :1 2 3z
—~1 -1
) —2
-3 -3
The line x = —2 The line z = 3
33. 34.
y y

3 -9 1 1 2 3 @
11

14 D)
—t—t ——t— =371
-3 -2 -1 1 2 3 'z
The line y = 3 The line y = —2
35. 36.
N Yy
31 3
2 2
1 14
-3 -2 -1 1 2 3 T3 -2 1 1 2 3 =
-2 -2
-31 -3
Y

The line x = 0 is the y-axis The line y = 0 is the z-axis
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41, y=2>+1

The graph has no x-intercepts

y-intercept: (0,1)

zlly| (z,y)
2| 5] (~2,5)
12 (-1,2)
0l 1] (0,1)
1] 2] (1,2
2|5 (2,5)

The graph is not symmetric about the
x-axis (e.g. (2,5) is on the graph but
(2,—5) is not)

The graph is symmetric about the y-axis

The graph is not symmetric about the
origin (e.g. (2,5) is on the graph but
(—2,—5) is not)

42, y=x?—2x —8

z-intercepts: (4,0), (—2,0)

y-intercept: (0, —8)

vy | (vy)
=3 7| (=3,7)
2 o] (=20
1 =5 (=1,-5)
0 -8 (0,—-8)
1
2
3
4
5

The graph is not symmetric about the
x-axis (e.g. (—3,7) is on the graph but
(—3,—7) is not)

The graph is not symmetric about the
y-axis (e.g. (—3,7) is on the graph but
(3,7) is not)

The graph is not symmetric about the
origin (e.g. (—3,7) is on the graph but
(3,—7) is not)

37
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43. y =23 —x

x-intercepts: (—1,0),(0,0),(1,0)

y-intercept: (0,0)

zl|ly | (=9
-2 | =6 | (—2,—6)
(_170)
(0,0)
(1,0)
(2,6)

The graph is not symmetric about the
x-axis. (e.g. (2,6) is on the graph but
(2, —6) is not)

The graph is not symmetric about the
y-axis. (e.g. (2,6) is on the graph but
(—2,6) is not)

The graph is symmetric about the origin.

RELATIONS AND FUNCTIONS

4. y="2 — 3z

x-intercepts: (i2\/§, O) ,(0,0)

y-intercept: (0,0)

r| y (z,9)

—4 | -4 | (~4,-4)
=30 | (=39
—2| 4 | (=2,
L)
0
1

The graph is not symmetric about the
x-axis (e.g. (—4,—4) is on the graph but
(—4,4) is not)

The graph is not symmetric about the
y-axis (e.g. (—4,—4) is on the graph but
(4, —4) is not)

The graph is symmetric about the origin
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45. y=+x —2 46. y =2z +4 -2
x-intercept: (2,0) x-intercept: (—3,0)
The graph has no y-intercepts y-intercept: (0,2)
z|ly| (29 x y (z,y)
2001 (2,0 4| 2 (—4, —2)
31] 3,1 -3 0 (—3,0)
62| (6,2 -2 2v2-2|(-2,v2-2)
113 ](11,3) —1|2v3—2|(-2,V3-2)
y 0 2 (0,2)
1] 2v5—2](-2,v5-2)
y
IR T S R R L z/
The graph is not symmetric about the : / -
z-axis (e.g. (3,1) is on the graph but _4/({”_2_11-- e
—24

(3,—1) is not)

—34

The graph is not symmetric about the
y-axis (e.g. (3,1) is on the graph but The graph is not symmetric about the
(—3,1) is not) z-axis (e.g. (—4,—2) is on the graph but

The graph is not symmetric about the (—4,2) is not)

origin (e.g. (3,1) is on the graph but The graph is not symmetric about the
(—3,—1) is not) y-axis (e.g. (—4,—2) is on the graph but
(4, —2) is not)

The graph is not symmetric about the
origin (e.g. (—4,—2) is on the graph but
(4,2) is not)
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47. 3x —y =17

Re-write as: y =3z — 7.

z-intercept: (Z,0)

y-intercept: (0,—7)

| y (z,y)
—2|| =13 | (=2,-13)
~11| =10 | (=1,-10)

ol =7 [ (0,-7
1 =4 @,-9
2| -1 | (2,-1)
3 2 (3,2)

The graph is not symmetric about the
z-axis (e.g. (3,2) is on the graph but
(3,—2) is not)

The graph is not symmetric about the
y-axis (e.g. (3,2) is on the graph but
(—3,2) is not)

The graph is not symmetric about the

origin (e.g. (3,2) is on the graph but
(—3,—2) is not)

RELATIONS AND FUNCTIONS

48. 32— 2y =10

3x—10

Re-write as: y = =55

z-intercepts: (%, 0)

y-intercept: (0,—5)

|y (z,y)
2 =8| (~2.-9)
U F[CLB)

0l =5 | (0,-5)

-5 | (1,-3)

2 —2 | (2,-2

The graph is not symmetric about the
x-axis (e.g. (2,—2) is on the graph but
(2,2) is not)

The graph is not symmetric about the
y-axis (e.g. (2,—2) is on the graph but
(—2,—2) is not)

The graph is not symmetric about the
origin (e.g. (2, —2) is on the graph but
(—2,2) is not)
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49. (z+2)2+y? =16 50. 22 —y? =1
Re-write as y = £1/16 — (z + 2)2. Re-write as: y = £va? — 1.

x-intercepts: (—6,0), (2,0)

y-intercepts: (0,£2v/3) z-intercepts: (—1,0), (1,0)
||y (z,y)
Th h h -i
6 0 (=6,0) e graph has no y-intercepts
—4 || £2v3 | (-4, £2V/3) 2 4 @7)
-2 +4 (=2, +4) T3 V8 | (=3, £V8)
£2v3 | (0,42v3) 2 V3| (-2,£v3)
2] © (2,0) 1 o | (=10
1] o (1,0)
2| £v3 | (2,+V3)
31 £v8| (3,+V8)

The graph is symmetric about the x-axis

The graph is not symmetric about the
y-axis (e.g. (—6,0) is on the graph but The graph is symmetric about the x-axis
(6,0) is not)

The graph is not symmetric about the The graph is symmetric about the y-axis

origin (e.g. (—6,0) is on the graph but
(6,0) is not) The graph is symmetric about the origin
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51. 4y? — 922 = 36

+V 922+36
3 .

Re-write as: y =

The graph has no z-intercepts

y-intercepts: (0,+3)

||y (z,y)
—4 || £3v5 | (-4, +3V5)
—2 || £3v2 | (-2, +3V?2)

+3 (0,£3)
2 || £3v2 | (2,£3Vv2)
+3v5 | (4, +3/5)
Y

The graph is symmetric about the x-axis
The graph is symmetric about the y-axis

The graph is symmetric about the origin

RELATIONS AND FUNCTIONS

52. x3y = —4

4
Re-write as: y = ——.
x

The graph has no z-intercepts

The graph has no y-intercepts

z| vy (z,y)
-2 5 | (=2,3)
—1| 4 | (-1,4)
—11| 32 | (—3.32)
2 =32 (3,-32)
1] —4 | (1,-4)
2] =31 (2,—3)

Yy

24

44
-2 -1 .233

—324

The graph is not symmetric about the
z-axis (e.g. (1,—4) is on the graph but
(1,4) is not)

The graph is not symmetric about the
y-axis (e.g. (1,—4) is on the graph but
(—1,—4) is not)

The graph is symmetric about the origin
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1.3 INTRODUCTION TO FUNCTIONS

One of the core concepts in College Algebra is the function. There are many ways to describe a
function and we begin by defining a function as a special kind of relation.

Definition 1.6. A relation in which each x-coordinate is matched with only one y-coordinate
is said to describe y as a function of x.

Example 1.3.1. Which of the following relations describe y as a function of z?
1. R, ={(-2,1),(1,3),(1,4),(3,-1)} 2. R, ={(-2,1),(1,3),(2,3),(3,—-1)}

Solution. A quick scan of the points in R, reveals that the x-coordinate 1 is matched with two
different y-coordinates: namely 3 and 4. Hence in R,, y is not a function of z. On the other
hand, every z-coordinate in R, occurs only once which means each z-coordinate has only one
corresponding y-coordinate. So, R, does represent y as a function of z. 0

Note that in the previous example, the relation R, contained two different points with the same
y-coordinates, namely (1,3) and (2,3). Remember, in order to say y is a function of z, we just
need to ensure the same z-coordinate isn’t used in more than one point.!

To see what the function concept means geometrically, we graph R, and R, in the plane.

Y y

1+ e 41

3+ e 3+ e e

21 21
° 1+ ° 1+
1 [ 1 2 5 e 1 | 1 2 5 e

-1+ ) -1+ .
The graph of R, The graph of R,

The fact that the z-coordinate 1 is matched with two different y-coordinates in R, presents itself
graphically as the points (1,3) and (1,4) lying on the same vertical line, x = 1. If we turn our
attention to the graph of R,, we see that no two points of the relation lie on the same vertical line.
We can generalize this idea as follows

Theorem 1.1. The Vertical Line Test: A set of points in the plane represents y as a function
of z if and only if no two points lie on the same vertical line.

!We will have occasion later in the text to concern ourselves with the concept of = being a function of y. In this
case, Ry represents x as a function of y; R2 does not.
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It is worth taking some time to meditate on the Vertical Line Test; it will check to see how well
you understand the concept of ‘function’ as well as the concept of ‘graph’.

Example 1.3.2. Use the Vertical Line Test to determine which of the following relations describes
y as a function of .

y y

4 4

3 34

2 24

1 14

T 5 5 . T N

-1 1

The graph of R The graph of S

Solution. Looking at the graph of R, we can easily imagine a vertical line crossing the graph more
than once. Hence, R does not represent y as a function of x. However, in the graph of S, every
vertical line crosses the graph at most once, so S does represent y as a function of . O

In the previous test, we say that the graph of the relation R fails the Vertical Line Test, whereas
the graph of S passes the Vertical Line Test. Note that in the graph of R there are infinitely many
vertical lines which cross the graph more than once. However, to fail the Vertical Line Test, all you
need is one vertical line that fits the bill, as the next example illustrates.

Example 1.3.3. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x.

Yy Yy
4 4 4
3 34
2 . 2 °
1 14
= TG = o
—1 —14

The graph of S, The graph of 5,
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Solution. Both S; and .S, are slight modifications to the relation S in the previous example whose
graph we determined passed the Vertical Line Test. In both S, and S, it is the addition of the
point (1,2) which threatens to cause trouble. In S;, there is a point on the curve with z-coordinate
1 just below (1,2), which means that both (1,2) and this point on the curve lie on the vertical line
x = 1. (See the picture below and the left.) Hence, the graph of S, fails the Vertical Line Test, so
y is not a function of x here. However, in S, notice that the point with z-coordinate 1 on the curve
has been omitted, leaving an ‘open circle’ there. Hence, the vertical line x = 1 crosses the graph of
S, only at the point (1,2). Indeed, any vertical line will cross the graph at most once, so we have
that the graph of 5, passes the Vertical Line Test. Thus it describes y as a function of z. O

y Y

t 7.1 l t ’
14

S, and the line x = 1 The graph of G for Ex. 1.3.4

Suppose a relation F' describes y as a function of x. The sets of z- and y-coordinates are given
special names which we define below.

Definition 1.7. Suppose F' is a relation which describes y as a function of x.

e The set of the z-coordinates of the points in F' is called the domain of F.

e The set of the y-coordinates of the points in F is called the range of F'.

We demonstrate finding the domain and range of functions given to us either graphically or via the
roster method in the following example.

Example 1.3.4. Find the domain and range of the function F' = {(-3,2),(0,1), (4,2),(5,2)} and
of the function G’ whose graph is given above on the right.

Solution. The domain of F' is the set of the z-coordinates of the points in F', namely {—3,0,4,5}
and the range of F' is the set of the y-coordinates, namely {1, 2}.

To determine the domain and range of GG, we need to determine which z and y values occur as
coordinates of points on the given graph. To find the domain, it may be helpful to imagine collapsing
the curve to the z-axis and determining the portion of the z-axis that gets covered. This is called
projecting the curve to the z-axis. Before we start projecting, we need to pay attention to two



46

RELATIONS AND FUNCTIONS

subtle notations on the graph: the arrowhead on the lower left corner of the graph indicates that the
graph continues to curve downwards to the left forever more; and the open circle at (1, 3) indicates
that the point (1,3) isn’t on the graph, but all points on the curve leading up to that point are.

Y

N

L project down

project up

The graph of G

Y

-

The graph of G

We see from the figure that if we project the graph of G to the z-axis, we get all real numbers less
than 1. Using interval notation, we write the domain of G as (—o0,1). To determine the range of

G, we project the curve to the y-axis as follows:

_

project right

The graph of G

The graph of G

Note that even though there is an open circle at (1, 3), we still include the y value of 3 in our range,
since the point (—1,3) is on the graph of G. We see that the range of G is all real numbers less

than or equal to 4, or, in interval notation, (—oo,4].

O]
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All functions are relations, but not all relations are functions. Thus the equations which described
the relations in Section1.2 may or may not describe y as a function of z. The algebraic representation
of functions is possibly the most important way to view them so we need a process for determining
whether or not an equation of a relation represents a function. (We delay the discussion of finding
the domain of a function given algebraically until Section 1.4.)

Example 1.3.5. Determine which equations represent y as a function of .

123 4+¢y2=1 2. 2 +y3 =1 3. 2%y =1-3y

Solution. For each of these equations, we solve for y and determine whether each choice of x will
determine only one corresponding value of y.

1.
By =1
Yy = 1—=x
\/gj? = V1—-2a3 extract square roots
y = V1P

If we substitute = 0 into our equation for y, we get y = £v/1 — 03 = £1, so that (0,1)
and (0,—1) are on the graph of this equation. Hence, this equation does not represent y as a
function of x.

3

2.
x? + 93 1
y3 — 1_1.2
3 = V1 a2

For every choice of x, the equation y = +v/1 — 22 returns only one value of y. Hence, this
equation describes y as a function of x.

3.
2’y = 1-3y
2y +3y = 1
Y (x2 + 3) = 1 factor
1
Y7 213

For each choice of x, there is only one value for ¥, so this equation describes y as a function of . [

We could try to use our graphing calculator to verify our responses to the previous example, but
we immediately run into trouble. The calculator’s “Y=" menu requires that the equation be of the
form ‘y = some expression of x’. If we wanted to verify that the first equation in Example 1.3.5
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does not represent y as a function of x, we would need to enter two separate expressions into the
calculator: one for the positive square root and one for the negative square root we found when
solving the equation for y. As predicted, the resulting graph shown below clearly fails the Vertical
Line Test, so the equation does not represent y as a function of x.

Flatl Flokz Flok: I
BT C1=HAE) \___
L Rt S i

~Ny=
wWE=
W E=
wWe= EEL

wMa= __-"'
I

Thus in order to use the calculator to show that 23 + 42 = 1 does not represent y as a function of x
we needed to know analytically that y was not a function of z so that we could use the calculator
properly. There are more advanced graphing utilities out there which can do implicit function
plots, but you need to know even more Algebra to make them work properly. Do you get the point
we're trying to make here? We believe it is in your best interest to learn the analytic way of doing
things so that you are always smarter than your calculator.
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1.3.1 EXERCISES

In Exercises 1 - 12, determine whether or not the relation represents y as a function of z. Find the
domain and range of those relations which are functions.

1 {(=3,9), (=2,4), (=1,1), (0,0), (1,1), (2,4), (3,9)}

2. {(=3,0),(1,6),(2,-3),(4,2),(=5,6), (4,-9),(6,2)}

3. {(=3,0),(~7,6),(5,5),(6,4), (4,9), (3,0)}

4. {(1,2),(4,4),(9,6), (16,8), (25, 10), (36,12),...}

5. {(z,y)|x is an odd integer, and y is an even integer}

6. {(x,1)|x is an irrational number}

7. {(1,0), (2,1), (4,2), (8,3), (16,4), (32,5), ...}

8. {..., (=3,9), (=2,4), (~1,1), (0,0), (1,1), (2,4), (3,9), ...}

9. {(-2,9)| —3<y<4} 10. {(2,3)] —2 <z <4}

11. {(z,2?) |z is a real number} 12. {(2?,z) |z is a real number}

In Exercises 13 - 32, determine whether or not the relation represents y as a function of z. Find
the domain and range of those relations which are functions.

. Yy .
4 . Yy
44+ .
3e
3e
o 2+
o 24
. 14
[ . 14
+ + t + t
y . y y y
B boe Y g T 2
. —114 . -1l
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15.

17.

19.

21.
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22.
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FUNCTIONS
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23. 24.

| S R Y
t 1
—1 1 2 3 45 6<%
4

25. 26.
Yy
44
34
14
FARIA
27. 28.
Y Yy
4 44
3]
24
_/z_’l (I
29. 30.
Y Y
2 o—> 2
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32.

In Exercises 33 - 47, determine whether or not the equation represents y as a function of x.

33

36.

39.

42.

45.

48.

49.

The

Ly=23—=x 34. y=+vz -2 35. 3y = —4

22 —y? =1 37,y:$2i79 38. 1= —6

r=y>+4 40. y=2?+4 41, 2 +y? =4
y:\/4—7ac2 43. x2—y2:4 44. x3+y3:4

2x + 3y =4 46. 2y = 4 47. 22 =92

Explain why the population P of Sasquatch in a given area is a function of time ¢t. What

would be the range of this function?

Explain why the relation between your classmates and their email addresses may not be a
function. What about phone numbers and Social Security Numbers?

process given in Example 1.3.5 for determining whether an equation of a relation represents y

as a function of x breaks down if we cannot solve the equation for y in terms of x. However, that
does not prevent us from proving that an equation fails to represent y as a function of . What we
really need is two points with the same x-coordinate and different y-coordinates which both satisfy

the

equation so that the graph of the relation would fail the Vertical Line Test 1.1. Discuss with

your classmates how you might find such points for the relations given in Exercises 50 - 53.

50

52

Lty —3xy =0 51. a2t = x? + 42

Cy? =23+ 32 53. (22 +y?)? =23 + o3
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1.3.2 ANSWERS

1.

11.

13.

15.

17.

19.

Function
domain = {-3, =2, —1,0, 1, 2 ,3}
range = {0, 1, 4, 9}

. Function

domain = {—7,-3,3,4,5,6}
range = {0,4,5,6,9}

. Not a function

Function

8.

domain = {z|z = 2" for some whole number n}

range = {y|y is any whole number}

. Not a function

Function
domain = (—o0, 00)
range = [0, 00)

Function
domain = {—4, -3, =2, —1, 0, 1}
range = {—1, 0, 1, 2, 3, 4}

Function
domain = (—o0, 00)
range = [1,00)

Function
domain = [2, c0)

range = [0, 00)

Not a function

10.

12.

14.

16.

18.

20.

53

. Not a function

. Function

domain = {1,4,9,16,25,36,...}
= {z |z is a perfect square}
range = {2,4,6,8,10,12,...}

= {y |y is a positive even integer}

. Function

domain = {x |z is irrational }
range = {1}

Function
domain = {x |z is any integer}

range = {y |y = n? for some integer n}

Function
domain = [—-2,4), range = {3}

Not a function

Not a function

Not a function

Function
domain = (—o00, 00)
range = (0, 4]

Function
domain = [-5,-3) U (—3,3)
range = (—2,—1) U|[0,4)
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21.

23.

25.

27.

29.

31.

33.

36.

39.

42.

45.

Function

domain = [—2,00)
range = [—3, 00)
Function

domain = [—5,4)
range = [—4,4)

Function
domain = (—o0, 00)
range = (—00, 4]

Function
domain = [-2, 00)
range = (—o0, 3]

Function
domain = (—o0, 0] U (1, 00)

range = (—oo, 1] U {2}

Not a function

Function 34. Function
Not a function 37. Function
Not a function 40. Function
Function 43.

Function 46. Function

22.

24.

26.

28.

30.

32.

Not a function

RELATIONS AND FUNCTIONS

Not a function

Function

domain = [0, 3) U (3, 6]
range = (—4,—1] U [0, 4]
Function

domain = (—o0, 00)
range = (—o0, 4]

Function
domain = (—o00, 00)
range = (—00,00)

Function

domain = [-3, 3]
range = [—2,2]
Function

domain = (—o0, 00)
range = {2}

35. Function

38. Not a function

41. Not a function

44. Function

47. Not a function
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1.4 FUNCTION NOTATION

In Definition 1.6, we described a function as a special kind of relation — one in which each z-
coordinate is matched with only one y-coordinate. In this section, we focus more on the process
by which the x is matched with the y. If we think of the domain of a function as a set of inputs
and the range as a set of outputs, we can think of a function f as a process by which each input
z is matched with only one output y. Since the output is completely determined by the input x
and the process f, we symbolize the output with function notation: ‘f(x)’, read ‘f of z.” In
other words, f(x) is the output which results by applying the process f to the input x. In this
case, the parentheses here do not indicate multiplication, as they do elsewhere in Algebra. This can
cause confusion if the context is not clear, so you must read carefully. This relationship is typically
visualized using a diagram similar to the one below.

.

y=f(z)

Range
(Outputs)

The value of y is completely dependent on the choice of . For this reason, x is often called the
independent variable, or argument of f, whereas y is often called the dependent variable.

As we shall see, the process of a function f is usually described using an algebraic formula. For
example, suppose a function f takes a real number and performs the following two steps, in sequence

1. multiply by 3
2. add 4

If we choose 5 as our input, in step 1 we multiply by 3 to get (5)(3) = 15. In step 2, we add 4 to
our result from step 1 which yields 1544 = 19. Using function notation, we would write f(5) = 19
to indicate that the result of applying the process f to the input 5 gives the output 19. In general,
if we use x for the input, applying step 1 produces 3z. Following with step 2 produces 3x + 4 as
our final output. Hence for an input x, we get the output f(z) = 3z + 4. Notice that to check our
formula for the case x = 5, we replace the occurrence of x in the formula for f(z) with 5 to get
f(5) =3(5) +4=15+4 =19, as required.
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Example 1.4.1. Suppose a function g is described by applying the following steps, in sequence
1. add 4
2. multiply by 3

Determine ¢(5) and find an expression for g(z).

Solution. Starting with 5, step 1 gives 5+ 4 = 9. Continuing with step 2, we get (3)(9) = 27. To
find a formula for g(z), we start with our input z. Step 1 produces x +4. We now wish to multiply
this entire quantity by 3, so we use a parentheses: 3(x +4) = 3z + 12. Hence, g(z) = 3z + 12. We
can check our formula by replacing x with 5 to get g(5) =3(5) +12=15+12=27V". O

Most of the functions we will encounter in College Algebra will be described using formulas like
the ones we developed for f(x) and g(x) above. Evaluating formulas using this function notation
is a key skill for success in this and many other Math courses.

Example 1.4.2. Let f(z) = —22 + 32 + 4

1. Find and simplify the following.

(a) f(=1), £(0), £(2)
(b) f(22), 2f ()
(©) fle+2), f(x)+2, f(z)+ [(2)

2. Solve f(x) =4.

5

Solution.

1. (a) To find f(—1), we replace every occurrence of = in the expression f(z) with —1

f(=1) = (=1 +3(-1) +4
= —(1)+(-3)+4
=0
Similarly, f(0) = —(0)2 +3(0) +4 =4, and f(2) = —(2)2+3(2) +4=—4+6+4=6.

(b) To find f(2x), we replace every occurrence of  with the quantity 2z

f2z) = —(22)%+ 3(27) + 4
—(42?) 4 (62) + 4
—42% + 61 + 4

The expression 2f(x) means we multiply the expression f(z) by 2

2f(z) = 2(—a®+3z+4)
—21% + 62 + 8
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(c) To find f(z + 2), we replace every occurrence of z with the quantity = + 2

flz+2) = —(z+2)?%?+3(x+2)+4
= —(@*+42+4)+ (B +6)+4
= —2? -4z —-4+3x+6+4
—22—z+6

To find f(x) + 2, we add 2 to the expression for f(x)

fl@)+2 = (-2 +3z+4)+2
= —2?+3z+6

From our work above, we see f(2) = 6 so that

f@)+f(2) = (—2?4+3z+4)+6
—224+ 32410

2. Since f(z) = —2% 4 3z + 4, the equation f(z) = 4 is equivalent to —z? + 3z + 4 = 4. Solving
we get —22 +3z = 0, or z(—x +3) = 0. We get x = 0 or z = 3, and we can verify these
answers by checking that f(0) =4 and f(3) = 4. O

A few notes about Example 1.4.2 are in order. First note the difference between the answers for
f(2z) and 2f(x). For f(2z), we are multiplying the input by 2; for 2f(x), we are multiplying the
output by 2. As we see, we get entirely different results. Along these lines, note that f(z + 2),
f(x)+2and f(x)+ f(2) are three different expressions as well. Even though function notation uses
parentheses, as does multiplication, there is no general ‘distributive property’ of function notation.
Finally, note the practice of using parentheses when substituting one algebraic expression into
another; we highly recommend this practice as it will reduce careless errors.

Suppose now we wish to find r(3) for r(z) = 3322’”

Substitution gives

—9°
23 6
T(3) - (3)2 ) - 67

which is undefined. (Why is this, again?) The number 3 is not an allowable input to the function
r; in other words, 3 is not in the domain of . Which other real numbers are forbidden in this
formula? We think back to arithmetic. The reason 7(3) is undefined is because substitution results
in a division by 0. To determine which other numbers result in such a transgression, we set the
denominator equal to 0 and solve

-9 = 0
2 = 9
Va2 = /9 extract square roots

r = =£3
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As long as we substitute numbers other than 3 and —3, the expression r(x) is a real number. Hence,
we write our domain in interval notation' as (—oc, —3) U (—3,3) U (3,00). When a formula for a
function is given, we assume that the function is valid for all real numbers which make arithmetic
sense when substituted into the formula. This set of numbers is often called the implied domain?
of the function. At this stage, there are only two mathematical sins we need to avoid: division by
0 and extracting even roots of negative numbers. The following example illustrates these concepts.

Example 1.4.3. Find the domain? of the following functions.

1. g(x) =4 -3z 2. h(z) =+/4-3z

= 4. F(z) =
1— 4x (x) I’2—1
z—3
4 32
=S 6. I(z) = —

Solution.

1. The potential disaster for g is if the radicand? is negative. To avoid this, we set 4 — 3z > 0.
From this, we get 3z < 4 or z < %. What this shows is that as long as z < %, the expression
4 — 3z > 0, and the formula g(z) returns a real number. Our domain is (—oo, %]

2. The formula for h(z) is hauntingly close to that of g(z) with one key difference — whereas
the expression for g(z) includes an even indexed root (namely a square root), the formula
for h(x) involves an odd indexed root (the fifth root). Since odd roots of real numbers (even
negative real numbers) are real numbers, there is no restriction on the inputs to h. Hence,
the domain is (—o0, 00).

3. In the expression for f, there are two denominators. We need to make sure neither of them is
0. To that end, we set each denominator equal to 0 and solve. For the ‘small’ denominator,
we get © — 3 =0 or x = 3. For the ‘large’ denominator

1See the Exercises for Section 1.1.

2or, “implicit domain’

3The word ‘implied’ is, well, implied.

4The ‘radicand’ is the expression ‘inside’ the radical.
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4z
1-— ~—3 = 0
1 - 4z
x—3
(D(x—=3) = (;ig) (z—37] clear denominators
r—3 = 4z
-3 = 3z
-1 = =z
So we get two real numbers which make denominators 0, namely x = —1 and x = 3. Our

domain is all real numbers except —1 and 3: (—oo, —1) U (—1,3) U (3, 00).

4. In finding the domain of F', we notice that we have two potentially hazardous issues: not
only do we have a denominator, we have a fourth (even-indexed) root. Our strategy is to
determine the restrictions imposed by each part and select the real numbers which satisfy
both conditions. To satisfy the fourth root, we require 2z + 1 > 0. From this we get 2x > —1
or x > —%. Next, we round up the values of x which could cause trouble in the denominator
by setting the denominator equal to 0. We get > — 1 = 0, or = £1. Hence, in order for a
real number z to be in the domain of F, z > —% but z # +1. In interval notation, this set
is [—3,1) U (1,00).

5. Don’t be put off by the ‘¢’ here. It is an independent variable representing a real number,
just like x does, and is subject to the same restrictions. As in the previous problem, we have
double danger here: we have a square root and a denominator. To satisfy the square root,
we need a non-negative radicand so we set t +3 > 0 to get ¢ > —3. Setting the denominator
equal to zero gives 6 — v/t +3 = 0, or v/t + 3 = 6. Squaring both sides gives ¢t + 3 = 36, or
t = 33. Since we squared both sides in the course of solving this equation, we need to check
our answer.” Sure enough, when t = 33, 6 — vVt +3 = 6 — /36 = 0, so t = 33 will cause
problems in the denominator. At last we can find the domain of r: we need t > —3, but
t # 33. Our final answer is [—3,33) U (33, 00).

6. It’s tempting to simplify I(z) = % = 3z, and, since there are no longer any denominators,

claim that there are no longer any restrictions. However, in simplifying (), we are assuming
x # 0, since % is undefined.® Proceeding as before, we find the domain of I to be all real

numbers except 0: (—o0,0) U (0, c0). O

It is worth reiterating the importance of finding the domain of a function before simplifying, as
evidenced by the function I in the previous example. Even though the formula I(z) simplifies to

®Do you remember why? Consider squaring both sides to ‘solve’ v+ 1 = —2.

SMore precisely, the fraction % is an ‘indeterminant form’. Calculus is required tame such beasts.
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3z, it would be inaccurate to write I(x) = 3z without adding the stipulation that = # 0. It would
be analogous to not reporting taxable income or some other sin of omission.

1.4.1 MODELING WITH FUNCTIONS

The importance of Mathematics to our society lies in its value to approximate, or model real-world
phenomenon. Whether it be used to predict the high temperature on a given day, determine the
hours of daylight on a given day, or predict population trends of various and sundry real and myth-
ical beasts,” Mathematics is second only to literacy in the importance humanity’s development.®

It is important to keep in mind that anytime Mathematics is used to approximate reality, there
are always limitations to the model. For example, suppose grapes are on sale at the local market
for $1.50 per pound. Then one pound of grapes costs $1.50, two pounds of grapes cost $3.00, and
so forth. Suppose we want to develop a formula which relates the cost of buying grapes to the
amount of grapes being purchased. Since these two quantities vary from situation to situation, we
assign them variables. Let ¢ denote the cost of the grapes and let g denote the amount of grapes
purchased. To find the cost ¢ of the grapes, we multiply the amount of grapes g by the price $1.50
dollars per pound to get
c=1.5g

In order for the units to be correct in the formula, g must be measured in pounds of grapes in which
case the computed value of ¢ is measured in dollars. Since we’re interested in finding the cost ¢
given an amount g, we think of g as the independent variable and c as the dependent variable.
Using the language of function notation, we write

c(g) = 1.5¢

where g is the amount of grapes purchased (in pounds) and ¢(g) is the cost (in dollars). For example,
¢(5) represents the cost, in dollars, to purchase 5 pounds of grapes. In this case, ¢(5) = 1.5(5) = 7.5,
so it would cost $7.50. If, on the other hand, we wanted to find the amount of grapes we can purchase
for $5, we would need to set ¢(g) = 5 and solve for g. In this case, ¢(g) = 1.5¢, so solving ¢(g) =5
is equivalent to solving 1.5g = 5 Doing so gives g = % = 3.3. This means we can purchase exactly
3.3 pounds of grapes for $5. Of course, you would be hard-pressed to buy exactly 3.3 pounds of

grapes,”? and this leads us to our next topic of discussion, the applied domain'® of a function.

Even though, mathematically, ¢(g) = 1.5g has no domain restrictions (there are no denominators
and no even-indexed radicals), there are certain values of ¢ that don’t make any physical sense.
For example, g = —1 corresponds to ‘purchasing’ —1 pounds of grapes.!! Also, unless the ‘local
market’ mentioned is the State of California (or some other exporter of grapes), it also doesn’t make
much sense for g = 500,000,000, either. So the reality of the situation limits what g can be, and

"See Sections 2.5, 11.1, and 6.5, respectively.

8In Carl’s humble opinion, of course ...

9You could get close... within a certain specified margin of error, perhaps.
Por, ‘explicit domain’

N aybe this means returning a pound of grapes?
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these limits determine the applied domain of g. Typically, an applied domain is stated explicitly.
In this case, it would be common to see something like ¢(g) = 1.5g, 0 < g < 100, meaning the
number of pounds of grapes purchased is limited from 0 up to 100. The upper bound here, 100 may
represent the inventory of the market, or some other limit as set by local policy or law. Even with
this restriction, our model has its limitations. As we saw above, it is virtually impossible to buy
exactly 3.3 pounds of grapes so that our cost is exactly $5. In this case, being sensible shoppers,
we would most likely ‘round down’ and purchase 3 pounds of grapes or however close the market
scale can read to 3.3 without being over. It is time for a more sophisticated example.

Example 1.4.4. The height h in feet of a model rocket above the ground ¢ seconds after lift-off is
given by

_5¢2 i <t <
h(t): bt* 4+ 100t, if 0<t <20
0, if t>20

1. Find and interpret ~(10) and h(60).

2. Solve h(t) = 375 and interpret your answers.

Solution.

1. We first note that the independent variable here is ¢, chosen because it represents time.
Secondly, the function is broken up into two rules: one formula for values of ¢ between 0 and
20 inclusive, and another for values of ¢ greater than 20. Since ¢ = 10 satisfies the inequality
0 < t < 20, we use the first formula listed, h(t) = —5t2 + 100t, to find h(10). We get
h(10) = —5(10)2 + 100(10) = 500. Since ¢ represents the number of seconds since lift-off and
h(t) is the height above the ground in feet, the equation h(10) = 500 means that 10 seconds
after lift-off, the model rocket is 500 feet above the ground. To find ~(60), we note that ¢t = 60
satisfies ¢ > 20, so we use the rule h(t) = 0. This function returns a value of 0 regardless
of what value is substituted in for ¢, so h(60) = 0. This means that 60 seconds after lift-off,
the rocket is 0 feet above the ground; in other words, a minute after lift-off, the rocket has
already returned to Earth.

2. Since the function h is defined in pieces, we need to solve h(t) = 375 in pieces. For 0 < ¢ < 20,
h(t) = —5t% + 100t, so for these values of t, we solve —5t2 + 100t = 375. Rearranging terms,
we get 5t2 — 100t + 375 = 0, and factoring gives 5(t — 5)(t — 15) = 0. Our answers are t = 5
and ¢t = 15, and since both of these values of ¢ lie between 0 and 20, we keep both solutions.
For t > 20, h(t) = 0, and in this case, there are no solutions to 0 = 375. In terms of the
model rocket, solving h(t) = 375 corresponds to finding when, if ever, the rocket reaches 375
feet above the ground. Our two answers, t = 5 and ¢t = 15 correspond to the rocket reaching
this altitude twice — once 5 seconds after launch, and again 15 seconds after launch.'? O

12%What goes up . ..
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The type of function in the previous example is called a piecewise-defined function, or ‘piecewise’
function for short. Many real-world phenomena, income tax formulas'® for example, are modeled
by such functions.

By the way, if we wanted to avoid using a piecewise function in Example 1.4.4, we could have used
h(t) = —5t2 4+ 100¢ on the explicit domain 0 < ¢ < 20 because after 20 seconds, the rocket is on the
ground and stops moving. In many cases, though, piecewise functions are your only choice, so it’s
best to understand them well.

Mathematical modeling is not a one-section topic. It’s not even a one-course topic as is evidenced by
undergraduate and graduate courses in mathematical modeling being offered at many universities.
Thus our goal in this section cannot possibly be to tell you the whole story. What we can do is get
you started. As we study new classes of functions, we will see what phenomena they can be used
to model. In that respect, mathematical modeling cannot be a topic in a book, but rather, must
be a theme of the book. For now, we have you explore some very basic models in the Exercises
because you need to crawl to walk to run. As we learn more about functions, we’ll help you build
your own models and get you on your way to applying Mathematics to your world.

13Gee the Internal Revenue Service’s website
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1.4.2 EXERCISES

In Exercises 1 - 10, find an expression for f(x) and state its domain.

1.

10.

f is a function that takes a real number x and performs the following three steps in the order
given: (1) multiply by 2; (2) add 3; (3) divide by 4.

. f is a function that takes a real number x and performs the following three steps in the order

given: (1) add 3; (2) multiply by 2; (3) divide by 4.

. f is a function that takes a real number x and performs the following three steps in the order

given: (1) divide by 4; (2) add 3; (3) multiply by 2.

. f is a function that takes a real number x and performs the following three steps in the order

given: (1) multiply by 2; (2) add 3; (3) take the square root.

. fis a function that takes a real number x and performs the following three steps in the order

given: (1) add 3; (2) multiply by 2; (3) take the square root.

. f is a function that takes a real number x and performs the following three steps in the order

given: (1) add 3; (2) take the square root; (3) multiply by 2.

f is a function that takes a real number x and performs the following three steps in the order
given: (1) take the square root; (2) subtract 13; (3) make the quantity the denominator of a
fraction with numerator 4.

. f is a function that takes a real number x and performs the following three steps in the order

given: (1) subtract 13; (2) take the square root; (3) make the quantity the denominator of a
fraction with numerator 4.

. fis a function that takes a real number x and performs the following three steps in the order

given: (1) take the square root; (2) make the quantity the denominator of a fraction with
numerator 4; (3) subtract 13.

f is a function that takes a real number x and performs the following three steps in the order
given: (1) make the quantity the denominator of a fraction with numerator 4; (2) take the
square root; (3) subtract 13.

In Exercises 11 - 18, use the given function f to find and simplify the following:

. f(3) o f(-1) e f(3)
o f(4z) o 4f(x) o f(—)
o f(z—4) o f(z)—4 o [(2?)
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11. f(z) =2z+1 12. f(z)=3—4x

13. f(z)=2— 22 14. f(z) =2? -3z +2
15. f(z) =~ = 1 16. f(z) = %

17. f(x) =6 18. f(x)=0

In Exercises 19 - 26, use the given function f to find and simplify the following:

* f(2) e f(=2) e f(2a)
* 2f(a) e fla+2) o fla)+f(2)
« 7 (2) . 5 © flath)
19. f(z) =2z -5 20. f(z)=5—2z
21. f(z) =222 —1 22. f(z) =322 + 3z — 2
23. f(x)=V2r+1 24. f(x) =117
25. f(=) :g 2. f(z) :%

In Exercises 27 - 34, use the given function f to find f(0) and solve f(x) =0

27. f(z) =2z —1 28. f(z) =3— 2z
29. f(x) =222—-6 30. f(z)=a2%—2—12
31. f(z)=Vzx+4 32. f(z)=+v1—-2x
3 322 — 12
33. flo) = — 34, fla) = "
rz+5 if z < -3
35. Let f(z) =4 vV9—22 if —3<az<3 Compute the following function values.
—r+5 if >3
(a) f(—4) (b) f(=3) (c) f(3)
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z? if r < -1
36. Let f(z) =4 vV1—22 if —1<z<1 Compute the following function values.

r if z>1
(a) f(4) (b) f(=3) (c) f(1)
(d) f(0) (e) f(=1) (f) f(=0.999)

In Exercises 37 - 62, find the (implied) domain of the function.

37. f(x) = 2* — 1323 + 5622 — 19 38. f(z)=2%+4
3. f(x) = iﬁ 40. f(z) = ﬁf’id
A1, flz) = ;_13 42, fz) = %
13. f(z) = % 4. f(z) = i:;
45. f(z)=V3—=x 46. f(z) =2z +5
47. f(z) = 92T + 3 18, flz) = ﬁ
49. f(z) =6 -2 50. f(x) = \/(57_2
51. f(x) = 6w —2 2. f(2) = \/(;:(;7—2
53. f(z) = ﬁ 54, f(x) = ﬁ
55. s(t) = ﬁ 56. Q(r) = r‘f;
57. b(6) = \/99;8 58. A(x) =vz—T7+9—2
59. a(y) = ¢ ny 60. g(v) = 4_11

2
61, (1) = Y18 62. u(w) =
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63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

RELATIONS AND FUNCTIONS

The area A enclosed by a square, in square inches, is a function of the length of one of its
sides x, when measured in inches. This relation is expressed by the formula A(x) = 22 for
x > 0. Find A(3) and solve A(z) = 36. Interpret your answers to each. Why is x restricted
to x > 07

The area A enclosed by a circle, in square meters, is a function of its radius r, when measured
in meters. This relation is expressed by the formula A(r) = mr? for > 0. Find A(2) and
solve A(r) = 167. Interpret your answers to each. Why is r restricted to r > 07

The volume V enclosed by a cube, in cubic centimeters, is a function of the length of one of its
sides x, when measured in centimeters. This relation is expressed by the formula V(z) = 23
for > 0. Find V(5) and solve V(z) = 27. Interpret your answers to each. Why is x
restricted to x > 07

The volume V enclosed by a sphere, in cubic feet, is a function of the radius of the sphere r,
when measured in feet. This relation is expressed by the formula V (r) = 4{7’3 for r > 0. Find
V(3) and solve V (r) = 32Z_ Interpret your answers to each. Why is r restricted to r > 0?

The height of an object dropped from the roof of an eight story building is modeled by:
h(t) = —16t> 4 64, 0 < t < 2. Here, h is the height of the object off the ground, in feet, ¢
seconds after the object is dropped. Find h(0) and solve h(t) = 0. Interpret your answers to
each. Why is ¢ restricted to 0 < ¢ < 27

The temperature T' in degrees Fahrenheit ¢ hours after 6 AM is given by T'(t) = —%t2 +8t+3
for 0 <t < 12. Find and interpret 7°(0), 7'(6) and 7'(12).

The function C(z) = 22 — 102 + 27 models the cost, in hundreds of dollars, to produce z
thousand pens. Find and interpret C'(0), C'(2) and C(5).

Using data from the Bureau of Transportation Statistics, the average fuel economy F' in miles
per gallon for passenger cars in the US can be modeled by F(t) = —0.0076t> 4 0.45¢ + 16,
0 <t < 28, where ¢ is the number of years since 1980. Use your calculator to find F(0), F'(14)
and F'(28). Round your answers to two decimal places and interpret your answers to each.

The population of Sasquatch in Portage County can be modeled by the function P(t) = %’

where t represents the number of years since 1803. Find and interpret P(0) and P(205).
Discuss with your classmates what the applied domain and range of P should be.

For n copies of the book Me and my Sasquatch, a print on-demand company charges C(n)
dollars, where C(n) is determined by the formula

15m if 1<n<25
C(n) =< 13.50n if 25<n <50
12n if n>50

(a) Find and interpret C'(20).


http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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(b) How much does it cost to order 50 copies of the book? What about 51 copies?

(¢) Your answer to 72b should get you thinking. Suppose a bookstore estimates it will sell
50 copies of the book. How many books can, in fact, be ordered for the same price as
those 50 copies? (Round your answer to a whole number of books.)

73. An on-line comic book retailer charges shipping costs according to the following formula

S(n)* 1on+25 if 1<n<14
0 if n>15

where n is the number of comic books purchased and S(n) is the shipping cost in dollars.

(a) What is the cost to ship 10 comic books?
(b) What is the significance of the formula S(n) = 0 for n > 157

74. The cost C (in dollars) to talk m minutes a month on a mobile phone plan is modeled by

25 if 0<m <1000

C(m) =
(m) {25+O.1(m—1000) if  m > 1000

(a) How much does it cost to talk 750 minutes per month with this plan?
(b) How much does it cost to talk 20 hours a month with this plan?
(c) Explain the terms of the plan verbally.

75. In Section 1.1.1 we defined the set of integers as Z = {...,—3,-2,-1,0,1,2,3,...}.'* The
greatest integer of x, denoted by |z], is defined to be the largest integer k with k < x.

(a) Find [0.785], [117], |—2.001], and |« + 6]
(b) Discuss with your classmates how |z] may be described as a piecewise defined function.
HINT: There are infinitely many pieces!

(c¢) Is la+0b] = |a] + |b] always true? What if a or b is an integer? Test some values, make
a conjecture, and explain your result.

76. We have through our examples tried to convince you that, in general, f(a + b) # f(a) +
f(b). It has been our experience that students refuse to believe us so we’ll try again with a
different approach. With the help of your classmates, find a function f for which the following
properties are always true.

(@) f(0)=f(=1+1) = f(=1) + f(1)

14The use of the letter Z for the integers is ostensibly because the German word zahlen means ‘to count.’
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RELATIONS AND FUNCTIONS

(b) f(5) =f(2+3)=f(2)+ f(3)
(¢) f(=6) = f(0—6) = f(0) - f(6)
(d) f(a+0b)= f(a)+ f(b) regardless of what two numbers we give you for a and b.

How many functions did you find that failed to satisfy the conditions above? Did f(z) = 22

1
work? What about f(z) = /x or f(z) =3z + 7 or f(x) = ;7 Did you find an attribute

common to those functions that did succeed? You should have, because there is only one
extremely special family of functions that actually works here. Thus we return to our previous
statement, in general, f(a +b) # f(a) + f(b).
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1.4.3 ANSWERS

L f(z) =

Domain: (—o0,00)

2z+3
4

3. f@)=2(5+3) =

Domain: (—o0,c0)

2x+6

5. f(z)=/2(x+3) =2z +6
Domain: [—3,00)

7. f({l,') = \/54,13
Domain: [0,169) U (169, co)

Domain:

9. f@)= & - 13
(2
11. For f(z) =2x+1

o f(4z) =8z +1

o flx—4)=22—-7

12. For f(z) =3 —4x

10.

Fz) = 2(9[:+3) _ %3
Domain: (— 00)
. fz)=v2x+3

Domain: [—%, oo)

flz) =2V +3

Domain: [—3,00)

: f(.fC) = 504713

Domain: (13, 00)

f(z) = %—13:%—13
Domain: (0, c0)
(=1

o flz)—4=2x-3 o f(2?) =227 +1
SN =T FIOES
o 4f(x) =12 — 16z o f(—x)=4z+3

o f(x)

—4=—dz—1

69
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13.

14.

15.

16.

17.

For f(z) =2 — 22
.« f3)=-T7 « f(-1)=1
o f(dz) =2 — 1622 o 4f(z) =8 — 4a?

o f(r—4)=—22+8x—14 o f(r)—d4=—22-2

For f(x) = 2% — 32 + 2
o f(3)=2 e f(—1)=6
e f(dz) = 1622 — 122 +2 e 4f(z) =42® — 122 + 8

e fz—4)=22-112+30 o f(z)—4=22-3r—-2

For f(z) = ;25
o f(3)=3 o f(-1)=1
o fdz) = {22 o 4f(x) = 22

1
For f(z) = %

o f3) =% o f(-1)=-2

o f(4z) = 35 o Af(x) =%

.i(x_@jﬁ of(a:)—4:§234;34

T 23-1222+482—64 a3

For f(z) =6

e f(3)=6 e f(-1)=6

o f(4z) = o Af(x) =24

o flx—4)= o flz)—4=2

RELATIONS AND FUNCTIONS

¢ fr)= %
« [ =3
« /(5) =6

o f(—x)=6

. f(xz):6
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18. For f(x) =0

e f(3)=0
e f(4x) =0
e flx—4)=0

19. For f(z) =2z -5

o I = 25
.« f(-2)=9

o @: 5—22a
« f(=2)=T

o fla+2)=2a>+8a+7

fla) _ 24%-1
o =55

71

« f(3)=0
e f(—x)=0
° f(:CQ) =0

e f(2a) =4a—5
e f(a)+ f(2) =2a—6

e fla+h)=2a+2h—-5

e f(2a) =5—4a
e f(a)+ f(2) =6—2a

e fla+h)=5—2a—2h

e f(2a) =8a%> -1
o f(a)+ f(2) =2d> +6

e f(a+h) = 2a% + dah +
2h% — 1
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22. For f(z) =32% + 3z — 2

e f(2)=16

e 2f(a) = 6a% + 6a — 4

23. For f(z) =+2x+1
. F2) =5

24. For f(x) =117
o f(2) =117
e 2f(a) =234

o f(3)=117

o f(—2)=4

o f(a+2) =3a2+15a+16

e f(—2) is not real

e fla+2)=+v2a+5

o f(—2) =117

o fla+2)

RELATIONS AND FUNCTIONS

e f(2a) = 124> + 6a — 2
o fla)+f(2) =3a*+3a+14

e f(a+h) = 3a®+ 6ah +
3h* 4+ 3a + 3h — 2

o f(2a) =+v4a+1
o f(@)+](2) = VIR TT+V5

e fla+h)=v2a+2h+1

o f(2a) =117
o fa)+ f(2) = 234

° f(a+h) =117
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26.

27.
28.
29.
30.
31.
32.

33.

34.

35.

36.

37.

39.

41.

43.

45.

For f(z) =2z —1, f(0) = —1 and f(z) =0 when z =

o f(-2)=-1 o f(2a) =3
 Hort) - S =

=5
. f(ga):é of(a—i—h):%h

1
2

For f(z)=3— %x, f(0) =3 and f(z) =0 when z =

For f(x) =2

o f(2)=1

° 2f(a) =14

« f(G)=a
For f(z) =22% -6, f(0) =
For f(x) = 2% — 2 — 12, £(0)
For f(z) = vz +4, f(0) =2 and f
For f(z)
For f(x)
For f(x) = 3=122, f(0) =
(a) f(-4)=1

(d) £(3.001) = 1.999

(a) f(4)=4

(d) f(0)=1
(—00,00)
(=00, =1) U (~1,00)
(=00, 00)
(—00, —6) U (~6,6) U (6,00)
(=00, 3]

—6 and f(z) = 0 when 7 = £/3
—12 and f(z) =0 when x = -3 orx =4

() =0 when x = —4

1
2

(z) =0 when 2 = 0 or o = 4
(b) f(=3)=2 (¢) f(3)=0
(e) £(—3.001) = 1.999 f) f(2)=+5
(b) f(=3)=9 (c) f(1)=0
(e) f(=1)=1 (f) £(—0.999) ~ 0.0447
38. (—o00,0)
40. (=00, —2) U (=2,1) U (1, 00)

42.

44.

46.

(—OO, _\/g) U (—\/37 \/3) U (\/§7 OO)
(—00,2) U (2,00)

[=5,00)

73
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47.

49.

o1.

53.

55.

o7.

99.

61.

63.

64.

65.

66.

67.

68.

RELATIONS AND FUNCTIONS

[—3, 00) 48. (—o00,7]

[5:0) 50. (3, 00)

(—o0, 00) 52. [3,3) U(3,00)

[1,6) U (6,00) 54. (—00,00)

(—00,8) U (8, 00) 56. [0,8) U (8, 00)

(8, 00) 58. [7,9]

(—00,8) U (8, 00) 60. (=00, —3) U (=3,0) U (0,3) U (3,0)
[0,5) U (5,00) 62. [0,25) U (25,00)

A(3) =9, so the area enclosed by a square with a side of length 3 inches is 9 square inches.
The solutions to A(xz) = 36 are z = +6. Since x is restricted to > 0, we only keep z = 6.
This means for the area enclosed by the square to be 36 square inches, the length of the side
needs to be 6 inches. Since x represents a length, x > 0.

A(2) = 4m, so the area enclosed by a circle with radius 2 meters is 47 square meters. The
solutions to A(r) = 167 are r = +4. Since r is restricted to r > 0, we only keep r = 4. This
means for the area enclosed by the circle to be 167 square meters, the radius needs to be 4
meters. Since r represents a radius (length), r > 0.

V(5) = 125, so the volume enclosed by a cube with a side of length 5 centimeters is 125 cubic
centimeters. The solution to V(z) = 27 is = 3. This means for the volume enclosed by
the cube to be 27 cubic centimeters, the length of the side needs to 3 centimeters. Since x
represents a length, x > 0.

V(3) = 36, so the volume enclosed by a sphere with radius 3 feet is 367 cubic feet. The

solution to V (r) = 327“ is = 2. This means for the volume enclosed by the sphere to be 3277’

cubic feet, the radius needs to 2 feet. Since r represents a radius (length), r > 0.

h(0) = 64, so at the moment the object is dropped off the building, the object is 64 feet off of
the ground. The solutions to h(t) = 0 are t = £2. Since we restrict 0 < ¢ < 2, we only keep
t = 2. This means 2 seconds after the object is dropped off the building, it is 0 feet off the
ground. Said differently, the object hits the ground after 2 seconds. The restriction 0 <t < 2
restricts the time to be between the moment the object is released and the moment it hits
the ground.

T(0) = 3, so at 6 AM (0 hours after 6 AM), it is 3° Fahrenheit. 7'(6) = 33, so at noon (6
hours after 6 AM), the temperature is 33° Fahrenheit. 7'(12) = 27, so at 6 PM (12 hours
after 6 AM), it is 27° Fahrenheit.
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69.

70.

71.

72.

73.

74.

75.

C(0) = 27, so to make 0 pens, it costs'® $2700. C(2) = 11, so to make 2000 pens, it costs
$1100. C(5) = 2, so to make 5000 pens, it costs $2000.

F(0) = 16.00, so in 1980 (0 years after 1980), the average fuel economy of passenger cars
in the US was 16.00 miles per gallon. F(14) = 20.81, so in 1994 (14 years after 1980), the
average fuel economy of passenger cars in the US was 20.81 miles per gallon. F(28) = 22.64,
so in 2008 (28 years after 1980), the average fuel economy of passenger cars in the US was
22.64 miles per gallon.

P(0) = 0 which means in 1803 (0 years after 1803), there are no Sasquatch in Portage County.

P(205) = 3 ~ 139.77, so in 2008 (205 years after 1803), there were between 139 and 140

Sasquatch in Portage County.
(a) C(20) = 300. It costs $300 for 20 copies of the book.

(b) C(50) = 675, so it costs $675 for 50 copies of the book. C(51) = 612, so it costs $612
for 51 copies of the book.

56 books.

)
(a) S(10) = 17.5, so it costs $17.50 to ship 10 comic books.

(b) There is free shipping on orders of 15 or more comic books.
(a)

(b)

C(750) = 25, so it costs $25 to talk 750 minutes per month with this plan.

Since 20 hours = 1200 minutes, we substitute m = 1200 and get C'(1200) = 45. It costs
$45 to talk 20 hours per month with this plan.

(c) It costs $25 for up to 1000 minutes and 10 cents per minute for each minute over 1000
minutes.

(a) 10.785] =0, [117] = 117, | ~2.001] = —3, and |7 +6] =9

15This is called the ‘fixed’ or ‘start-up’ cost. We’ll revisit this concept on page 82.
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1.5 FUNCTION ARITHMETIC

In the previous section we used the newly defined function notation to make sense of expressions
such as ‘f(z) + 2’ and ‘2f(x)’ for a given function f. It would seem natural, then, that functions
should have their own arithmetic which is consistent with the arithmetic of real numbers. The
following definitions allow us to add, subtract, multiply and divide functions using the arithmetic
we already know for real numbers.

Function Arithmetic

Suppose f and g are functions and z is in both the domain of f and the domain of g.¢
e The sum of f and g, denoted f + g, is the function defined by the formula
(f +9)(x) = f(z) + g(z)
e The difference of f and g, denoted f — g, is the function defined by the formula
(f —9)(x) = f(z) — g(x)
e The product of f and g, denoted fg, is the function defined by the formula

(f9)(z) = f(z)g(x)

e The quotient of f and g, denoted z, is the function defined by the formula
g
f f(z)
-3,
9(x)
provided g(z) # 0.

“Thus x is an element of the intersection of the two domains.

In other words, to add two functions, we add their outputs; to subtract two functions, we subtract
their outputs, and so on. Note that while the formula (f + ¢g)(z) = f(x) + g(x) looks suspiciously
like some kind of distributive property, it is nothing of the sort; the addition on the left hand side
of the equation is function addition, and we are using this equation to define the output of the new
function f 4+ g as the sum of the real number outputs from f and g.

Example 1.5.1. Let f(z) = 62° — 2z and g(x) = 3 — é
1. Find (f + g)(~1) 2. Find (f9)(2)

3. Find the domain of g — f then find and simplify a formula for (g — f)(x).
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4. Find the domain of (%) then find and simplify a formula for (%) (x).

Solution.

1. To find (f + g)(—1) we first find f(—1) = 8 and g(—1) = 4. By definition, we have that
(f+9)(=1) = f(=1) +g(-1) =8 +4 =12.

2. To find (fg)(2), we first need f(2) and ¢g(2). Since f(2) = 20 and g(2) = %, our formula yields
(f9)2) = F2)9(2) = (20) (3) = 50.

3. One method to find the domain of g— f is to find the domain of g and of f separately, then find
the intersection of these two sets. Owing to the denominator in the expression g(x) = 3 — %,
we get that the domain of g is (—00,0) U (0,00). Since f(z) = 622 — 2x is valid for all real
numbers, we have no further restrictions. Thus the domain of g — f matches the domain of
g, namely, (—o0,0) U (0, c0).

A second method is to analyze the formula for (g — f)(x) before simplifying and look for the
usual domain issues. In this case,

(9 D)) = ge) — fla) = (3 - 1) _ (6a? = 20).

X

so we find, as before, the domain is (—o0,0) U (0, 00).

Moving along, we need to simplify a formula for (¢ — f)(z). In this case, we get common
denominators and attempt to reduce the resulting fraction. Doing so, we get

(9= Nx) = gx) - flz)

= (3— i) — (622 — 2z)

1
= 3- - —622 42

= —————+4+ —  get common denominators
r T T T

3z — 1 — 623 — 222
X

—62% — 222+ 3z —1
xr

4. As in the previous example, we have two ways to approach finding the domain of 4. First,

we can find the domain of g and f separately, and find the intersection of these two sets. In

addition, since <%) (x) = %, we are introducing a new denominator, namely f(z), so we

need to guard against this being 0 as well. Our previous work tells us that the domain of g
is (—00,0) U (0,00) and the domain of f is (—o00,00). Setting f(z) = 0 gives 622 — 2z = 0
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or x = 0, % As a result, the domain of % is all real numbers except x = 0 and x = %, or
(—00,0) U (0,3) U (35, 0).

Alternatively, we may proceed as above and analyze the expression (%) (x) = % before

simplifying. In this case,

1
3_ =

9 (@) = g(z) _ x

f f(z) 622 -2
We see immediately from the ‘little’ denominator that x # 0. To keep the ‘big’ denominator
away from 0, we solve 622 — 2z = 0 and get = 0 or = = % Hence, as before, we find the

domain of 4 to be (—00,0) U (0,3) U (3, 00).

Next, we find and simplify a formula for (%) (x).

e - 3

= ——— . — simplify compound fractions
x

= —\ factor

= cancel

22

O
Please note the importance of finding the domain of a function before simplifying its expression. In
number 4 in Example 1.5.1 above, had we waited to find the domain of % until after simplifying, we’d
just have the formula ﬁ to go by, and we would (incorrectly!) state the domain as (—oo, 0)U(0, 00),
since the other troublesome number, x = %, was canceled away.!

1'We’ll see what this means geometrically in Chapter 4.
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Next, we turn our attention to the difference quotient of a function.

Definition 1.8. Given a function f, the difference quotient of f is the expression

fle+h) - f(z)
h

We will revisit this concept in Section 2.1, but for now, we use it as a way to practice function
notation and function arithmetic. For reasons which will become clear in Calculus, ‘simplifying’
a difference quotient means rewriting it in a form where the ‘A’ in the definition of the difference
quotient cancels from the denominator. Once that happens, we consider our work to be done.

Example 1.5.2. Find and simplify the difference quotients for the following functions

3

1 fz) =22 -2 —2 2. g(m):2x+1 3. r(z) =z

Solution.

1. To find f(x + h), we replace every occurrence of x in the formula f(z) = 22 — x — 2 with the
quantity (x 4+ h) to get

flx+h) = (x+h)?—(x+h)—2

= 224 2¢h+h2—2x—h—2.

So the difference quotient is

flx+h)—flx) (224 22h+h* -2 —h—2) — (2* — 2z — 2)

N h

B 2?4+ 2ch+h?>—x—h—-—2—2>+2+2

N h

B 2zh + h? —h

N h
h (2 h—1

= (m—;) factor
K2z +h—1)

_ 7 /. cancel

= 2x+h-1.
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2. To find g(x + h), we replace every occurrence of z in the formula g(z) = ﬁ with the
quantity (x + h) to get

3
h = — =
g(x+h) 2(z+ h) + 1
B 3
- 2x+2h+ 1’
which yields
3.3
glx+h)—g(x) _ 204+2h+1 2a+1
h 3 h_ 3
_ 20+42h+1 20+1 (22+2h+1D)2r+1)
h 2z +2h+1)(2z+1)

32z +1)—3(2x+2h+1)
h(2x +2h +1)(2x + 1)
6x +3 — 6z — 6h — 3
h(2z +2h+ 1)(2z + 1)
—6h
h(2x +2h +1)(2z + 1)
—6H
K2z +2h +1)(2z + 1)
—6
(2z4+2h+1)2z+ 1)

Since we have managed to cancel the original ‘h’ from the denominator, we are done.

3. For r(x) = /&, we get r(z + h) = v + h so the difference quotient is

r(x+h)—r(z) Vr+h—x

h h

In order to cancel the ‘A’ from the denominator, we rationalize the numerator by multiplying
by its conjugate.?

2Rationalizing the numerator!? How’s that for a twist!
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r(x+h)—r(x)  Vr+h

h R
vV h
= ( vrh N f) . E i i g; Multiply by the conjugate.

2 2
/ n)° —
= ( T ) (V) Difference of Squares.

h(Vz+h+ )

B (x+h)—=x
 h(Va+h+Va)
h

h(Vz+h+ z)

3
KVt h+t o)

1
Ve+h+z

Since we have removed the original ‘h’ from the denominator, we are done. O

As mentioned before, we will revisit difference quotients in Section 2.1 where we will explain them
geometrically. For now, we want to move on to some classic applications of function arithmetic
from Economics and for that, we need to think like an entrepreneur.?

Suppose you are a manufacturer making a certain product.? Let x be the production level,
that is, the number of items produced in a given time period. It is customary to let C(z) denote
the function which calculates the total cost of producing the x items. The quantity C(0), which
represents the cost of producing no items, is called the fixed cost, and represents the amount
of money required to begin production. Associated with the total cost C(z) is cost per item, or
average cost, denoted C'(z) and read ‘C-bar’ of . To compute C(z), we take the total cost C(z)
and divide by the number of items produced z to get

On the retail end, we have the price p charged per item. To simplify the dialog and computations
in this text, we assume that the number of items sold equals the number of items produced. From a

3Not really, but “entrepreneur” is the buzzword of the day and we’re trying to be trendy.
4Poorly designed resin Sasquatch statues, for example. Feel free to choose your own entrepreneurial fantasy.



82 RELATIONS AND FUNCTIONS

retail perspective, it seems natural to think of the number of items sold, x, as a function of the price
charged, p. After all, the retailer can easily adjust the price to sell more product. In the language
of functions, x would be the dependent variable and p would be the independent variable or, using
function notation, we have a function z(p). While we will adopt this convention later in the text,’
we will hold with tradition at this point and consider the price p as a function of the number of
items sold, x. That is, we regard = as the independent variable and p as the dependent variable and
speak of the price-demand function, p(x). Hence, p(z) returns the price charged per item when
x items are produced and sold. Our next function to consider is the revenue function, R(x). The
function R(z) computes the amount of money collected as a result of selling = items. Since p(x)
is the price charged per item, we have R(x) = zp(x). Finally, the profit function, P(z) calculates
how much money is earned after the costs are paid. That is, P(z) = (R — C)(z) = R(z) — C(x).
We summarize all of these functions below.

Summary of Common Economic Functions

Suppose x represents the quantity of items produced and sold.

e The price-demand function p(z) calculates the price per item.

e The revenue function R(z) calculates the total money collected by selling x items at a
price p(z), R(z) = = p(x).

e The cost function C(z) calculates the cost to produce z items. The value C(0) is called
the fixed cost or start-up cost.

C(x)

xT

e The average cost function C'(z) = calculates the cost per item when making x items.

Here, we necessarily assume x > 0.

e The profit function P(x) calculates the money earned after costs are paid when z items
are produced and sold, P(z) = (R — C)(z) = R(z) — C(z).

It is high time for an example.

Example 1.5.3. Let z represent the number of dOpi media players (‘dOpis’®) produced and sold
in a typical week. Suppose the cost, in dollars, to produce z dOpis is given by C'(x) = 100z + 2000,
for x > 0, and the price, in dollars per dOpi, is given by p(x) = 450 — 15z for 0 < x < 30.

1. Find and interpret C(0). 2. Find and interpret C(10).
3. Find and interpret p(0) and p(20). 4. Solve p(x) = 0 and interpret the result.
5. Find and simplify expressions for the revenue function R(x) and the profit function P(x).

6. Find and interpret R(0) and P(0). 7. Solve P(z) = 0 and interpret the result.

5See Example 5.2.4 in Section 5.2.
5Pronounced ‘dopeys’ ...
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Solution.

1.

We substitute z = 0 into the formula for C(z) and get C'(0) = 100(0) + 2000 = 2000. This
means to produce 0 dOpis, it costs $2000. In other words, the fixed (or start-up) costs are
$2000. The reader is encouraged to contemplate what sorts of expenses these might be.

C(10)

. Since C(z) = %, C(10) = = = 290 = 300. This means when 10 dOpis are produced,

the cost to manufacture them amounts to $300 per dOpi.

. Plugging = = 0 into the expression for p(z) gives p(0) = 450 — 15(0) = 450. This means no

dOpis are sold if the price is $450 per dOpi. On the other hand, p(20) = 450 — 15(20) = 150
which means to sell 20 dOpis in a typical week, the price should be set at $150 per dOpi.

. Setting p(z) = 0 gives 450 — 152z = 0. Solving gives = 30. This means in order to sell 30

dOpis in a typical week, the price needs to be set to $0. What’s more, this means that even
if dOpis were given away for free, the retailer would only be able to move 30 of them.”

. To find the revenue, we compute R(z) = xp(z) = z(450 — 15z) = 4502 — 15z%. Since the

formula for p(x) is valid only for 0 < 2 < 30, our formula R(x) is also restricted to 0 < z < 30.
For the profit, P(z) = (R — C)(x) = R(z) — C(x). Using the given formula for C(z) and the
derived formula for R(z), we get P(z) = (4502 — 152%) — (10024-2000) = —1522+3502—2000.
As before, the validity of this formula is for 0 < z < 30 only.

. We find R(0) = 0 which means if no dOpis are sold, we have no revenue, which makes sense.

Turning to profit, P(0) = —2000 since P(x) = R(z)—C(z) and P(0) = R(0)—C(0) = —2000.
This means that if no dOpis are sold, more money ($2000 to be exact!) was put into producing
the dOpis than was recouped in sales. In number 1, we found the fixed costs to be $2000, so
it makes sense that if we sell no dOpis, we are out those start-up costs.

Setting P(z) = 0 gives —1522 + 3502 — 2000 = 0. Factoring gives —5(z — 10)(3x — 40) = 0
sox =10 or x = %. What do these values mean in the context of the problem? Since
P(z) = R(z) — C(z), solving P(x) = 0 is the same as solving R(z) = C(z). This means that
the solutions to P(z) = 0 are the production (and sales) figures for which the sales revenue
exactly balances the total production costs. These are the so-called ‘break even’ points. The
solution z = 10 means 10 dOpis should be produced (and sold) during the week to recoup
the cost of production. For x = % = 13.3, things are a bit more complicated. Even though
x = 13.3 satisfies 0 < x < 30, and hence is in the domain of P, it doesn’t make sense in the
context of this problem to produce a fractional part of a dOpi.® Evaluating P(13) = 15 and
P(14) = —40, we see that producing and selling 13 dOpis per week makes a (slight) profit,
whereas producing just one more puts us back into the red. While breaking even is nice, we
ultimately would like to find what production level (and price) will result in the largest profit,
and we’ll do just that ...in Section 2.3. O

"Imagine that! Giving something away for free and hardly anyone taking advantage of it ...
8We’ve seen this sort of thing before in Section 1.4.1.
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1.5.1

EXERCISES

RELATIONS AND FUNCTIONS

In Exercises 1 - 10, use the pair of functions f and ¢ to find the following values if they exist.

1.

3.

D.

7.

. f(z) = 2% and g(z) = %

(f +9)(2) o (f=9)(=1)
(f9) (3) - (4

fz)=3x+1and g(z) =4—x
f(z) =2% -2 and g(z) = 12 — 22
f(z)=+vzx+3and g(z) =2z —1

f(z) =2z and g(z) =

20 + 1

x

2.

4.

6.

10.

. f(z) = 2% and g(z) =

e (9— 1)

f(z) =2% and g(z) = —22 +1
f(z) =223 and g(x) = —2% — 20— 3

f(x)=+v4—xand g(x) = Vo +2

3
2 —3

1
_ 2 —

In Exercises 11 - 20, use the pair of functions f and g to find the domain of the indicated function
then find and simplify an expression for it.

11.
13.

15.
17.

19.

In Exercises 21 - 45, find and simplify the difference quotient
21.
23.

25.

(f +9)(=) e (f—9)(@)
flx)=2z+1and g(x) =2 —2
f(x) =2% and g(z) =32 — 1
f(r)=2%—4and g(x) =32 +6
fle) = 5 and gla) = -

f(x) =z and g(x) = Vo +1

flx)=2x-5

f(z) =6

fl@)=—-a?+22 -1

12.

14.

16.

18.

20.

22.

24.

26.

(f9)(x) . (i) ()

g
f(x)=1—-4z and g(x) =2z — 1
f(x) =2% -2 and g(z) = Tz

f(z) = -2+ 2z +6 and g(x) = 2% - 9

flxy=2-1 andg(m):ﬁ

f(z) =+vz—5and g(z) = f(z) =vr -5

for the given function.

flz+h) - f(x)
h

f(x)=-3z+5
f(z) =322 —x
fla) = 1a?
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27.

29.

31.

33.

35.

37.

39.

41.

43.

45.

f(z) =2 — 22 28. f(x)=2%+1

f(x) =mx +b where m # 0 30. f(x) = az® + bz + ¢ where a # 0
fa)=2 32 () = 2

fa) = 3. J(@) = ——

f(x)_élxl—?) 30 f(x):xi)ﬁ

f@) =g 38. f(z) = 2;1 :

flx)=+vz -9 40. f(z) =+2x+1
flz)=v—-4x+5 42. f(z)=v4—=x
f(z) = vaz + b, where a # 0. 44. f(z) = x/x

f(z) = Jz. HINT: (a —b) (a®* + ab+b*) = a* - b*

In Exercises 46 - 50, C(z) denotes the cost to produce z items and p(x) denotes the price-demand
function in the given economic scenario. In each Exercise, do the following:

46.

47.

48.

49.

Find and interpret C(0). e Find and interpret C(10).

Find and interpret p(5) e Find and simplify R(x).

Find and simplify P(z). e Solve P(x) = 0 and interpret.

The cost, in dollars, to produce z “I'd rather be a Sasquatch” T-Shirts is C(x) = 2z + 26,
x > 0 and the price-demand function, in dollars per shirt, is p(z) =30 — 2z, 0 < z < 15

The cost, in dollars, to produce z bottles of 100% All-Natural Certified Free-Trade Organic
Sasquatch Tonic is C(z) = 10x + 100, z > 0 and the price-demand function, in dollars per
bottle, is p(z) =35 —x, 0 < x < 35.

The cost, in cents, to produce x cups of Mountain Thunder Lemonade at Junior’s Lemonade
Stand is C'(x) = 18z + 240, x > 0 and the price-demand function, in cents per cup, is
p(x) =90 — 3z, 0 <z < 30.

The daily cost, in dollars, to produce x Sasquatch Berry Pies C(x) = 3x + 36, > 0 and the
price-demand function, in dollars per pie, is p(z) = 12 — 0.5z, 0 < z < 24.
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50. The monthly cost, in hundreds of dollars, to produce z custom built electric scooters is
C(x) = 20z + 1000, x > 0 and the price-demand function, in hundreds of dollars per scooter,
is p(z) = 140 — 2z, 0 < 2z < 70.

In Exercises 51 - 62, let f be the function defined by
f=A(=3,4),(=2,2),(=1,0),(0,1),(1,3),(2,4), 3, 1)}
and let g be the function defined
9=1{(=3,-2),(=2,0),(=1,-4),(0,0),(1,-3),(2,1),(3,2)}

. Compute the indicated value if it exists.

51 (f+9)(=3) 52. (f—9)(2) 53. (fg)(=1)
5. (g + D) 5. (g 1)3) 56. (0f)(~3)
57. (g) (~2) 5. (g) (-1) 59. (g) 2)

60. (%) (—1) 61. (%) (3) 62. (%) (—3)
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1.5.2 ANSWERS
1. For f(x) =3z +1and g(z) =4 —=x

¢« (f+9)2) =9 .« (f=9)(-1) =T ¢ (9= (1) =1
.« (f9)(3) =% « (Ho=14 o« (4)(-2)=-¢
2. For f(z) = 2% and g(z) = -2z + 1
¢« (f+9)@) =1 .« (f=9)-1)=—2 ¢ (9= 1) = -2
* (fa)(3) =0 . (£) =0 « (4)(-2=13
3. For f(z) = 2®> — x and g(z) = 12 — 22
¢ (f+9)(2) =10 ¢« (f=9)(=1)=-9 ¢ (9-H1) =11
. (f)(3) =% e ($) =0 e (4) =4
4. For f(r) =22 and g(z) = —2% — 22 — 3
¢« (f+9)2) =5 ¢« (f=9)(-1)=0 ¢ (9= 1) =8
. (f9)(3) =1 e (£) =0 « (4)2=4%
5. For f(z) =z + 3 and g(z) = 22 — 1
¢« (f+9)2)=3+V5 c (f-9(D)=3+V2 e (g-H1)=-1
* (f9)(3) =0 « (§)0)=-v3 o (4)(-2)=-5

6. For f(x) =+v4—x and g(z) = Vo +2
o (f+9)(2)=2+V2 s (f-9(-1)=-1+v5 e (g-f)1)=0
* U9 ()= - (H=v2 . (4)2=0
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7. For f(z) = 2z and g(z) 1

= 2241
o (f+9)2) =% e (f-9)(-1)=-1 o (9—f)1)=-3
* (f9)(3) =2 « (L) =o0 c (9)-2=4%
8. For f(z) = 2% and g(z) = 525
e (f+9)(2) =T o (f-9)(-1)=5 e (9— 1) =—1
* (f9)(3) = -3 « (D) =0 o (4)(-2)=-%
9. For f(z) = 2% and g(z) = -5
o (f+9)2)=1 o (f-9)(-1)=0 e (g-f)(1)=0
« (f9)(3) =1 o (£)(0) is undefined . (4)(-2=14
10. For f(x) = 2?4+ 1 and g(z) = $21+1
(o)) =% « (f-a)-1)=3 « (g- 1) =3
« (f9)(3) =1 e (L)=1 o« (9)(-2=4%
11. For f(z) =2x+ 1 and g(z) =2 — 2
o (f+g)(x)=3z-1 e (f—g)(x)=2+3
Domain: (—o0,00) Domain: (—o0,00)
e (fg)(z)=222—-32 -2 o [ (x):%
Domain: (—o0,00) ]<)<g)l)nain: (—002, 2)U(2,00)

12. For f(z) =1— 4z and g(z) =2z — 1

e (f+9)(z) =—2x o (f—g)(x)=2—6x
Domain: (—o0, 00) Domain: (—o0,00)
o (f9)(x) = —82%+ 621 . (5) (2) = 1=t

Domain: (—o0,c0)

—_

Domain: (—oo, 5) U (%,oo)
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13. For f(x) = 22 and g(x) = 3z — 1

e (f+g)(z)=a?+3z—1
Domain: (—o0,c0)

* (fg)(x) = 3% — 2
Domain: (—o0,00)

14. For f(x) = 2? — z and g(z) = Tx

o (f+9)(x) =2"+06x
Domain: (—o0,c0)

o (fg)(x) = Ta® — Ta?

Domain: (—o0,00)

15. For f(z) = 2% —4 and g(x) = 32 + 6

o (f+g)(x)=22+3z+2
Domain: (—o0, 00)

o (fg)(z) =323+ 62% — 120 — 24
Domain: (—o0, c0)

16. For f(z) = —2? + 2 + 6 and g(x) = 2% — 9

e (f+g)w)=r—3
Domain: (—o0,0)

e (fg)(z) = —at + 2% + 1522 — 9z — 54
Domain: (—o0,c0)

17. For f({]j) = % and g(ﬂ?) — %

o (fHg)) =5
Domain: (—o0,0) U (0, 00)

e (fg)(x) =1
Domain: (—o0,0) U (0, 00)

89

. (f-g)@)=a®—30+1
Domain: (—o0,c0)
o (L)) =52
1 1

Domain: (—oo, g) U (g,oo)

o (f—g)(x) =28
Domain: (—o0,c0)

e (1)@ =27

Domain: (—o0,0) U (0, 00)

e (f—g)(x)=2%—-3z—-10
Domain: (—o0,c0)

o (4) @) =232

Domain: (—o0,—2) U (—2,00)

. (f-g)@) =22 +2+15
Domain: (—o0,00)

(o=
Domain: (—oo, —3) U (—3,3) U (3, 0)

o (f—g)x) =5
Domain: (—o0,0) U (0, 00)
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18

19.

20.

21.

23.

25.

27.

29.

31.

33.

35.

. For f(z) =2 —1 and g(z) = -

z—1
o (f+g)a) = =250
Domain: (—oo, 1) U (1, 00)

e (fg)(x) =1
Domain: (—o0,1) U (1,00)

For f(x) =z and g(z) = vz +1
e (f+g)@)=z+Va+1

Domain: [—1, 00)

e (f9)(z) =2V +1

Domain: [—1,00)

For f(z) =+/x —5 and g(x) = f(x)
e (f+g)(z)=2V/zx -5

Domain: [5,00)

e (f9)(z)=2-5

Domain: [5,00)

—2x —h+2

—2x—h+1

-2
x(x + h)
—(2x 4+ h)
z2(x + h)?
—4
(4x — 3)(4z + 4h — 3)

vr—>5

22.
24.
26.
28.

30.

32.

34.

36.

RELATIONS AND FUNCTIONS

o« (f-g)a) =
Domain: (—oo, 1) U (1, 00)

. (g)(x):mequLl

Domain: (—o0,1) U (1,00)

o« (f-g)x) =z Vitl

Domain: [—1, 00)

o (f—9)(z)=
Domain: [5,00)

. (5) (r) =1
Domain: (5, 00)

-3

6x + 3h — 1

8x +4h

322 + 3xh + h?

2ax +ah +b
3
(1—z—h)(1—-x)
-2
(x+5)(x+h+5)
3

@+ 1)(@+h+l)
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37.

39.

41.

43.

45.

46.

47.

48.

-9 a8 222 4+ 2zh + 2z + h
(=9)(x+h-9) "2z + 1)(2z 4 2h + 1)

1 40 2
Ve+h—9+Vz—-9 V2 +2h+ 14+ V2 + 1
4 42 !

V—4x —4h +5++/—4x +5 Vi—z—h+Vi—z
a " 322 + 3xh + h?
Vax +ah + b+ ax +b (@ + )32+ 232
1

(x4 h)3 + (x4 h)Y/321/3 + 22/3

C(0) = 26, so the fixed costs are $26.

C(10) = 4.6, so when 10 shirts are produced, the cost per shirt is $4.60.
(5) = 20, so to sell 5 shirts, set the price at $20 per shirt.

—222 430z, 0< 2 <15

R(z) =
P(z) =222 +282-26,0<x <15
()

3

x

z) =0 when z = 1 and x = 13. These are the ‘break even’ points, so selling 1 shirt
13 shirts will guarantee the revenue earned exactly recoups the cost of production.
C'(0) = 100, so the fixed costs are $100.
(10) = 20, so when 10 bottles of tonic are produced, the cost per bottle is $20.
p(5) = 30, so to sell 5 bottles of tonic, set the price at $30 per bottle.
R(z) = -2 +352,0< 2 <35
P(z) = —x? + 252 — 100, 0 < z < 35
() = 0 when x = 5 and = = 20. These are the ‘break even’ points, so selling 5 bottles
of tonic or 20 bottles of tonic will guarantee the revenue earned exactly recoups the cost
of production.
C(0) = 240, so the fixed costs are 240¢ or $2.40.
C(10) = 42, so when 10 cups of lemonade are made, the cost per cup is 42¢.
(5) = 75, so to sell 5 cups of lemonade, set the price at 75¢ per cup.
R(z) = =322+ 90z, 0 < 2 < 30
P(z) = =32+ 722 — 240, 0 < 2 < 30

P(z) =0 when z = 4 and x = 20. These are the ‘break even’ points, so selling 4 cups of
lemonade or 20 cups of lemonade will guarantee the revenue earned exactly recoups the
cost of production.

3
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49.

50.

51

o4.

o7.

60.

RELATIONS AND FUNCTIONS

C(0) = 36, so the daily fixed costs are $36.
C(10) = 6.6, so when 10 pies are made, the cost per pie is $6.60.
p(5) = 9.5, so to sell 5 pies a day, set the price at $9.50 per pie.
R(z) = —0.52% + 122, 0 < 2 < 24
P(z) = —0.52% + 97— 36,0 < 2 < 24
P(z) =0 when z = 6 and = 12. These are the ‘break even’ points, so selling 6 pies or
12 pies a day will guarantee the revenue earned exactly recoups the cost of production.
C'(0) = 1000, so the monthly fixed costs are 1000 hundred dollars, or $100,000.
C(10) = 120, so when 10 scooters are made, the cost per scooter is 120 hundred dollars,
or $12,000.
p(5) = 130, so to sell 5 scooters a month, set the price at 130 hundred dollars, or $13,000
per scooter.
R(z) = —22% + 140z, 0 < 2 < 70
P(z) = —22% + 1202 — 1000, 0 < z < 70
P(x) = 0 when z = 10 and = = 50. These are the ‘break even’ points, so selling 10
scooters or 50 scooters a month will guarantee the revenue earned exactly recoups the
cost of production.
- (f+9)(=3) =2 52. (f—9)(2)=3 53. (fg)(=1) =0
(9+/)(1)=0 55. (9—f)(3) =3 56. (9f)(=3) =8
(g) (—2) does not exist 58. (5) (-1)=0 59. (5) (2) =4

(%) (—1) does not exist 61. (%) (3)=-2 62. (%) (-3)=—3
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1.6 GRAPHS OF FUNCTIONS

In Section 1.3 we defined a function as a special type of relation; one in which each z-coordinate
was matched with only one y-coordinate. We spent most of our time in that section looking at
functions graphically because they were, after all, just sets of points in the plane. Then in Section
1.4 we described a function as a process and defined the notation necessary to work with functions
algebraically. So now it’s time to look at functions graphically again, only this time we’ll do so with
the notation defined in Section 1.4. We start with what should not be a surprising connection.

The Fundamental Graphing Principle for Functions

The graph of a function f is the set of points which satisfy the equation y = f(z). That is, the
point (x,y) is on the graph of f if and only if y = f(x).

Example 1.6.1. Graph f(z) =22 — 2 — 6.

Solution. To graph f, we graph the equation y = f(z). To this end, we use the techniques outlined
in Section 1.2.1. Specifically, we check for intercepts, test for symmetry, and plot additional points
as needed. To find the z-intercepts, we set y = 0. Since y = f(z), this means f(z) = 0.

flx) = 22—2-6
0 = 22-2-6
0 = (r—3)(x+2) factor
z—3=0 or z4+2=0
r = -2,3

So we get (—2,0) and (3,0) as z-intercepts. To find the y-intercept, we set x = 0. Using function
notation, this is the same as finding f(0) and f(0) = 0> — 0 — 6 = —6. Thus the y-intercept is
(0,—6). As far as symmetry is concerned, we can tell from the intercepts that the graph possesses
none of the three symmetries discussed thus far. (You should verify this.) We can make a table
analogous to the ones we made in Section 1.2.1, plot the points and connect the dots in a somewhat
pleasing fashion to get the graph below on the right.

z || f(z) | (z, f(z)
-3 6| (—3,6
) 0] (=2,0
1| —4|(-1,-4

—6| (0,—6

\
D
—~

\
=2

~— |~ |~ |~ |~ |~ |~ |~ [~
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Graphing piecewise-defined functions is a bit more of a challenge.

4—2% if z<1

Example 1.6.2. Graph: f(z) { v—3 if ¢>1

Solution. We proceed as before — finding intercepts, testing for symmetry and then plotting
additional points as needed. To find the z-intercepts, as before, we set f(z) = 0. The twist is that
we have two formulas for f(z). For # < 1, we use the formula f(z) = 4 — 22. Setting f(x) = 0
gives 0 = 4 — 22, so that « = £2. However, of these two answers, only x = —2 fits in the domain
x < 1 for this piece. This means the only z-intercept for the x < 1 region of the z-axis is (—2,0).
For x > 1, f(x) = = — 3. Setting f(z) = 0 gives 0 = x — 3, or z = 3. Since x = 3 satisfies the
inequality x > 1, we get (3,0) as another z-intercept. Next, we seek the y-intercept. Notice that
x = 0 falls in the domain < 1. Thus f(0) = 4 — 0> = 4 yields the y-intercept (0,4). As far
as symmetry is concerned, you can check that the equation y = 4 — z? is symmetric about the
y-axis; unfortunately, this equation (and its symmetry) is valid only for £ < 1. You can also verify
y = x — 3 possesses none of the symmetries discussed in the Section 1.2.1. When plotting additional
points, it is important to keep in mind the restrictions on x for each piece of the function. The
sticking point for this function is z = 1, since this is where the equations change. When z = 1, we
use the formula f(x) = « — 3, so the point on the graph (1, f(1)) is (1, —2). However, for all values
less than 1, we use the formula f(z) = 4 — 2. As we have discussed earlier in Section 1.2, there is
no real number which immediately precedes x = 1 on the number line. Thus for the values x = 0.9,
= 0.99, = 0.999, and so on, we find the corresponding y values using the formula f(z) = 4 —22.
Making a table as before, we see that as the z values sneak up to x = 1 in this fashion, the f(x)
values inch closer and closer! to 4 — 12 = 3. To indicate this graphically, we use an open circle at
the point (1,3). Putting all of this information together and plotting additional points, we get

G (z, f(z))
091 319 | (0.9,3.19)
0.99 || ~3.02 | (0.99,3.02)
0.999 || ~ 3.002 | (0.999,3.002)

1'We’ve just stepped into Calculus here!
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In the previous two examples, the z-coordinates of the z-intercepts of the graph of y = f(x) were
found by solving f(x) = 0. For this reason, they are called the zeros of f.

Definition 1.9. The zeros of a function f are the solutions to the equation f(x) = 0. In other
words, z is a zero of f if and only if (z,0) is an x-intercept of the graph of y = f(x).

Of the three symmetries discussed in Section 1.2.1, only two are of significance to functions: sym-
metry about the y-axis and symmetry about the origin.? Recall that we can test whether the
graph of an equation is symmetric about the y-axis by replacing x with —z and checking to see
if an equivalent equation results. If we are graphing the equation y = f(x), substituting —z for
x results in the equation y = f(—z). In order for this equation to be equivalent to the original
equation y = f(z) we need f(—z) = f(z). In a similar fashion, we recall that to test an equation’s
graph for symmetry about the origin, we replace x and y with —z and —y, respectively. Doing
this substitution in the equation y = f(z) results in —y = f(—=z). Solving the latter equation for
y gives y = —f(—x). In order for this equation to be equivalent to the original equation y = f(z)
we need — f(—x) = f(x), or, equivalently, f(—x) = —f(x). These results are summarized below.

Testing the Graph of a Function for Symmetry

The graph of a function f is symmetric

e about the y-axis if and only if f(—z) = f(z) for all z in the domain of f.

e about the origin if and only if f(—xz) = —f(x) for all z in the domain of f.

For reasons which won’t become clear until we study polynomials, we call a function even if its
graph is symmetric about the y-axis or odd if its graph is symmetric about the origin. Apart from
a very specialized family of functions which are both even and odd,? functions fall into one of three
distinct categories: even, odd, or neither even nor odd.

Example 1.6.3. Determine analytically if the following functions are even, odd, or neither even
nor odd. Verify your result with a graphing calculator.

5 5
1. = — 2. ="
f@) = 5 glz) = 5o
5% . 5%
. s T .
. =x‘———1
5. j(z) == 100 6. plz) = x+3 %f x <0
—z+3, if x>0

Solution. The first step in all of these problems is to replace & with —x and simplify.

*Why are we so dismissive about symmetry about the z-axis for graphs of functions?
3 Any ideas?
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1.
5
5
f(*l‘) - 9 _ (_:L_)Q
5
f(=z) = [f(z)
Hence, f is even. The graphing calculator furnishes the following.
Flokl Flokz Flokz
SR | = R ] |
wNe=
we=
~y=
wHe=
~NE=
~Ne=
This suggests? that the graph of f is symmetric about the y-axis, as expected.
2.
ox
9w = 5
5(—x)
1T
-5z
900) = 5o

It doesn’t appear that g(—z) is equivalent to g(z). To prove this, we check with an x value.
After some trial and error, we see that g(1) = 5 whereas g(—1) = —5. This proves that g is
not even, but it doesn’t rule out the possibility that ¢ is odd. (Why not?) To check if g is
odd, we compare g(—z) with —g(x)

—g(ﬂ?) = _2 E:E:EQ
=5z
2 — g2

—g(z) = g(-2)

Hence, g is odd. Graphically,

4Quggests’ is about the extent of what it can do.
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Flati Flotz Flakz
WU BESEACZ—HED
wWe=
wWas
wy=
wWe=
W E=
W=

The calculator indicates the graph of g is symmetric about the origin, as expected.

3.
S5(—x
o0 = 2
o) =

Once again, h(—x) doesn’t appear to be equivalent to h(z). We check with an z value, for
example, h(1) =5 but h(—1) = —2. This proves that & is not even and it also shows & is not
odd. (Why?) Graphically,

Flati Flotz Flakz
~1ESEACZ2-R"5 01
W=
wWr=
wy=
wWe=
~WE=
W=

The graph of h appears to be neither symmetric about the y-axis nor the origin.

4.
i) = 5
P )
oy
. —5x
il=2) = —2x + 23

The expression i(—z) doesn’t appear to be equivalent to i(z). However, after checking some
x values, for example x = 1 yields i(1) = 5 and i(—1) = 5, it appears that i(—x) does, in fact,
equal i(x). However, while this suggests i is even, it doesn’t prove it. (It does, however, prove
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i is not odd.) To prove i(—x) = i(x), we need to manipulate our expressions for i(x) and
i(—z) and show that they are equivalent. A clue as to how to proceed is in the numerators:
in the formula for i(x), the numerator is 5z and in i(—x) the numerator is —5z. To re-write
i(z) with a numerator of —5x, we need to multiply its numerator by —1. To keep the value
of the fraction the same, we need to multiply the denominator by —1 as well. Thus

%)

2 — a3
(=1)5z
(—1) (2z — 23)
—5x
-2z + a3

i(r) =

Hence, i(x) = i(—x), so i is even. The calculator supports our conclusion.

Flati Flotz Flakz
W ESEAC2E-E 500
wWe=
wWr=
wy=
~Ne=
W E=
W=

2 X

. _ _%
j(x) 2~ 160
_ - (=2 - T 1
j(=x) T
. 2 x
_ — .
i=n) =
The expression for j(—x) doesn’t seem to be equivalent to j(x), so we check using x = 1 to
get j(1) = —1—(1)0 and j(—1) = ﬁ. This rules out j being even. However, it doesn’t rule out

j being odd. Examining —j(z) gives

2 x

. _ _z
. B s T )
- = (22— L 4
i@ (x 100
—j(x) = -2+ Lo
= 100
The expression —j(z) doesn’t seem to match j(—x) either. Testing x = 2 gives j(2) = %
and j(—2) = %, so j is not odd, either. The calculator gives:
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Flati Flaotz Flakz
iR 2-Ro188-1
wWe=
wWas
wy=
wWe=
W E=
W=

The calculator suggests that the graph of j is symmetric about the y-axis which would imply
that j is even. However, we have proven that is not the case. ]

6. Testing the graph of y = p(x) for symmetry is complicated by the fact p(z) is a piecewise-
defined function. As always, we handle this by checking the condition for symmetry by
checking it on each piece of the domain. We first consider the case when x < 0 and set about
finding the correct expression for p(—x). Even though p(x) = z+3 for x < 0, p(—z) # —x+3
here. The reason for this is that since x < 0, —x > 0 which means to find p(—z), we need to
use the other formula for p(x), namely p(x) = —2+3. Hence, for x < 0, p(—z) = —(—z)+3 =
x4+ 3 =p(z). For z > 0, p(x) = —z + 3 and we have two cases. If z > 0, then —z < 0 so
p(—x) = (—x)+3=—2+3 =p(x). If x =0, then p(0) = 3 = p(—0). Hence, in all cases,
p(—z) = p(z), so p is even. Since p(0) = 3 but p(—0) = p(0) = 3 # —3, we also have p is not
odd. While graphing y = p(x) is not onerous to do by hand, it is instructive to see how to
enter this into our calculator. By using some of the logical commands,® we have:

Flatl Flakz Flokz

WA ECEFIICRCED [

wWeEC -HEIICREAD |

“MWa= . . - . ,
= e . -
“He= i

M=
W=

The calculator bears shows that the graph appears to be symmetric about the y-axis. O

There are two lessons to be learned from the last example. The first is that sampling function
values at particular x values is not enough to prove that a function is even or odd — despite the
fact that j(—1) = —j(1), j turned out not to be odd. Secondly, while the calculator may suggest
mathematical truths, it is the Algebra which proves mathematical truths.5

®Consult your owner’s manual, instructor, or favorite video site!
50r, in other words, don’t rely too heavily on the machine!
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1.6.1 GENERAL FUNCTION BEHAVIOR

The last topic we wish to address in this section is general function behavior. As you shall see in
the next several chapters, each family of functions has its own unique attributes and we will study
them all in great detail. The purpose of this section’s discussion, then, is to lay the foundation for
that further study by investigating aspects of function behavior which apply to all functions. To
start, we will examine the concepts of increasing, decreasing and constant. Before defining the
concepts algebraically, it is instructive to first look at them graphically. Consider the graph of the
function f below.

(6,5.5)
(—2,4.5)

w A~ o O N
' ' ' ' '
t t t t t

—4[-3 —2 1 1 2 3 4 56 7=

-51 (4,-6)
-71 (5,—6)

—94 (3,-8)

The graph of y = f(x)

Reading from left to right, the graph ‘starts’ at the point (—4, —3) and ‘ends’ at the point (6,5.5). If
we imagine walking from left to right on the graph, between (—4, —3) and (—2,4.5), we are walking
‘uphill’; then between (—2,4.5) and (3, —8), we are walking ‘downhill’; and between (3, —8) and
(4, —6), we are walking ‘uphill’ once more. From (4, —6) to (5, —6), we ‘level off’, and then resume
walking ‘uphill’ from (5,—6) to (6,5.5). In other words, for the z values between —4 and —2
(inclusive), the y-coordinates on the graph are getting larger, or increasing, as we move from left
to right. Since y = f(z), the y values on the graph are the function values, and we say that the
function f is increasing on the interval [—4, —2]. Analogously, we say that f is decreasing on the
interval [—2, 3] increasing once more on the interval [3, 4], constant on [4, 5], and finally increasing
once again on [5,6]. It is extremely important to notice that the behavior (increasing, decreasing
or constant) occurs on an interval on the z-axis. When we say that the function f is increasing
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on [—4,—2] we do not mention the actual y values that f attains along the way. Thus, we report
where the behavior occurs, not to what extent the behavior occurs.” Also notice that we do not
say that a function is increasing, decreasing or constant at a single x value. In fact, we would run
into serious trouble in our previous example if we tried to do so because x = —2 is contained in an
interval on which f was increasing and one on which it is decreasing. (There’s more on this issue
— and many others — in the Exercises.)

We’re now ready for the more formal algebraic definitions of what it means for a function to be
increasing, decreasing or constant.

Definition 1.10. Suppose f is a function defined on an interval I. We say f is:

e increasing on [ if and only if f(a) < f(b) for all real numbers a, b in I with a < b.

e decreasing on [ if and only if f(a) > f(b) for all real numbers a, b in I with a < b.

e constant on [ if and only if f(a) = f(b) for all real numbers a, b in 1.

It is worth taking some time to see that the algebraic descriptions of increasing, decreasing and
constant as stated in Definition 1.10 agree with our graphical descriptions given earlier. You should
look back through the examples and exercise sets in previous sections where graphs were given to
see if you can determine the intervals on which the functions are increasing, decreasing or constant.
Can you find an example of a function for which none of the concepts in Definition 1.10 apply?

Now let’s turn our attention to a few of the points on the graph. Clearly the point (—2,4.5) does
not have the largest y value of all of the points on the graph of f — indeed that honor goes to
(6,5.5) — but (—2,4.5) should get some sort of consolation prize for being ‘the top of the hill’

between © = —4 and x = 3. We say that the function f has a local maximum?® at the point
(—2,4.5), because the y-coordinate 4.5 is the largest y-value (hence, function value) on the curve
‘near’” x = —2. Similarly, we say that the function f has a local minimum!? at the point (3, —8),

since the y-coordinate —8 is the smallest function value near z = 3. Although it is tempting to
say that local extremal!! occur when the function changes from increasing to decreasing or vice
versa, it is not a precise enough way to define the concepts for the needs of Calculus. At the risk of
being pedantic, we will present the traditional definitions and thoroughly vet the pathologies they
induce in the Exercises. We have one last observation to make before we proceed to the algebraic
definitions and look at a fairly tame, yet helpful, example.

If we look at the entire graph, we see that the largest y value (the largest function value) is 5.5 at
x = 6. In this case, we say the maximum'? of f is 5.5; similarly, the minimum!? of f is —8.

"The notions of how quickly or how slowly a function increases or decreases are explored in Calculus.

8 Also called ‘relative maximum’.

9We will make this more precise in a moment.

10 Als0 called a ‘relative minimum’.

HeMaxima’ is the plural of ‘maximum’ and ‘mimima’ is the plural of ‘minimum’. ‘Extrema’ is the plural of
‘extremum’ which combines maximum and minimum.

1230ometimes called the ‘absolute’ or ‘global’ maximum.

13 Again, ‘absolute’ or ‘global’ minimum can be used.
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We formalize these concepts in the following definitions.

Definition 1.11. Suppose f is a function with f(a) = b.

e We say f has a local maximum at the point (a, b) if and only if there is an open interval
I containing a for which f(a) > f(x) for all  in I. The value f(a) = b is called ‘a local
maximum value of f’ in this case.

e We say f has a local minimum at the point (a,b) if and only if there is an open interval
I containing a for which f(a) < f(x) for all z in I. The value f(a) = b is called ‘a local
minimum value of f’ in this case.

e The value b is called the maximum of f if b > f(z) for all  in the domain of f.

e The value b is called the minimum of f if b < f(x) for all z in the domain of f.

It’s important to note that not every function will have all of these features. Indeed, it is possible
to have a function with no local or absolute extrema at alll (Any ideas of what such a function’s
graph would have to look like?) We shall see examples of functions in the Exercises which have one
or two, but not all, of these features, some that have instances of each type of extremum and some
functions that seem to defy common sense. In all cases, though, we shall adhere to the algebraic
definitions above as we explore the wonderful diversity of graphs that functions provide us.

Here is the ‘tame’ example which was promised earlier. It summarizes all of the concepts presented
in this section as well as some from previous sections so you should spend some time thinking
deeply about it before proceeding to the Exercises.

Example 1.6.4. Given the graph of y = f(x) below, answer all of the following questions.
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1. Find the domain of f. 2. Find the range of f.

3. List the x-intercepts, if any exist. 4. List the y-intercepts, if any exist.

5. Find the zeros of f. 6. Solve f(x) < 0.

7. Determine f(2). 8. Solve f(x) = —3.

9. Find the number of solutions to f(x) = 1. 10. Does f appear to be even, odd, or neither?
11. List the intervals on which f is increasing. 12. List the intervals on which f is decreasing.
13. List the local maximums, if any exist. 14. List the local minimums, if any exist.

15. Find the maximum, if it exists. 16. Find the minimum, if it exists.
Solution.

1.

. To solve f(x)

To find the domain of f, we proceed as in Section 1.3. By projecting the graph to the z-axis,
we see that the portion of the x-axis which corresponds to a point on the graph is everything
from —4 to 4, inclusive. Hence, the domain is [—4,4].

. To find the range, we project the graph to the y-axis. We see that the y values from —3 to

3, inclusive, constitute the range of f. Hence, our answer is [—3, 3].

. The z-intercepts are the points on the graph with y-coordinate 0, namely (—2,0) and (2,0).
. The y-intercept is the point on the graph with z-coordinate 0, namely (0, 3).

. The zeros of f are the z-coordinates of the z-intercepts of the graph of y = f(x) which are

r=—-22

. To solve f(x) < 0, we look for the x values of the points on the graph where the y-coordinate is

less than 0. Graphically, we are looking for where the graph is below the z-axis. This happens
for the x values from —4 to —2 and again from 2 to 4. So our answer is [—4, —2) U (2, 4].

Since the graph of f is the graph of the equation y = f(x), f(2) is the y-coordinate of the
point which corresponds to z = 2. Since the point (2,0) is on the graph, we have f(2) = 0.

= —3, we look where y = f(x) = —3. We find two points with a y-coordinate
of —3, namely (—4, —3) and (4, —3). Hence, the solutions to f(x) = —3 are x = +4.

. As in the previous problem, to solve f(xz) = 1, we look for points on the graph where the

y-coordinate is 1. Even though these points aren’t specified, we see that the curve has two
points with a y value of 1, as seen in the graph below. That means there are two solutions to

flz)=1.
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10.

11.

12.

13.
14.

15.

16.

RELATIONS AND FUNCTIONS

The graph appears to be symmetric about the y-axis. This suggests'® that f is even.

As we move from left to right, the graph rises from (—4,—3) to (0,3). This means f is
increasing on the interval [—4,0]. (Remember, the answer here is an interval on the z-axis.)

As we move from left to right, the graph falls from (0, 3) to (4, —3). This means f is decreasing
on the interval [0,4]. (Remember, the answer here is an interval on the z-axis.)

The function has its only local maximum at (0,3) so f(0) = 3 is the local minimum value.

There are no local minimums. Why don’t (—4,—3) and (4, —3) count? Let’s consider the
point (—4, —3) for a moment. Recall that, in the definition of local minimum, there needs to
be an open interval I which contains x = —4 such that f(—4) < f(z) for all z in I different
from —4. But if we put an open interval around x = —4 a portion of that interval will lie
outside of the domain of f. Because we are unable to fulfill the requirements of the definition
for a local minimum, we cannot claim that f has one at (—4, —3). The point (4, —3) fails for
the same reason — no open interval around x = 4 stays within the domain of f.

The maximum value of f is the largest y-coordinate which is 3.

The minimum value of f is the smallest y-coordinate which is —3. 0

With few exceptions, we will not develop techniques in College Algebra which allow us to determine
the intervals on which a function is increasing, decreasing or constant or to find the local maximums
and local minimums analytically; this is the business of Calculus.'®> When we have need to find such
beasts, we will resort to the calculator. Most graphing calculators have ‘Minimum’ and ‘Maximum’
features which can be used to approximate these values, as we now demonstrate.

Mhut does not prove
15 Although, truth be told, there is only one step of Calculus involved, followed by several pages of algebra.
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Example 1.6.5. Let f(x) =

105

15x

213 Use a graphing calculator to approximate the intervals on
x

which f is increasing and those on which it is decreasing. Approximate all extrema.

Solution. Entering this function into the calculator gives

wWe=
wWr=
wy=
wWE=
W E=
MW=

Flotl Flokz Flots
sNAB1SESCRTE2HID

Using the Minimum and Maximum features, we get

Hinimum

n=-l.rZe0s  IY=-hyEzodeE? n=l.r>2nkd

Haxirum
L Redcdih bedy

To two decimal places, f appears to have its only local minimum at (—1.73,—4.33) and its only

local maximum at (1.73,4.33)

. Given the symmetry about the origin suggested by the graph, the

relation between these points shouldn’t be too surprising. The function appears to be increasing on
[—1.73,1.73] and decreasing on (—oo, —1.73]U[1.73, 00). This makes —4.33 the (absolute) minimum
and 4.33 the (absolute) maximum. O

Example 1.6.6. Find the points on the graph of y = (z — 3)? which are closest to the origin.
Round your answers to two decimal places.

Solution. Suppose a point (z,y) is on the graph of y = (z — 3)2. Its distance to the origin (0,0)

is given by

d = VE=07+(@ -0
N i
= \/562 + [(z = 3)?)? Since y = (z — 3)?
= a2+ (z—3)4
Given a value for z, the formula d = /2?2 4+ (x — 3)% is the distance from (0,0) to the point (z,y)

on the curve y = (x — 3)2.

What we have defined, then, is a function d(z) which we wish to
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minimize over all values of x. To accomplish this task analytically would require Calculus so as
we’ve mentioned before, we can use a graphing calculator to find an approximate solution. Using
the calculator, we enter the function d(x) as shown below and graph.

Flotl Flotz Flots
;¥1EIiH“2+iH—3}“

~z=l

M=

~hy=

~Me= Hinimun

“MWE= MZZ O00000E Y=Z.Z:606H

Using the Minimum feature, we see above on the right that the (absolute) minimum occurs near
z = 2. Rounding to two decimal places, we get that the minimum distance occurs when z = 2.00.
To find the y value on the parabola associated with = = 2.00, we substitute 2.00 into the equation
to get y = (v — 3)? = (2.00 — 3)2 = 1.00. So, our final answer is (2.00,1.00).6 (What does the y
value listed on the calculator screen mean in this problem?) O

161t seems silly to list a final answer as (2.00,1.00). Indeed, Calculus confirms that the ezact answer to this problem
is, in fact, (2,1). As you are well aware by now, the authors are overly pedantic, and as such, use the decimal places
to remind the reader that any result garnered from a calculator in this fashion is an approximation, and should be
treated as such.
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1.6.2 EXERCISES
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In Exercises 1 - 12, sketch the graph of the given function. State the domain of the function,

identify any intercepts and test for symmetry.

1. flx)=2—=x 9 f(x):x;2 3. f(x) =22 +1
4. f(x) =4 — 2 5 f(z) =2 6. f(z)=a3

7. f(z) =x(z—1)(z+2) 8. f(z)=+vVx—2 9. flx)=vVd—=x
10. f(z)=3—-2Vz +2 11. f(z) = = 12, f(z) = 21+1

In Exercises 13 - 20, sketch the graph of the given piecewise-defined function.

3 f(x):{ll—x it z<3 " f(z):{a:? it 2<0

2 if >3 2¢ if x>0
-3 if <0 2 —4 if <=2
15. f(x) =< 2z—-3 if 0<z<3 16. f(x)=1< 4—2% if —-2<x<?2
3 if >3 22—4 if z>2
o . <
17, f(z) = 2r—4 if x<0 18. f(z) = ve+4 if 4<zxr<b
3x if x>0 ve—1 if x>5
. 1
o? if < -2 - if —6<z<-—1
19. = _ i — _ z
SR At 0. f@)=1 b it -l<a<1
1 T >

Ve oif 1<ax<9

In Exercises 21 - 41, determine analytically if the following functions are even, odd or neither.

21. f(x) = Tx 22. f(x) =Tz +2 23. f(z) =7

24. f(x) =322 -4 25. f(x) =4 —2? 26. f(x)=2% -2 —

27. f(x) =223 —x 28. f(x) = —2°+22% —x 29. f(x)=2% —2* + 22 +9
30. fl)=a®+a?+ax+1 3. f(z)=V1—z 32. f(z)=v1—a?

33. f(z)=0 34. f(x) = Yz 35. f(z) = Va2
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36.

39.

fa)= 3T fa) = =
-3
f@) = ;=g I =

RELATIONS AND FUNCTIONS

3
38. f(z) = ﬁiil
4. f(z) = 3‘””;;””

In Exercises 42 - 57, use the graph of y = f(z) given below to answer the question.

42.

44.

46.

48.

50.

52.

54.

56.

Find the domain of f.

Determine f(—2).

List the x-intercepts, if any exist.

Find the zeros of f.

Find the number of solutions to f(x) = 1.
List the intervals where f is increasing.
List the local maximums, if any exist.

Find the maximum, if it exists.

43.

45.

47.

49.

ol.

93.

95.

o7.

Find the range of f.

Solve f(x) =4.

List the y-intercepts, if any exist.

Solve f(z) > 0.

Does f appear to be even, odd, or neither?
List the intervals where f is decreasing.
List the local minimums, if any exist.

Find the minimum, if it exists.
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In Exercises 58 - 73, use the graph of y = f(z) given below to answer the question.

58.

60.

62.

64.

66.

68.

70.

72.

Find the range of f.

Solve f(x) = —b5.

List the y-intercepts, if any exist.

Solve f(x) <0.

Does f appear to be even, odd, or neither?
List the intervals where f is decreasing.

List the local minimums, if any exist.

y
51
44
34
21
14
T E 20 1 2 5 4 e
31
41
51
Find the domain of f. 59.
Determine f(2). 61.
List the x-intercepts, if any exist. 63.
Find the zeros of f. 65.
Find the number of solutions to f(x) =3.  67.
List the intervals where f is increasing. 69.
List the local maximums, if any exist. 71.
Find the maximum, if it exists. 73

Find the minimum, if it exists.

In Exercises 74 - 77, use your graphing calculator to approximate the local and absolute extrema
of the given function. Approximate the intervals on which the function is increasing and those on
which it is decreasing. Round your answers to two decimal places.

74.

76.

f(x) = z* — 323 — 242% + 28z 4 48

9 — g2

fz) =

75.

e

f(z) = 2*(x —4)

f(z) =2v9 — a2
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In Exercises 78 - 85, use the graphs of y = f(z) and y = g(x) below to find the function value.

78.

82.

41

31

21

14

x 1 2 3 4 4
y = g(z)

(f +9)(0) 79. (f+9)(1) 80. (f—9)(1) 81. (9— £)(2)
(f9)(2) 83. (fg)(1) 84. (5) (4) 85. (%) 2)

The graph below represents the height h of a Sasquatch (in feet) as a function of its age N in years.
Use it to answer the questions in Exercises 86 - 90.

86.

87.

88.

89.

90.

Yy

2 4

Find and interpret A(0).

How tall is the Sasquatch when she is 15 years old?

Solve h(N) = 6 and interpret.

List the interval over which h is constant and interpret your answer.

List the interval over which h is decreasing and interpret your answer.
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For Exercises 91 - 93, let f(z) = || be the greatest integer function as defined in Exercise 75 in
Section 1.4.

91.
92.
93.

Graph y = f(x). Be careful to correctly describe the behavior of the graph near the integers.
Is f even, odd, or neither? Explain.

Discuss with your classmates which points on the graph are local minimums, local maximums
or both. Is f ever increasing? Decreasing? Constant?

In Exercises 94 - 95, use your graphing calculator to show that the given function does not have
any extrema, neither local nor absolute.

94.

96.

97.

98.

flz)=a23+2—12 95. f(z)=—bx+2

In Exercise 71 in Section 1.4, we saw that the population of Sasquatch in Portage County

50t
could be modeled by the function P(t) = T
your graphing calculator to analyze the general function behavior of P. Will there ever be a

time when 200 Sasquatch roam Portage County?

where t = 0 represents the year 1803. Use

Suppose f and g are both even functions. What can be said about the functions f +g, f — g,
fg and 5? What if f and g are both odd? What if f is even but ¢ is odd?

One of the most important aspects of the Cartesian Coordinate Plane is its ability to put
Algebra into geometric terms and Geometry into algebraic terms. We’ve spent most of this
chapter looking at this very phenomenon and now you should spend some time with your
classmates reviewing what we’ve done. What major results do we have that tie Algebra and
Geometry together? What concepts from Geometry have we not yet described algebraically?
What topics from Intermediate Algebra have we not yet discussed geometrically?

It’s now time to “thoroughly vet the pathologies induced” by the precise definitions of local maxi-
mum and local minimum. We’ll do this by providing you and your classmates a series of Exercises
to discuss. You will need to refer back to Definition 1.10 (Increasing, Decreasing and Constant)
and Definition 1.11 (Maximum and Minimum) during the discussion.

99.

Consider the graph of the function f given below.

)

e
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(a) Show that f has a local maximum but not a local minimum at the point (—1,1).

(b) Show that f has a local minimum but not a local maximum at the point (1,1).

()

(d) Show that f is constant on the interval [—1, 1] and thus has both a local maximum AND
a local minimum at every point (x, f(x)) where —1 < z < 1.

Show that f has a local maximum AND a local minimum at the point (0, 1).

100. Using Example 1.6.4 as a guide, show that the function g whose graph is given below does
not have a local maximum at (—3,5) nor does it have a local minimum at (3, —3). Find its
extrema, both local and absolute. What’s unique about the point (0, —4) on this graph? Also
find the intervals on which g is increasing and those on which g is decreasing.

N W e Ot
J J } '

101. We said earlier in the section that it is not good enough to say local extrema exist where a
function changes from increasing to decreasing or vice versa. As a previous exercise showed,
we could have local extrema when a function is constant so now we need to examine some
functions whose graphs do indeed change direction. Consider the functions graphed below.
Notice that all four of them change direction at an open circle on the graph. Examine each
for local extrema. What is the effect of placing the “dot” on the y-axis above or below the
open circle? What could you say if no function value were assigned to z = 07

Yy Yy

-2 -1 1 2z

(a) Function I (b) Function II
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5¢

-2 -1

(c) Function III (d) Function IV
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1.6.3 ANSWERS

1. flx)=2—=x
Domain: (—o0,00) \
x-intercept: (2,0) 1_\
y-intercept: (0,2) ——+ R
No symmetry - \

y
. ; %
Domain: (—o0,c0) . . /

-1 « 2 3 4 g
x-intercept: (2,0)
2

y-intercept: (0, — g)

No symmetry

3. flx)=a22+1
Domain: (—o0, 00)
z-intercept: None

y-intercept: (0,1)

Even

—t ——+
—2 —1 1 2 g

4. f(x) =4 — 22
Domain: (—o0,00)
x-intercepts: (—2,0), (2,0)
y-intercept: (0,4)

Even

5. f(x) =2

Domain: (—o0,c0)

z-intercept: None

y-intercept: (0,2)

M M
—2 -1 1 2 g

Even
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6. f(x)=a3
Domain: (—o0,00)
x-intercept: (0,0)
y-intercept: (0,0)
Odd

N W R O N
P M N T T S R
T+t

7. f(z) =x(z—1)(z+2)
Domain: (—o0, 00)
x-intercepts: (—2,0), (0,0), (1,0) ol
y-intercept: (0,0)

No symmetry V/5‘1 .

8. flz)=+vzr—2 _y
Domain: [2,00)
x-intercept: (2,0) N

y-intercept: None

No symmetry

9. flz)=vVb—=x 3__y
Domain: (—oo0, 5] \

PR a
x-intercept: (5,0) 1_\
y-intercept: (0,/5) %

—4 -3 —2 -1 1 2 3 4 5 g

No symmetry
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10. f(z) =3 -2z +2 Y
Domain: [—2,00)
zr-intercept: (i,O)
y-intercept: (0,3 — 21/2)

No symmetry

11. f(z) = ¥z .4’
Domain: (—o0,00) i//ﬁ

. S Y S Y Y ) (A P S R R R
x-intercept: (0,0)

y-intercept: (0,0)
Odd

1

Domain: (—o0,00)

z-intercept: None
y-intercept: (0,1)

Even

13. 14.

HoN W R o O
P S T S
—t—+—+—+—+

N MR
—t+—+ t——+
—3-2-1 1 2 3T

15. 16.
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17. 18.

| | | | | | | | | |
¢ t t t t t t t t t t
—4 -3 -2 -1 1 2 3 4 5 6 7 =x

19. 20.

2-- IIIIIIIIIIIIIII
..............

\ - —— Y R EERE)

14+ x

21. odd 22. neither 23. even

24. even 25. even 26. neither
27. odd 28. odd 29. even

30. neither 31. neither 32. even

33. even and odd 34. odd 35. even

36. even 37. neither 38. odd

39. odd 40. even 41. even

42. [-5,3] 43. [-5,4] 44. f(-2)=2
45. x = -3 46. (—4,0), (-1,0), (1,0) 47. (0,—1)

48. —4, -1, 1 49. [—4,-1] U1, 3] 50. 4
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51.

o4.

56.

58.

61.

64.

67.

70.

72.

74.

76.

78.

82.

86.
87.
88.

89.

RELATIONS AND FUNCTIONS

neither 52. [-5,—3], [0,2] 53. [-3,0], [2,3]
f(=3)=4, f(2)=3 55. f(0) = —1

f(=3)=4 57. f(—5) = —5

[—4,4] 59. [—5,5) 60. f(2) =3
x=—2 62. (—4,0), (0,0), (4,0) 63. (0,0)

—4,0,4 65. [—4,0] U {4} 66. 3

neither 68. [~2,2) 69. [—4,—2], (2,4]
none 71 f(=2) =5, f(2) =3

none 73. f(=2) = -5

No absolute maximum 75. No absolute maximum

Absolute minimum f(4.55) ~ —175.46
Local minimum at (—2.84, —91.32)
Local maximum at (0.54,55.73)

Local minimum at (4.55, —175.46)
Increasing on [—2.84,0.54], [4.55, c0)
Decreasing on (—oo, —2.84],[0.54, 4.55]

Absolute maximum f(0) = 3
Absolute minimum f(£3) =0
Local maximum at (0, 3)

No local minimum

Increasing on [—3, 0]
Decreasing on [0, 3]

(f+9)(0) =4
(f9)(2) =9

9. (f+9)1)=5

83. (fg)(1) =6

7.

80.

84.

h(0) = 2, so the Sasquatch is 2 feet tall at birth.

No absolute minimum

Local maximum at (0,0)

Local minimum at (1.60, —3.28)
Increasing on (—o0, 0], [1.60, c0)
Decreasing on [0, 1.60]

Absolute maximum f(2.12) ~ 4.50
Absolute minimum f(—2.12) ~ —4.50
Local maximum (2.12,4.50)

Local minimum (—2.12, —4.50)
Increasing on [—2.12,2.12]

Decreasing on [—3, —2.12],[2.12, 3]

h(15) = 6, so the Saquatch is 6 feet tall when she is 15 years old.

h(N) =6 when N = 15 and N = 60. This means the Sasquatch is 6 feet tall when she is 15

and 60 years old.

h is constant on [30,45]. This means the Sasquatch’s height is constant (at 8 feet) for these

years.
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90. h is decreasing on [45,60]. This means the Sasquatch is getting shorter from the age of 45 to
the age of 60. (Sasquatchteoporosis, perhaps?)

91. 92. Note that f(1.1) = 1, but f(—1.1) = —2,
so f is neither even nor odd.

—6 —5 —4 —3 —2 —1 1 2 3 4 5 6 =

The graph of f(z) = |z].
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1.7 TRANSFORMATIONS

In this section, we study how the graphs of functions change, or transform, when certain specialized
modifications are made to their formulas. The transformations we will study fall into three broad
categories: shifts, reflections and scalings, and we will present them in that order. Suppose the
graph below is the complete graph of a function f.

(5,5)

The Fundamental Graphing Principle for Functions says that for a point (a,b) to be on the graph,
f(a) = b. In particular, we know f(0) =1, f(2) =3, f(4) = 3 and f(5) = 5. Suppose we wanted to
graph the function defined by the formula g(x) = f(x)+ 2. Let’s take a minute to remind ourselves
of what g is doing. We start with an input x to the function f and we obtain the output f(x).
The function g takes the output f(z) and adds 2 to it. In order to graph g, we need to graph the
points (z,g(z)). How are we to find the values for g(x) without a formula for f(z)? The answer is
that we don’t need a formula for f(z), we just need the values of f(x). The values of f(z) are the
y values on the graph of y = f(x). For example, using the points indicated on the graph of f, we
can make the following table.

) | 9(x) = f(x) +2] (z,9(x))

)

3 0,3)
5 (2,5)
5 (4,5)
7 (5,7)
In general, if (a,b) is on the graph of y = f(x), then f(a) =b, so g(a) = f(a) +2 = b+ 2. Hence,
(a,b+2) is on the graph of g. In other words, to obtain the graph of g, we add 2 to the y-coordinate
of each point on the graph of f. Geometrically, adding 2 to the y-coordinate of a point moves the
point 2 units above its previous location. Adding 2 to every y-coordinate on a graph en masse is
usually described as ‘shifting the graph up 2 units’. Notice that the graph retains the same basic
shape as before, it is just 2 units above its original location. In other words, we connect the four
points we moved in the same manner in which they were connected before. We have the results
side-by-side at the top of the next page.

ULk (IN|O |8
~
01000\3»—!’8\

)
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(5,7

shift up 2 units

7
y = f(z) add 2 to each y-coordinate y=g(z)=f(z)+2

You'll note that the domain of f and the domain of g are the same, namely [0, 5], but that the
range of f is [1,5] while the range of g is [3,7]. In general, shifting a function vertically like this
will leave the domain unchanged, but could very well affect the range. You can easily imagine what
would happen if we wanted to graph the function j(z) = f(z) — 2. Instead of adding 2 to each of
the y-coordinates on the graph of f, we’d be subtracting 2. Geometrically, we would be moving
the graph down 2 units. We leave it to the reader to verify that the domain of j is the same as f,
but the range of j is [—1, 3]. What we have discussed is generalized in the following theorem.

Theorem 1.2. Vertical Shifts. Suppose f is a function and k is a positive number.

e To graph y = f(x) + k, shift the graph of y = f(z) up k units by adding k to the
y-coordinates of the points on the graph of f.

e To graph y = f(x) — k, shift the graph of y = f(x) down k units by subtracting k from
the y-coordinates of the points on the graph of f.

The key to understanding Theorem 1.2 and, indeed, all of the theorems in this section comes from
an understanding of the Fundamental Graphing Principle for Functions. If (a,b) is on the graph
of f, then f(a) = b. Substituting z = a into the equation y = f(x) + k gives y = f(a) + k=b+ k.
Hence, (a,b+ k) is on the graph of y = f(x)+ k, and we have the result. In the language of ‘inputs’
and ‘outputs’, Theorem 1.2 can be paraphrased as “Adding to, or subtracting from, the output of
a function causes the graph to shift up or down, respectively.” So what happens if we add to or
subtract from the input of the function?

Keeping with the graph of y = f(z) above, suppose we wanted to graph g(z) = f(z +2). In other
words, we are looking to see what happens when we add 2 to the input of the function.! Let’s try
to generate a table of values of g based on those we know for f. We quickly find that we run into
some difficulties.

!We have spent a lot of time in this text showing you that f(z + 2) and f(z) + 2 are, in general, wildly different
algebraic animals. We will see momentarily that their geometry is also dramatically different.
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z || (@ f(z) | fl@)| g(@)=fl@+2) |(z,9())
of o1 | 1 [fo0+2)=F2=3] (0,3)
2 (2,3) 3 f2+2)=f(4)=3 (2,3)
4l @3 | 3 | fa+2=7s6) =2

51 (5,5 | 5 | f(5+2)=f(7) =7

When we substitute x = 4 into the formula g(z) = f(x + 2), we are asked to find f(4+2) = f(6)
which doesn’t exist because the domain of f is only [0,5]. The same thing happens when we
attempt to find g(5). What we need here is a new strategy. We know, for instance, f(0) = 1. To
determine the corresponding point on the graph of g, we need to figure out what value of x we must
substitute into g(x) = f(x + 2) so that the quantity x + 2, works out to be 0. Solving z +2 = 0
gives z = —2, and g(—2) = f((—2) +2) = f(0) = 1 so (—2,1) is on the graph of g. To use the fact
f(2) =3, we set x +2 = 2 to get z = 0. Substituting gives ¢(0) = f(0+2) = f(2) = 3. Continuing
in this fashion, we get

)| x4+2] gx)=flz+2) | (z9(x)
-2 0 Jg9(=2)=/f(0)=1] (=2,1)
0 2 | 900=r2)=3 | (0,3)
4 1 9@2)=f4)=3 ] (23)
5 | 9B)=f6G)=5 | 3,5

In summary, the points (0,1), (2,3), (4,3) and (5,5) on the graph of y = f(x) give rise to the
points (—2,1), (0,3), (2,3) and (3,5) on the graph of y = g(x), respectively. In general, if (a,b) is
on the graph of y = f(x), then f(a) = b. Solving z + 2 = a gives = a — 2 so that g(a — 2) =
fl(a—2)+2) = f(a) = b. As such, (a —2,b) is on the graph of y = g(x). The point (a — 2,b) is
exactly 2 units to the left of the point (a,b) so the graph of y = g(x) is obtained by shifting the
graph y = f(z) to the left 2 units, as pictured below.

Y Y

(5,5) (3,5)
54
44

(0,3) p——H4
(2,3)
PR
(—=2,1) 14+
z shift left 2 units -2 -1 1 2 3 4 5 g
y = f(x) subtract 2 from each x-coordinate y=g(z) = f(z+2)

Note that while the ranges of f and g are the same, the domain of g is [—2, 3] whereas the domain
of fis [0,5]. In general, when we shift the graph horizontally, the range will remain the same, but
the domain could change. If we set out to graph j(x) = f(z — 2), we would find ourselves adding
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2 to all of the z values of the points on the graph of y = f(x) to effect a shift to the right 2 units.
Generalizing these notions produces the following result.

Theorem 1.3. Horizontal Shifts. Suppose f is a function and h is a positive number.

e To graph y = f(x + h), shift the graph of y = f(z) left h units by subtracting h from the
z-coordinates of the points on the graph of f.

e To graph y = f(z — h), shift the graph of y = f(z) right h units by adding h to the
z-coordinates of the points on the graph of f.

In other words, Theorem 1.3 says that adding to or subtracting from the input to a function
amounts to shifting the graph left or right, respectively. Theorems 1.2 and 1.3 present a theme
which will run common throughout the section: changes to the outputs from a function affect the
y-coordinates of the graph, resulting in some kind of vertical change; changes to the inputs to a
function affect the z-coordinates of the graph, resulting in some kind of horizontal change.

Example 1.7.1.
1. Graph f(z) = \/z. Plot at least three points.
2. Use your graph in 1 to graph g(x) = /x — 1.
3. Use your graph in 1 to graph j(z) = Vo — 1.
4. Use your graph in 1 to graph m(z) = vz + 3 — 2.
Solution.
1. Owing to the square root, the domain of f is > 0, or [0,00). We choose perfect squares to

build our table and graph below. From the graph we verify the domain of f is [0, 00) and the
range of f is also [0, 00).

(z, f(2))

(0,0)
(1,1)
4,2)

( )

=
[\DP—‘O&
~

e k= RS

y=f(z) =V

2. The domain of ¢ is the same as the domain of f, since the only condition on both functions
is that > 0. If we compare the formula for g(z) with f(z), we see that g(z) = f(z) — 1. In
other words, we have subtracted 1 from the output of the function f. By Theorem 1.2, we
know that in order to graph g, we shift the graph of f down one unit by subtracting 1 from
each of the y-coordinates of the points on the graph of f. Applying this to the three points
we have specified on the graph, we move (0,0) to (0,—1), (1,1) to (1,0), and (4,2) to (4,1).
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The rest of the points follow suit, and we connect them with the same basic shape as before.
We confirm the domain of g is [0, 00) and find the range of g to be [—1, c0).

Yy Yy
(4,2)
24 21
(1,1) (4,1)
14 14
(0,0) (1,0)
1 2 3 4 g 1 2 3 4 g
(0’ _1)‘
shift down 1 unit
y=f(z) =z subtract 1 from each y-coordinate y=g(z)=+x -1

3. Solving z — 1 > 0 gives x > 1, so the domain of j is [1,00). To graph j, we note that
j(x) = f(z —1). In other words, we are subtracting 1 from the input of f. According to
Theorem 1.3, this induces a shift to the right of the graph of f. We add 1 to the xz-coordinates
of the points on the graph of f and get the result below. The graph reaffirms that the domain
of j is [1,00) and tells us that the range of j is [0, 00).

(5,2)
2
(2,1)
1
& shift right 1 unit | (1,002 3 4 5 'z
add 1 to each z-coordinate y=jx)=vzr—-1

4. To find the domain of m, we solve x + 3 > 0 and get [—3,00). Comparing the formulas of
f(x) and m(zx), we have m(x) = f(x+ 3) — 2. We have 3 being added to an input, indicating
a horizontal shift, and 2 being subtracted from an output, indicating a vertical shift. We
leave it to the reader to verify that, in this particular case, the order in which we perform
these transformations is immaterial; we will arrive at the same graph regardless as to which
transformation we apply first.2 We follow the convention ‘inputs first’,> and to that end we
first tackle the horizontal shift. Letting m,(xz) = f(z + 3) denote this intermediate step,
Theorem 1.3 tells us that the graph of y = m,(z) is the graph of f shifted to the left 3 units.
Hence, we subtract 3 from each of the z-coordinates of the points on the graph of f.

2We shall see in the next example that order is generally important when applying more than one transformation
to a graph.
3We could equally have chosen the convention ‘outputs first’.
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Yy Y
(4,2) /(1’2,
24 24
(19 1 (_27 1
14 1
M (V1) ) S —— =300 —
-3 —2 —1 1 2 3 4 g -3 -2 —1 1 2 3 4’z
—1 1
—2 —2]
shift left 3 units
y=f(z) == subtract 3 from each x-coordinate y=mi(z) = f(z+3)=+vz+3

Since m(z) = f(x +3) — 2 and f(x + 3) = m,(z), we have m(x) = m,(x) — 2. We can apply
Theorem 1.2 and obtain the graph of m by subtracting 2 from the y-coordinates of each of
the points on the graph of m,(z). The graph verifies that the domain of m is [—3,00) and
we find the range of m to be [—2, 00).

Y y
(1,2)
2t 2
(—2,1 i
1+ 14+
(=30 , —t—t—t —— (L*Q’: —t
-3 —2 -1 1 2 3 4 g — 1 2 3 4 g
-14
—2f
shift down 2 units (=3,-2)
y=mi(z)=fz+3)=vVr+3 subtract 2 from each y-coordinate y =m(z) =mi(z) —2=+vx +3 —2

Keep in mind that we can check our answer to any of these kinds of problems by showing that any
of the points we’ve moved lie on the graph of our final answer. For example, we can check that

(—3,—2) is on the graph of m by computing m(—3) = \/(-3) +3-2=V0-2= -2V O

We now turn our attention to reflections. We know from Section 1.1 that to reflect a point (x,y)
across the z-axis, we replace y with —y. If (z,y) is on the graph of f, then y = f(x), so replacing y
with —y is the same as replacing f(z) with — f(x). Hence, the graph of y = — f(x) is the graph of f
reflected across the z-axis. Similarly, the graph of y = f(—=z) is the graph of f reflected across the
y-axis. Returning to the language of inputs and outputs, multiplying the output from a function
by —1 reflects its graph across the z-axis, while multiplying the input to a function by —1 reflects
the graph across the y-axis.*

“The expressions —f(z) and f(—x) should look familiar - they are the quantities we used in Section 1.6 to test if
a function was even, odd or neither. The interested reader is invited to explore the role of reflections and symmetry
of functions. What happens if you reflect an even function across the y-axis? What happens if you reflect an odd
function across the y-axis? What about the x-axis?
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Theorem 1.4. Reflections. Suppose f is a function.

e To graph y = —f(x), reflect the graph of y = f(x) across the x-axis by multiplying the
y-coordinates of the points on the graph of f by —1.

e To graph y = f(—=x), reflect the graph of y = f(z) across the y-axis by multiplying the
z-coordinates of the points on the graph of f by —1.

Applying Theorem 1.4 to the graph of y = f(x) given at the beginning of the section, we can graph
y = —f(z) by reflecting the graph of f about the z-axis

y y
(5,5)

reflect across z-axis

y = f(z) multiply each y-coordinate by —1

By reflecting the graph of f across the y-axis, we obtain the graph of y = f(—z).

reflect across y-axis

multiply each z-coordinate by —1

With the addition of reflections, it is now more important than ever to consider the order of
transformations, as the next example illustrates.

Example 1.7.2. Let f(z) = /. Use the graph of f from Example 1.7.1 to graph the following
functions. Also, state their domains and ranges.

1. g(z) =~z 2. j(x)=V3—=x 3. m(z) =3 -z
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Solution.

1. The mere sight of v/—2 usually causes alarm, if not panic. When we discussed domains in
Section 1.4, we clearly banished negatives from the radicands of even roots. However, we
must remember that x is a variable, and as such, the quantity —x isn’t always negative. For
example, if x = —4, —x = 4, thus \/—z = \/—(—4) = 2 is perfectly well-defined. To find the
domain analytically, we set —z > 0 which gives < 0, so that the domain of g is (—o0, 0].
Since g(z) = f(—z), Theorem 1.4 tells us that the graph of g is the reflection of the graph
of f across the y-axis. We accomplish this by multiplying each z-coordinate on the graph
of f by —1, so that the points (0,0), (1,1), and (4,2) move to (0,0), (—1,1), and (—4,2),
respectively. Graphically, we see that the domain of g is (—o0,0] and the range of g is the
same as the range of f, namely [0, 00).

(=4,2)

(-1,1) (0,0)
reflect across y-axis —4 -3 -2 -1 | 1 2 3 4 x
y=f(z) =z multiply each x-coordinate by —1 y=g() = f(—z)=-=z

2. To determine the domain of j(z) = /3 — x, we solve 3 — 2 > 0 and get x < 3, or (—o0, 3].
To determine which transformations we need to apply to the graph of f to obtain the graph
of j, we rewrite j(z) = v—x + 3 = f(—x + 3). Comparing this formula with f(z) = \/z, we
see that not only are we multiplying the input x by —1, which results in a reflection across
the y-axis, but also we are adding 3, which indicates a horizontal shift to the left. Does it
matter in which order we do the transformations? If so, which order is the correct order?
Let’s consider the point (4,2) on the graph of f. We refer to the discussion leading up to
Theorem 1.3. We know f(4) = 2 and wish to find the point on y = j(z) = f(—z + 3) which
corresponds to (4,2). We set —z + 3 = 4 and solve. Our first step is to subtract 3 from both
sides to get —x = 1. Subtracting 3 from the z-coordinate 4 is shifting the point (4,2) to
the left. From —x = 1, we then multiply® both sides by —1 to get = —1. Multiplying the
x-coordinate by —1 corresponds to reflecting the point about the y-axis. Hence, we perform
the horizontal shift first, then follow it with the reflection about the y-axis. Starting with
f(z) = vz, we let j,(z) be the intermediate function which shifts the graph of f 3 units to
the left, j,(z) = f(x + 3).

(=3.0)

shift left 3 units -4 -3 -2 -1 | 1 2 3 4z
AN

y=f(z) =z subtract 3 from each z-coordinate y=ji(z) = fz+3)=+vz+3

50Or divide - it amounts to the same thing.
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To obtain the function j, we reflect the graph of j; about y-axis. Theorem 1.4 tells us we
have j(z) = j;(—z). Putting it all together, we have j(z) = j,(—z) = f(—z+3) = V-2 + 3,
which is what we want.® From the graph, we confirm the domain of j is (—oco, 3] and we get
that the range is [0, 00).

t
4z reflect across y-axis

multiply each z-coordinate by —1 y=j)=ji(—x)=v—-x+3

3. The domain of m works out to be the domain of f, [0,00). Rewriting m(z) = —y/z + 3, we
see m(xz) = —f(z) + 3. Since we are multiplying the output of f by —1 and then adding
3, we once again have two transformations to deal with: a reflection across the z-axis and
a vertical shift. To determine the correct order in which to apply the transformations, we
imagine trying to determine the point on the graph of m which corresponds to (4,2) on the
graph of f. Since in the formula for m(z), the input to f is just x, we substitute to find
m(4) = —f(4) +3 = -2+ 3 = 1. Hence, (4,1) is the corresponding point on the graph of
m. If we closely examine the arithmetic, we see that we first multiply f(4) by —1, which
corresponds to the reflection across the z-axis, and then we add 3, which corresponds to
the vertical shift. If we define an intermediate function m,(x) = —f(z) to take care of the
reflection, we get

Yy Yy
34 3
(4,2)
2 2
(1,1)
14 1
0Oy . R
T 2 5 4 g (0,0) 1 2 3 4 g
—141 —14
—24 ,2__(17_1)
reflect across z-axis (4,-2)
y=f(z) =z multiply each y-coordinate by —1 y =mi(z) = —f(z) = —v/T

To shift the graph of m, up 3 units, we set m(x) = m,(z) + 3. Since m,(z) = —f(x), when
we put it all together, we get m(x) = m,(z) +3 = —f(z) + 3 = —/z + 3. We see from the
graph that the range of m is (—o0, 3].

STf we had done the reflection first, then ji(x) = f(—z). Following this by a shift left would give us j(z) =
jilz+3) = f(—(z+3)) = f(—z — 3) = vV/—z — 3 which isn’t what we want. However, if we did the reflection first
and followed it by a shift to the right 3 units, we would have arrived at the function j(x). We leave it to the reader
to verify the details.
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Y Y
34 (073) 4
¢:2)
24 2
(4,1)
14 1
FR NS I T i,
—14 —14
,2__(17 —-1) shift up 3 units ol
(4,-2) add 3 to each y-coordinate
y=mi(2) = —V& y=m(z) = mi()+3 = —vT+3 u

We now turn our attention to our last class of transformations known as scalings. A thorough
discussion of scalings can get complicated because they are not as straight-forward as the previous
transformations. A quick review of what we’'ve covered so far, namely vertical shifts, horizontal
shifts and reflections, will show you why those transformations are known as rigid transforma-
tions. Simply put, they do not change the shape of the graph, only its position and orientation in
the plane. If, however, we wanted to make a new graph twice as tall as a given graph, or one-third
as wide, we would be changing the shape of the graph. This type of transformation is called non-
rigid for obvious reasons. Not only will it be important for us to differentiate between modifying
inputs versus outputs, we must also pay close attention to the magnitude of the changes we make.
As you will see shortly, the Mathematics turns out to be easier than the associated grammar.

Suppose we wish to graph the function g(z) = 2f(x) where f(z) is the function whose graph is
given at the beginning of the section. From its graph, we can build a table of values for g as before.

! (5.5)
z || (z, f(x)) | f(z) | g(x) =2f(z) | (z,9(z))
ol 1) | 1 2 0,2)
o (23 | 3 (2,6)
o 4l @3 | 3 6 (4,6)
e e 51 6,5 | 5 10 (5,10)

y = f(z)

In general, if (a,b) is on the graph of f, then f(a) = b so that g(a) = 2f(a) = 2b puts (a,2b) on
the graph of g. In other words, to obtain the graph of g, we multiply all of the y-coordinates of
the points on the graph of f by 2. Multiplying all of the y-coordinates of all of the points on the
graph of f by 2 causes what is known as a ‘vertical scaling” by a factor of 2’, and the results are
given on the next page.

"Also called a ‘vertical stretching’, ‘vertical expansion’ or ‘vertical dilation’ by a factor of 2.
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(5,10)

: : : : :
t + + + t
1 2 3 4 5 T

vertical scaling by a factor of 2

y = f(x) multiply each y-coordinate by 2 y=2f(z)

If we wish to graph y = %f@), we multiply the all of the y-coordinates of the points on the graph
of f by % This creates a ‘vertical scaling® by a factor of %’ as seen below.

Y Y
(5,5)
54
44
5
3 (5. 3)
2t (23)
1 (4,%)
1 2
(07 5) 1 1 1 1 1
1 2 3 a4 5 g vertical scaling by a factor of % 1 2 3 4 5 g
y=f(z) multiply each y-coordinate by % y = %f(w)

These results are generalized in the following theorem.

Theorem 1.5. Vertical Scalings. Suppose f is a function and a > 0. To graph y = af(x),
multiply all of the y-coordinates of the points on the graph of f by a. We say the graph of f
has been vertically scaled by a factor of a.

e If a > 1, we say the graph of f has undergone a vertical stretching (expansion, dilation)
by a factor of a.

e If 0 < a < 1, we say the graph of f has undergone a vertical shrinking (compression,
contraction) by a factor of 1.

8 Also called ‘vertical shrinking’, ‘vertical compression’ or ‘vertical contraction’ by a factor of 2.
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A few remarks about Theorem 1.5 are in order. First, a note about the verbiage. To the authors,
the words ‘stretching’, ‘expansion’, and ‘dilation’ all indicate something getting bigger. Hence,
‘stretched by a factor of 2’ makes sense if we are scaling something by multiplying it by 2. Similarly,
we believe words like ‘shrinking’, ‘compression’ and ‘contraction’ all indicate something getting
smaller, so if we scale something by a factor of %, we would say it ‘shrinks by a factor of 2’ - not
‘shrinks by a factor of %’. This is why we have written the descriptions ‘stretching by a factor of
a’ and ‘shrinking by a factor of %’ in the statement of the theorem. Second, in terms of inputs and
outputs, Theorem 1.5 says multiplying the outputs from a function by positive number a causes
the graph to be vertically scaled by a factor of a. It is natural to ask what would happen if we
multiply the inputs of a function by a positive number. This leads us to our last transformation of
the section.

Referring to the graph of f given at the beginning of this section, suppose we want to graph
g(z) = f(2z). In other words, we are looking to see what effect multiplying the inputs to f by 2
has on its graph. If we attempt to build a table directly, we quickly run into the same problem we
had in our discussion leading up to Theorem 1.3, as seen in the table on the left below. We solve
this problem in the same way we solved this problem before. For example, if we want to determine
the point on g which corresponds to the point (2, 3) on the graph of f, we set 2x = 2 so that x = 1.
Substituting = = 1 into g(z), we obtain ¢g(1) = f(2-1) = f(2) = 3, so that (1,3) is on the graph of
g. Continuing in this fashion, we obtain the table on the lower right.

x| (z, f(x) | flx) | g(x) = f(22) (z,9(x) | [z ||22z] g(x)=[f(Qz) |(zg(x)
0] (0,1) 1L | f2-00=f0)=1] (0,1 0] 09(0)=f0)=1] (0,0)
2] (23 3 [ f2-2)=f4)=3] (23) 12 g@)=,2)=3] (1,3)
4] (43) 3 | f(2-4)=f(8) =7 214 192)=f4)=3] (23
50 (5,9) 5 | f(2-5) = f(10) =7 315 19(B)=r6)=5] (3,5

In general, if (a,b) is on the graph of f, then f(a) =b. Hence g (%) =f (2 . %) = f(a) = b so that
(%, b) is on the graph of g. In other words, to graph g we divide the z-coordinates of the points on
the graph of f by 2. This results in a horizontal scaling” by a factor of %

(5,5)

oy oy
1 2 3 4 5 g horizontal scaling by a factor of % 1 2 3 4 5 g

y = f(z) multiply each z-coordinate by % y=g(z) = f(2z)

9Also called ‘horizontal shrinking’, ‘horizontal compression’ or ‘horizontal contraction’ by a factor of 2.
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If, on the other hand, we wish to graph y = f (%x), we end up multiplying the x-coordinates

of the points on the graph of f by 2 which results in a horizontal scaling!? by a factor of 2, as
demonstrated below.

(5,5) (10,5)

horizontal scaling by a factor of 2 1 2 3 45 6 7 8 9 10«

multiply each z-coordinate by 2 y=g(x)=f (%x)

We have the following theorem.

Theorem 1.6. Horizontal Scalings. Suppose f is a function and b > 0. To graph y = f(bx),
divide all of the z-coordinates of the points on the graph of f by b. We say the graph of f has
been horizontally scaled by a factor of %.

e If 0 < b < 1, we say the graph of f has undergone a horizontal stretching (expansion,
dilation) by a factor of 3.

e If b > 1, we say the graph of f has undergone a horizontal shrinking (compression, con-
traction) by a factor of b.

Theorem 1.6 tells us that if we multiply the input to a function by b, the resulting graph is scaled
horizontally by a factor of % since the z-values are divided by b to produce corresponding points on
the graph of y = f(bx). The next example explores how vertical and horizontal scalings sometimes
interact with each other and with the other transformations introduced in this section.

Example 1.7.3. Let f(z) = /z. Use the graph of f from Example 1.7.1 to graph the following
functions. Also, state their domains and ranges.

1. g(z) = 37 2. j(x) = V9 3. m(x) =1— /52

Solution.

1. First we note that the domain of g is [0, 00) for the usual reason. Next, we have g(z) = 3f(x)
so by Theorem 1.5, we obtain the graph of g by multiplying all of the y-coordinates of the
points on the graph of f by 3. The result is a vertical scaling of the graph of f by a factor of
3. We find the range of ¢ is also [0, c0).

10 Also called ‘horizontal stretching’, ‘horizontal expansion’ or ‘horizontal dilation’ by a factor of 2.
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(4,2)
(1,1

——t—t
1 2 3 4 g

vertical scale by a factor of 3

y=f(z) =z multiply each y-coordinate by 3

2. To determine the domain of j, we solve 92 > 0 to find x > 0. Our domain is once again

[0,00). We recognize j(x) = f(9x) and by Theorem 1.6, we obtain the graph of j by dividing
the x-coordinates of the points on the graph of f by 9. From the graph, we see the range of
Jj is also [0, 00).

(4,2)

(0,0) (0,0)

z horizontal scale by a factor of é

y=f(z) =z multiply each z-coordinate by % y=j(z) = f(9z) = V9
. Solving % > 0 gives x > —3, so the domain of m is [—3,00). To take advantage of what
we know of transformations, we rewrite m(z) = —\/3z+ 3 +1, or m(z) = —f (32 + 3) + 1.

Focusing on the inputs first, we note that the input to f in the formula for m(z) is %x + %
Multiplying the x by % corresponds to a horizontal stretching by a factor of 2, and adding
the % corresponds to a shift to the left by % As before, we resolve which to perform first
by thinking about how we would find the point on m corresponding to a point on f, in this
case, (4,2). To use f(4) = 2, we solve 2z + 3 = 4. Our first step is to subtract the 3
(the horizontal shift) to obtain %x = % Next, we multiply by 2 (the horizontal stretching)

and obtain z = 5. We define two intermediate functions to handle first the shift, then the
stretching. In accordance with Theorem 1.3, m,(z) = f (z+3) = \/z + 2 will shift the
graph of f to the left % units.
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y
y
3:2)

(4,2) 2l
j“ (1’1) (7%71) -/
00 ¢ ——t——t A /

; —2 1
-3 -2 -1 1 2 3 4 5
-1 * (_%70)
—24 —24
shift left % units
Yy = f(z) = \/E subtract % from each z-coordinate Yy =ma (Z) = f (:17 + %) = T+ %
Next, my(z) = m, (%a:) = \/%x + % will, according to Theorem 1.6, horizontally stretch the
graph of m, by a factor of 2.
y Yy
(3.2) (5,2)

1 T Ly, —"
'(?:)/'./“':::' ‘/::/“:::::

¢

-3 -2 —1 1 2 3 4 5 g —2 -1 1 2 3 4 5 g
(_%70) T (—3,0) -14

—24 —24

horizontal scale by a factor of 2

Yy =mi (Z‘) = T+ % multiply each z-coordinate by 2 Yy = ma (.I) =mi (%l?) = %.t +

We now examine what’s happening to the outputs. From m(x) = —f (%x + %) + 1, we see
that the output from f is being multiplied by —1 (a reflection about the z-axis) and then a 1
is added (a vertical shift up 1). As before, we can determine the correct order by looking at
how the point (4,2) is moved. We already know that to make use of the equation f(4) = 2,
we need to substitute 2 = 5. We get m(5) = —f (3(5) +3) +1=—f(4)+1=-2+1=—1.
We see that f(4) (the output from f) is first multiplied by —1 then the 1 is added meaning we
first reflect the graph about the z-axis then shift up 1. Theorem 1.4 tells us ms(z) = —my(x)
will handle the reflection.

y,/ (=3,0) 1]

reflect across z-axis

Yy = mz(x) = %CI) + % multiply each y-coordinate by —1 Yy = m3(1‘) = —my2 (CC) = — %Z‘ + %
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Finally, to handle the vertical shift, Theorem 1.2 gives m(x) = ms(z) + 1, and we see that
the range of m is (—oo, 1].

24 (-3,1) 24

(=3,0) 14 1

(10
Kaégagx g IR I
(LD~ | 61

—21 —24
(5,—2

shift up 1 unit

Yy = md(z) = —mz(x) = —\/%x —+ % add 1 to each y-coordinate Yy = m(x) = mg(:c) +1=—4/ %LL‘ —+ % +1 D

Some comments about Example 1.7.3 are in order. First, recalling the properties of radicals from
Intermediate Algebra, we know that the functions g and j are the same, since j and g have the
same domains and j(z) = v92 = V9v/z = 3/ = g(x). (We invite the reader to verify that all of
the points we plotted on the graph of g lie on the graph of j and vice-versa.) Hence, for f(z) = /z,
a vertical stretch by a factor of 3 and a horizontal shrinking by a factor of 9 result in the same
transformation. While this kind of phenomenon is not universal, it happens commonly enough with
some of the families of functions studied in College Algebra that it is worthy of note. Secondly, to
graph the function m, we applied a series of four transformations. While it would have been easier
on the authors to simply inform the reader of which steps to take, we have strived to explain why
the order in which the transformations were applied made sense. We generalize the procedure in
the theorem below.

Theorem 1.7. Transformations. Suppose f is a function. If A # 0 and B # 0, then to graph
g(x) =Af(Bx+ H)+ K

1. Subtract H from each of the z-coordinates of the points on the graph of f. This results in
a horizontal shift to the left if H > 0 or right if H < 0.

2. Divide the z-coordinates of the points on the graph obtained in Step 1 by B. This results
in a horizontal scaling, but may also include a reflection about the y-axis if B < 0.

3. Multiply the y-coordinates of the points on the graph obtained in Step 2 by A. This results
in a vertical scaling, but may also include a reflection about the z-axis if A < 0.

4. Add K to each of the y-coordinates of the points on the graph obtained in Step 3. This
results in a vertical shift up if K > 0 or down if K < 0.

Theorem 1.7 can be established by generalizing the techniques developed in this section. Suppose
(a,b) is on the graph of f. Then f(a) = b, and to make good use of this fact, we set Bx + H = a
and solve. We first subtract the H (causing the horizontal shift) and then divide by B. If B
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is a positive number, this induces only a horizontal scaling by a factor of %. If B < 0, then
we have a factor of —1 in play, and dividing by it induces a reflection about the y-axis. So we
have z = 2= as the input to ¢ which corresponds to the input = a to f. We now evaluate
g(“FH) = Af (B-“FL + H) + K = Af(a) + K = Ab+ K. We notice that the output from f is
first multiplied by A. As with the constant B, if A > 0, this induces only a vertical scaling. If
A < 0, then the —1 induces a reflection across the z-axis. Finally, we add K to the result, which is
our vertical shift. A less precise, but more intuitive way to paraphrase Theorem 1.7 is to think of
the quantity Bx 4+ H is the ‘inside’ of the function f. What’s happening inside f affects the inputs
or z-coordinates of the points on the graph of f. To find the z-coordinates of the corresponding
points on g, we undo what has been done to x in the same way we would solve an equation. What'’s
happening to the output can be thought of as things happening ‘outside’ the function, f. Things
happening outside affect the outputs or y-coordinates of the points on the graph of f. Here, we
follow the usual order of operations agreement: we first multiply by A then add K to find the
corresponding y-coordinates on the graph of g.

Example 1.7.4. Below is the complete graph of y = f(x). Use it to graph g(z) = w.

Solution. We use Theorem 1.7 to track the five ‘key points’ (—4,—3), (—2,0), (0,3), (2,0) and
(4,—3) indicated on the graph of f to their new locations. We first rewrite g(z) in the form
presented in Theorem 1.7, g(z) = —32 f(—22+ 1) + 2. We set —2z + 1 equal to the z-coordinates of
the key points and solve. For example, solving —2x + 1 = —4, we first subtract 1 to get —22 = —5
then divide by —2 to get x = % Subtracting the 1 is a horizontal shift to the left 1 unit. Dividing by
—2 can be thought of as a two step process: dividing by 2 which compresses the graph horizontally
by a factor of 2 followed by dividing (multiplying) by —1 which causes a reflection across the y-axis.
We summarize the results in the table on the next page.
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(a, f(a)) a| —2x+4+1=a x
(—4,-3) || 4| 2z+1=-4 =3
(=2,0) || -2 | -2z+1=-2| z=3
0,3)|| 0] —2x+1=0 =1
2,0)|| 2| -2z+1=2|z=—3
(4,-3) | 4| —22+1=4|2=-3

Next, we take each of the z values and substitute them into g(z) = —3 f(—2z + 1) + 2 to get the
corresponding y-values. Substituting « = %, and using the fact that f(—4) = —3, we get
5 3 5 3 3 9 13
= 2f(—2(2)+1)+2=-Sf(-4)+2=-2(-3)+2="14+2="
0(3)=-3r(-2(3) +1)+2=-drcor2=-Jemr2-F42-]

We see that the output from f is first multiplied by —%. Thinking of this as a two step process,
multiplying by % then by —1, we have a vertical stretching by a factor of % followed by a reflection
across the z-axis. Adding 2 results in a vertical shift up 2 units. Continuing in this manner, we
get the table below.

T | g() | (z,9())
s 31 G%)
s 2] (B2
il -3 (5:-3)
-5 2| (=32
_% % (_%7%)

To graph g, we plot each of the points in the table above and connect them in the same order and
fashion as the points to which they correspond. Plotting f and g side-by-side gives

y 49, G
6+ 64
5 5+
41
34
(-3:2) (3.2)
(2,0)
3 4 —21—:'),—'2—'1\ 1 2 3 472
—2]
-3 l’_é
P 3.-9)
—4 4
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The reader is strongly encouraged!! to graph the series of functions which shows the gradual trans-
formation of the graph of f into the graph of g. We have outlined the sequence of transformations
in the above exposition; all that remains is to plot the five intermediate stages. O

Our last example turns the tables and asks for the formula of a function given a desired sequence
of transformations. If nothing else, it is a good review of function notation.

Example 1.7.5. Let f(z) = 22. Find and simplify the formula of the function g(z) whose graph
is the result of f undergoing the following sequence of transformations. Check your answer using
a graphing calculator.

1. Vertical shift up 2 units
2. Reflection across the x-axis
3. Horizontal shift right 1 unit

4. Horizontal stretching by a factor of 2

Solution. We build up to a formula for g(z) using intermediate functions as we’ve seen in previous
examples. We let g, take care of our first step. Theorem 1.2 tells us g,(z) = f(z)+2 = 22 +2. Next,
we reflect the graph of g, about the z-axis using Theorem 1.4: g,(z) = —g,(z) = — (2* +2) =
—x? — 2. We shift the graph to the right 1 unit, according to Theorem 1.3, by setting g;(z) =
go(r —1) = —(z — 1) = 2 = —22 + 22 — 3. Finally, we induce a horizontal stretch by a factor of 2
using Theorem 1.6 to get g(z) = g5 (32) = — (%x)Q +2 (32) — 3 which yields g(z) = —32? + 2 — 3.
We use the calculator to graph the stages below to confirm our result.

shift up 2 units

add 2 to each y-coordinate

reflect across z-axis /\l\l

multiply each y-coordinate by —1

y:gl(az):x2+2 yZQQ(l“):—gl(I):—a:Q—Z

1¥You really should do this once in your life.
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/‘-\\ shift right 1 unit

add 1 to each z-coordinate

y=gy(z)=—a?—2 y=gs(x) =go(x —1) = —2% + 22 — 3

f————__
JII.J(-F-\\I horizontal stretch by a factor of 2 ‘f_/_;—"'_'-'_'-

multiply each z-coordinate by 2

Y= ga(e) = —2* + 20 -3 y=9(x) =g (32) = —32° + 2 -3

We have kept the viewing window the same in all of the graphs above. This had the undesirable
consequence of making the last graph look ‘incomplete’ in that we cannot see the original shape

of f(z) = 2% Altering the viewing window results in a more complete graph of the transformed
function as seen below.

y =g(z)

This example brings our first chapter to a close. In the chapters which lie ahead, be on the lookout
for the concepts developed here to resurface as we study different families of functions.
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1.7.1 EXERCISES

Suppose (2, —3) is on the graph of y = f(x). In Exercises 1 - 18, use Theorem 1.7 to find a point
on the graph of the given transformed function.

1. y=f(z)+3 2. y=f(z+3) 3.y=flz)—1

4 y=flz-1) 5. y=3f(v) 6. y=f(32)

7. y=—f(x) 8. y=f(-=) 9. y=f(z-3)+1
10. y =2f(x+1) 11. y =10 — f(x) 12. y = 3f(2z) — 1
13. y=3f(4—2) 4. y=5f2x+1)+3 15. y=2f(1—z) -1
16.y:f<7_42x> 17.y_f(39”2)_1 18.y—4_f(3$_1)

The complete graph of y = f(x) is given below. In Exercises 19 - 27, use it and Theorem 1.7 to
graph the given transformed function.

— oW
\ ) . !
t t t t

(=2,2) (2,2)

T

—4-3-2-1 [(0,0) 2 3 4

The graph for Ex. 19 - 27

19. y = f(z) +1 2. y = f(z) — 2 21. y = f(z+1)
22. y=f(z—2) 23. y=2f(x) 24. y = f(2x)
25. y=2— f(x) 26. y=f(2—x) 27. y=2—f(2—x)

28. Some of the answers to Exercises 19 - 27 above should be the same. Which ones match up?
What properties of the graph of y = f(x) contribute to the duplication?
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The complete graph of y = f(z) is given below. In Exercises 29 - 37, use it and Theorem 1.7 to
graph the given transformed function.

The graph for Ex. 29 - 37

29. y=f(z)—1 30. y=f(z+1) 31 y =3 f(x)
32. y = f(22) 33. y=—f(x) 4. y= f(—=)
35. y=flz+1)—1 36. y=1— f(x) 3. y=1f(z+1)—1

The complete graph of y = f(x) is given below. In Exercises 38 - 49, use it and Theorem 1.7 to
graph the given transformed function.

y
(0,3)

5 5 T2 5 .
(_3a0) -1+ (3a0)

The graph for Ex. 38 - 49

38. g(x) = f(xz)+3 39. h(z) = f(z) — % 40. j(z) = f (z—3)
41. a(z) = f(z +4) 42. b(x) = f(x+1)—1 43. c(z) = 2 f(=)
44. d(z) = —2f () 45. k(z) = f (3z) 46. m(z) = —1f(3z)

47. n(z) =4f(x —3) -6 48. p(z) =4+ f(1 —22) 49. q(z) = —-1f (24) -3
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The complete graph of y = S(z) is given below.

Yy
(1,3)
34
21
14
(_%70) (070)
- - Lo "
31
(_17_3)

The graph of y = S(x)

The purpose of Exercises 50 - 53 is to graph y = %S (—x+ 1)+ 1 by graphing each transformation,
one step at a time.

50. y=S,(z) =S(x+1) 51. y = Sy(z) = S, (—z) = S(—x + 1)
52. y = Sy(z) = $Su(z) = 1S(—x + 1) 53. y=Si(2) = Ss(z) +1=3S(—z+1)+1

Let f(z) = v/x. Find a formula for a function g whose graph is obtained from f from the given
sequence of transformations.

54. (1) shift right 2 units; (2) shift down 3 units

55. (1) shift down 3 units; (2) shift right 2 units

56. (1) reflect across the z-axis; (2) shift up 1 unit

57. (1) shift up 1 unit; (2) reflect across the z-axis

58. (1) shift left 1 unit; (2) reflect across the y-axis; (3) shift up 2 units

59. (1) reflect across the y-axis; (2) shift left 1 unit; (3) shift up 2 units

60. (1) shift left 3 units; (2) vertical stretch by a factor of 2; (3) shift down 4 units
61. (1) shift left 3 units; (2) shift down 4 units; (3) vertical stretch by a factor of 2
62. (1) shift right 3 units; (2) horizontal shrink by a factor of 2; (3) shift up 1 unit
63. (1) horizontal shrink by a factor of 2; (2) shift right 3 units; (3) shift up 1 unit
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64.

65.

66.

67.
68.
69.
70.
71.

72.

The graph of y = f(z) = /x is given below on the left and the graph of y = g(x) is given
on the right. Find a formula for g based on transformations of the graph of f. Check your
answer by confirming that the points shown on the graph of g satisfy the equation y = g(z).

HoN W R O
T
—

—t———1+——+ 1 1
—-1+10-9-8-7—-6—-5-4—-3-2—1 1 2 3 45 6 78T —1+10-9-8—-7—-6—-5—-4—-83—-2—-1
—24 4

]
o
o
e
ot
o
-
o0
8

y= vz

For many common functions, the properties of Algebra make a horizontal scaling the same
as a vertical scaling by (possibly) a different factor. For example, we stated earlier that
V9z = 3y/x. With the help of your classmates, find the equivalent vertical scaling produced

by the horizontal scalings y = (22)3,y = [5z|,y = V/27z and y = (%x)2 What about
y=(-22)% y=|-5z|,y=¢/—27r and y = (—%az)2?

We mentioned earlier in the section that, in general, the order in which transformations are
applied matters, yet in our first example with two transformations the order did not matter.
(You could perform the shift to the left followed by the shift down or you could shift down
and then left to achieve the same result.) With the help of your classmates, determine the
situations in which order does matter and those in which it does not.

What happens if you reflect an even function across the y-axis?
What happens if you reflect an odd function across the y-axis?
What happens if you reflect an even function across the x-axis?
What happens if you reflect an odd function across the z-axis?
How would you describe symmetry about the origin in terms of reflections?

As we saw in Example 1.7.5, the viewing window on the graphing calculator affects how we see
the transformations done to a graph. Using two different calculators, find viewing windows
so that f(x) = 22 on the one calculator looks like g(x) = 322 on the other.



144 RELATIONS AND FUNCTIONS

1.7.2 ANSWERS

1. (2,0) 2. (-1,-3) 3. (2,-4)
4. (3,-3) 5. (2,-9) 6. (2,-3)
7. (2,3) 8. (—2,-3) 9. (5,-2)
10. (1,-6) 11. (2,13) 12. y = (1,-10)
13. 14. (1,-12) 15. (=1,-7)
16. 17. (3,-2) 18. (1,1)
19. 20. y=f(z)—2
Y Y
L 2
\ 14 /
(2,3) —t t t —t
=4 (22,0) 11_%,@ s
(0,1) )
—4 -3 -2 -1 1 2 3 47 0,-2)

21. y=f(z+1)

(0,2) (4,2)

_5-4-3 (-Lo| 1 2 3 —2 1

23. y=2f(x) 24. y = f(2x)

Y Y

4 44
(-2,4) (2,4)
3 34
2+ 2
(_172) (1>2)
45 51 |00 2 5 4 ¢ 45 51 0,0 2 3
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25. y=2— f(x)
y

24(0,2)
iié,/(_z:o) (2, 0')&::1 x

27, y=2— f(2—x) 29. y=f(z)—1
y y
44 44
31
(2,2)
ol
141
521 10,0) 2 :(4,0')&4% v v
(47_3)
41
31 y=5f(x)
y

RN RN SRR N
(—3,0) T (1,0 (-2,0) ~1T (2,0 @1
—21 9l ’
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32. y = f(22) 33. y=—f(z)

34. y= f(—z)
Y Y

il T T
-3
41
36. y=1— f(z) 37
Y Y
4+ (4,3) 44
3+ 34
2+ 241
1+ (-1,1) a 14+
5 4 ° “h 5 75 1 T 5 5 4"
—1 (1,-1)
(_37_1)
921
(3772)
31
41
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38. g(z) = f(x) +y3
(0,6)

(—3,3) 2+ (3,3)

41. a(z) = f(x +4)

Yy
(—=4,3)
31
24
14
I ZO i S .
(=7,0) (=1,0)+
42. b(z) = flz+1)—1 43. c(z) = 2 f(x)
Y Y
v 1 2_-(0’%)
_:{_é_é_i 1%2 S I St
-1 (~3,0) —11 (3,0)
(—4,-1) (2,-1)
45. k(z) = f (3z)
(%,3)

| | | |
t t t t
-4 -3 -2 -1

(-£)

(0,-6)
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46. m(z) = —1f(3z) 47. n(x) =4f(x —3) — 6
Y ! (3,6)
64
(=1,0) (1,0) ;
\4’./‘ x .
S0 ;
21

6 z
—14
—24
—34
—4 4
—54
—6¢
(0, —6) (6, —6)
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50. y = S,(z) = S(z+1)

54. g(x) =2 —2-3 55. g(z) =+vxr —2-3

56. g(z) = —y/z +1 57. g(z) = —(Va +1) = —yz — 1

58. g(z) =~z +1+2 5. g(z)=/—(x+1)+2=+v—2—1+2
60. g(z) =2Vxr +3 —4 61. g(z) =2 (Vz+3-4) =2z +3-38
62. g(x) = v2r —3+1 63. g(z) =+/2(x-3)+1=v22—-6+1

64. g(z) = —2v/x+3—1org(zx) =2v/—2—-3—-1
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CHAPTER 2

LINEAR AND QUADRATIC FUNCTIONS

2.1 LINEAR FUNCTIONS

We now begin the study of families of functions. Our first family, linear functions, are old friends as
we shall soon see. Recall from Geometry that two distinct points in the plane determine a unique
line containing those points, as indicated below.

P(Cﬁmyo)

Q(zhyl)

To give a sense of the ‘steepness’ of the line, we recall that we can compute the slope of the line
using the formula below.

Equation 2.1. The slope m of the line containing the points P (z,,y,) and Q (z,,y,) is:

Y1 — Yo
1.1_:60’

m =

provided x, # x,.

A couple of notes about Equation 2.1 are in order. First, don’t ask why we use the letter ‘m’ to
represent slope. There are many explanations out there, but apparently no one really knows for
sure.! Secondly, the stipulation z, # x, ensures that we aren’t trying to divide by zero. The reader
is invited to pause to think about what is happening geometrically; the anxious reader can skip
along to the next example.

Example 2.1.1. Find the slope of the line containing the following pairs of points, if it exists.
Plot each pair of points and the line containing them.

1See www.mathforum.org or www.mathworld.wolfram.com for discussions on this topic.



http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html
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1. P(0,0), Q(2,4) 2. P(—1,2), Q(3,4)
3. P(=2,3), Q(2,-3) 4. P(-3,2), Q(4,2)
5. P(2,3), Q(2,—1) 6. P(2,3), Q(2.1,—1)

Solution. In each of these examples, we apply the slope formula, Equation 2.1.

Y

Yy
41
P o3
24
14
_—3-3 -6 3
3 m—2_(_2)—7 9 -3 —2 1 1 2 3 ¢
—14
2l
-3 Q
—4l
Yy
3_-
4 2-—-2 0 0 R
m _ Y _
4— (_3) 7 " 1 N
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Y
31 P
2
14
—-1- —4
5. m = 5 = —, which is undefined =
2—-2 0 ! z
—14 Q
—24
3
y
34 $p
2
14
—-1-3 4
6 = = — = —4 t
MTo1-2 7 01 0 NG
1 Q
—2
—34

O]

A few comments about Example 2.1.1 are in order. First, for reasons which will be made clear
soon, if the slope is positive then the resulting line is said to be increasing. If it is negative, we
say the line is decreasing. A slope of 0 results in a horizontal line which we say is constant, and
an undefined slope results in a vertical line.? Second, the larger the slope is in absolute value, the
steeper the line. You may recall from Intermediate Algebra that slope can be described as the
ratio ‘ﬁl—sg’. For example, in the second part of Example 2.1.1, we found the slope to be % We can
interpret this as a rise of 1 unit upward for every 2 units to the right we travel along the line, as
shown below.

2Some authors use the unfortunate moniker ‘no slope’ when a slope is undefined. It’s easy to confuse the notions
of ‘no slope’ with ‘slope of 0’. For this reason, we will describe slopes of vertical lines as ‘undefined’.
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Using more formal notation, given points (z,,y,) and (1,4, ), we use the Greek letter delta ‘A’ to
write Ay =y, — yo and Ax = x,; — ,. In most scientific circles, the symbol A means ‘change in’.

Hence, we may write
_ Ay
m=
which describes the slope as the rate of change of y with respect to x. Rates of change abound
in the ‘real world’, as the next example illustrates.

Example 2.1.2. Suppose that two separate temperature readings were taken at the ranger station
on the top of Mt. Sasquatch: at 6 AM the temperature was 24°F and at 10 AM it was 32°F.

1. Find the slope of the line containing the points (6,24) and (10, 32).
2. Interpret your answer to the first part in terms of temperature and time.

3. Predict the temperature at noon.

Solution.

32-24 _ 8 _ 9

1. For the slope, we have m = 10=6

N

2. Since the values in the numerator correspond to the temperatures in °F, and the values in

2°F
the denominator correspond to time in hours, we can interpret the slope as 2 = 1= Thom’
our
or 2°F per hour. Since the slope is positive, we know this corresponds to an increasing line.

Hence, the temperature is increasing at a rate of 2°F per hour.

3. Noon is two hours after 10 AM. Assuming a temperature increase of 2°F per hour, in two
hours the temperature should rise 4°F. Since the temperature at 10 AM is 32°F, we would
expect the temperature at noon to be 32 4+ 4 = 36°F. ]

Now it may well happen that in the previous scenario, at noon the temperature is only 33°F.
This doesn’t mean our calculations are incorrect, rather, it means that the temperature change
throughout the day isn’t a constant 2°F per hour. As discussed in Section 1.4.1, mathematical
models are just that: models. The predictions we get out of the models may be mathematically
accurate, but may not resemble what happens in the real world.

In Section 1.2, we discussed the equations of vertical and horizontal lines. Using the concept of
slope, we can develop equations for the other varieties of lines. Suppose a line has a slope of m and
contains the point (z,,¥,). Suppose (x,y) is another point on the line, as indicated below.
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Equation 2.1 yields

Y=Y
m =
x_xo
m(z—x) = Y— Y%
Yy—Y% = m(x_$0)

We have just derived the point-slope form of a line.?

Equation 2.2. The point-slope form of the line with slope m containing the point (x,,y,) is
the equation y — yo = m (z — x).

Example 2.1.3. Write the equation of the line containing the points (—1,3) and (2, 1).

Solution. In order to use Equation 2.2 we need to find the slope of the line in question so we

use Equation 2.1 to get m = % = 2_1(__31) = —%. We are spoiled for choice for a point (z, o).

We'll use (—1,3) and leave it to the reader to check that using (2, 1) results in the same equation.
Substituting into the point-slope form of the line, we get

Y—Y = m(ZE_xo)

9
Y3 = (- (-1)

9

y-3 = —(@+1)

2 9

_3 = _Z,_=

y 37 3

= —gx—i-z

y 3" T3

We can check our answer by showing that both (—1,3) and (2, 1) are on the graph of y = —%x +
algebraically, as we did in Section 1.2.1.

[eoi~

In simplifying the equation of the line in the previous example, we produced another form of a
line, the slope-intercept form. This is the familiar y = mx + b form you have probably seen in
Intermediate Algebra. The ‘intercept’ in ‘slope-intercept’ comes from the fact that if we set x = 0,
we get y = b. In other words, the y-intercept of the line y = maz + b is (0, b).

Equation 2.3. The slope-intercept form of the line with slope m and y-intercept (0,b) is the
equation y = mx + b.

Note that if we have slope m = 0, we get the equation y = b which matches our formula for a
horizontal line given in Section 1.2. The formula given in Equation 2.3 can be used to describe all
lines except vertical lines. All lines except vertical lines are functions (Why is this?) so we have
finally reached a good point to introduce linear functions.

3We can also understand this equation in terms of applying transformations to the function I () = x. See the
Exercises.
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Definition 2.1. A linear function is a function of the form
f(@) = ma +b,

where m and b are real numbers with m # 0. The domain of a linear function is (—oo, c0).

For the case m = 0, we get f(x) = b. These are given their own classification.

Definition 2.2. A constant function is a function of the form

where b is real number. The domain of a constant function is (—oo, 00).

Recall that to graph a function, f, we graph the equation y = f(z). Hence, the graph of a
linear function is a line with slope m and y-intercept (0,b); the graph of a constant function is a
horizontal line (a line with slope m = 0) and a y-intercept of (0, ). Now think back to Section 1.6.1,
specifically Definition 1.10 concerning increasing, decreasing and constant functions. A line with
positive slope was called an increasing line because a linear function with m > 0 is an increasing
function. Similarly, a line with a negative slope was called a decreasing line because a linear function
with m < 0 is a decreasing function. And horizontal lines were called constant because, well, we
hope you’ve already made the connection.

Example 2.1.4. Graph the following functions. Identify the slope and y-intercept.

1 f(z) =3 3 fa)="""

24

2. flz)=3z—1 4. f($)=i_2
Solution.

1. To graph f(z) = 3, we graph y = 3. This is a horizontal line (m = 0) through (0, 3).

2. The graph of f(x) = 3z — 1 is the graph of the line y = 3z — 1. Comparison of this equation
with Equation 2.3 yields m = 3 and b = —1. Hence, our slope is 3 and our y-intercept is
(0, —1). To get another point on the line, we can plot (1, f(1)) = (1,2).
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f(z) =3 f(z)=3x—1

3. At first glance, the function f(z) = 222 does not fit the form in Definition 2.1 but after some
rearranging we get f(x) = % = %— %TI = —%x—k %. We identify m = —% and b = %. Hence,
our graph is a line with a slope of —% and a y-intercept of (0 3). Plotting an additional

14
point, we can choose (1, f(1)) to get (1, %).

4. If we simplify the expression for f, we get

$2— T
flz) = x_;=%2) =z+2.

If we were to state f(x) = x + 2, we would be committing a sin of omission. Remember, to
find the domain of a function, we do so before we simplify! In this case, f has big problems
when x = 2, and as such, the domain of f is (—00,2) U (2,00). To indicate this, we write
f(x) =x+2, 2 # 2. So, except at x = 2, we graph the line y = x + 2. The slope m =1
and the y-intercept is (0,2). A second point on the graph is (1, f(1)) = (1,3). Since our
function f is not defined at x = 2, we put an open circle at the point that would be on the
line y = x + 2 when x = 2, namely (2,4).




158 LINEAR AND QUADRATIC FUNCTIONS

O]

The last two functions in the previous example showcase some of the difficulty in defining a linear
function using the phrase ‘of the form’ as in Definition 2.1, since some algebraic manipulations may
be needed to rewrite a given function to match ‘the form’. Keep in mind that the domains of linear
and constant functions are all real numbers (—o0, ), so while f(z) = 3;2:24 simplified to a formula
f(x) =2z + 2, fis not considered a linear function since its domain excludes x = 2. However, we
would consider

252 4 2
@) =257

to be a constant function since its domain is all real numbers (Can you tell us why?) and

2 2 2
o= = i -

The following example uses linear functions to model some basic economic relationships.

Example 2.1.5. The cost C, in dollars, to produce x PortaBoy* game systems for a local retailer
is given by C(z) = 80z + 150 for = > 0.

1. Find and interpret C(10).

2. How many PortaBoys can be produced for $15,0007

w

. Explain the significance of the restriction on the domain, > 0.
4. Find and interpret C(0).

5. Find and interpret the slope of the graph of y = C(x).

Solution.

1. To find C(10), we replace every occurrence of x with 10 in the formula for C(z) to get
C(10) = 80(10) + 150 = 950. Since x represents the number of PortaBoys produced, and
C'(x) represents the cost, in dollars, C(10) = 950 means it costs $950 to produce 10 PortaBoys
for the local retailer.

2. To find how many PortaBoys can be produced for $15,000, we solve C'(x) = 15000, or 80z +
150 = 15000. Solving, we get = = % = 185.625. Since we can only produce a whole

number amount of PortaBoys, we can produce 185 PortaBoys for $15,000.

3. The restriction = > 0 is the applied domain, as discussed in Section 1.4.1. In this context,
x represents the number of PortaBoys produced. It makes no sense to produce a negative
quantity of game systems.5

4The similarity of this name to PortaJohn is deliberate.
® Actually, it makes no sense to produce a fractional part of a game system, either, as we saw in the previous part
of this example. This absurdity, however, seems quite forgivable in some textbooks but not to us.
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4.

We find C'(0) = 80(0) + 150 = 150. This means it costs $150 to produce 0 PortaBoys. As
mentioned on page 82, this is the fixed, or start-up cost of this venture.

. If we were to graph y = C(x), we would be graphing the portion of the line y = 80x + 150

for x > 0. We recognize the slope, m = 80. Like any slope, we can interpret this as a rate of
change. Here, C'(x) is the cost in dollars, while x measures the number of PortaBoys so

Ay AC 80 $80

M= Ae = Az 0T T T TPortaBoy’

In other words, the cost is increasing at a rate of $80 per PortaBoy produced. This is often
called the variable cost for this venture. O

The next example asks us to find a linear function to model a related economic problem.

Example 2.1.6. The local retailer in Example 2.1.5 has determined that the number x of PortaBoy
game systems sold in a week is related to the price p in dollars of each system. When the price was
$220, 20 game systems were sold in a week. When the systems went on sale the following week, 40
systems were sold at $190 a piece.

1.

ook

Find a linear function which fits this data. Use the weekly sales x as the independent variable
and the price p as the dependent variable.

Find a suitable applied domain.
Interpret the slope.
If the retailer wants to sell 150 PortaBoys next week, what should the price be?

What would the weekly sales be if the price were set at $150 per system?

Solution.

1.

We recall from Section 1.4 the meaning of ‘independent’ and ‘dependent’ variable. Since x is
to be the independent variable, and p the dependent variable, we treat x as the input variable
and p as the output variable. Hence, we are looking for a function of the form p(z) = max +b.
To determine m and b, we use the fact that 20 PortaBoys were sold during the week when
the price was 220 dollars and 40 units were sold when the price was 190 dollars. Using
function notation, these two facts can be translated as p(20) = 220 and p(40) = 190. Since
m represents the rate of change of p with respect to x, we have

Ap 190-220 30
Az 40-20 20
We now have determined p(x) = —1.52 4 b. To determine b, we can use our given data again.
Using p(20) = 220, we substitute z = 20 into p(z) = 1.5z + b and set the result equal to 220:
—1.5(20) + b = 220. Solving, we get b = 250. Hence, we get p(z) = —1.5z + 250. We can
check our formula by computing p(20) and p(40) to see if we get 220 and 190, respectively.
You may recall from page 82 that the function p(x) is called the price-demand (or simply
demand) function for this venture.

= —1.5.

m =



160 LINEAR AND QUADRATIC FUNCTIONS

2. To determine the applied domain, we look at the physical constraints of the problem. Cer-
tainly, we can’t sell a negative number of PortaBoys, so x > 0. However, we also note that
the slope of this linear function is negative, and as such, the price is decreasing as more units
are sold. Thus another constraint on the price is p(z) > 0. Solving —1.5x 4+ 250 > 0 results

50 —
in —1.5z > —250 or z < — = 166.6. Since z represents the number of PortaBoys sold in a

week, we round down to 166. As a result, a reasonable applied domain for p is [0, 166].

3. The slope m = —1.5, once again, represents the rate of change of the price of a system with
respect to weekly sales of PortaBoys. Since the slope is negative, we have that the price
is decreasing at a rate of $1.50 per PortaBoy sold. (Said differently, you can sell one more
PortaBoy for every $1.50 drop in price.)

4. To determine the price which will move 150 PortaBoys, we find p(150) = —1.5(150)+250 = 25.
That is, the price would have to be $25.

5. If the price of a PortaBoy were set at $150, we have p(x) = 150, or, —1.524250 = 150. Solving,
we get —1.5x = —100 or x = 66.6. This means you would be able to sell 66 PortaBoys a week
if the price were $150 per system. O

Not all real-world phenomena can be modeled using linear functions. Nevertheless, it is possible to
use the concept of slope to help analyze non-linear functions using the following.

Definition 2.3. Let f be a function defined on the interval [a, b]. The average rate of change
of f over [a,b] is defined as:
Af _ f(b) = fla)

Azr b—a

Geometrically, if we have the graph of y = f(x), the average rate of change over [a, b] is the slope of
the line which connects (a, f(a)) and (b, f(b)). This is called the secant line through these points.
For that reason, some textbooks use the notation mge. for the average rate of change of a function.
Note that for a linear function m = Mg, or in other words, its rate of change over an interval is
the same as its average rate of change.

The graph of y = f(z) and its secant line through (a, f(a)) and (b, f(b))

The interested reader may question the adjective ‘average’ in the phrase ‘average rate of change’.
In the figure above, we can see that the function changes wildly on [a, b], yet the slope of the secant
line only captures a snapshot of the action at a and b. This situation is entirely analogous to the
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average speed on a trip. Suppose it takes you 2 hours to travel 100 miles. Your average speed is
% = 50 miles per hour. However, it is entirely possible that at the start of your journey, you
traveled 25 miles per hour, then sped up to 65 miles per hour, and so forth. The average rate of
change is akin to your average speed on the trip. Your speedometer measures your speed at any
one instant along the trip, your instantaneous rate of change, and this is one of the central

themes of Calculus.b

When interpreting rates of change, we interpret them the same way we did slopes. In the context
of functions, it may be helpful to think of the average rate of change as:

change in outputs

change in inputs

Example 2.1.7. Recall from page 82, the revenue from selling x units at a price p per unit is given
by the formula R = xp. Suppose we are in the scenario of Examples 2.1.5 and 2.1.6.

1. Find and simplify an expression for the weekly revenue R(z) as a function of weekly sales z.
2. Find and interpret the average rate of change of R(z) over the interval [0, 50].

3. Find and interpret the average rate of change of R(z) as = changes from 50 to 100 and
compare that to your result in part 2.

4. Find and interpret the average rate of change of weekly revenue as weekly sales increase from
100 PortaBoys to 150 PortaBoys.

Solution.

1. Since R = xp, we substitute p(z) = —1.52+250 from Example 2.1.6 to get R(z) = z(—1.5z+
250) = —1.522 + 2502. Since we determined the price-demand function p(x) is restricted to
0 <z <166, R(z) is restricted to these values of x as well.

2. Using Definition 2.3, we get that the average rate of change is

AR R(50) — R(0) 8750 — 0

_— = = 175.
Az 50 -0 50 -0

Interpreting this slope as we have in similar situations, we conclude that for every additional
PortaBoy sold during a given week, the weekly revenue increases $175.

3. The wording of this part is slightly different than that in Definition 2.3, but its meaning is to
find the average rate of change of R over the interval [50,100]. To find this rate of change,
we compute

AR R(100) — R(50) 10000 — 8750

— = = 25.
Az 100 — 50 50

SHere we go again...
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In other words, for each additional PortaBoy sold, the revenue increases by $25. Note that
while the revenue is still increasing by selling more game systems, we aren’t getting as much
of an increase as we did in part 2 of this example. (Can you think of why this would happen?)

4. Translating the English to the mathematics, we are being asked to find the average rate of
change of R over the interval [100, 150]. We find

AR R(150) — R(100) _ 3750 — 10000

Az 150 — 100 50 = 1%

This means that we are losing $125 dollars of weekly revenue for each additional PortaBoy
sold. (Can you think why this is possible?) O]

We close this section with a new look at difference quotients which were first introduced in Section
1.4. If we wish to compute the average rate of change of a function f over the interval [z, x + h],
then we would have

Af _fleth) = fx)  flet+h) - f(z)

Ax (x+h)—x h

As we have indicated, the rate of change of a function (average or otherwise) is of great importance
in Calculus.” Also, we have the geometric interpretation of difference quotients which was promised
to you back on page 81 — a difference quotient yields the slope of a secant line.

"So we are not torturing you with these for nothing.
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2.1.1

EXERCISES

In Exercises 1 - 10, find both the point-slope form and the slope-intercept form of the line with the
given slope which passes through the given point.

1.

3.

D.

7.

9.

m=3, P(3,—-1) 2. m= -2, P(-5,8)
m=—1, P(-7,—1) 4. m=2, P(-2,1)
m=—1, P(10,4) 6. m=1, P(—1,4)

m =0, P(3,117) 8. m=—2, P(0,-3)
m = -5, P(v/3,2V3) 10. m = 678, P(—1,-12)

In Exercises 11 - 20, find the slope-intercept form of the line which passes through the given points.

11.

13.

15.

17.

19.

21.

23.

25.

P(0,0), Q(-3,5) 12. P(—1,-2), Q(3,-2)
P(5,0), Q(0,—8) 14. P(3,-5), Q(7,4)
P(—-1,5), Q(7,5) 16. P(4,-8), Q(5,—8)
P QG- s P15
P(V2,-v2), Q(-Vv2,V2) 20. P(-v3,-1), Q(V3,1)
In Exercises 21 - 26, graph the function. Find the slope, y-intercept and x-intercept, if any exist.
flx)y=2zx—-1 22. f(z)=3—x
f(z)=3 24. f(z)=0
fla)=2z+1 26 f(x)zlgx
Find all of the points on the line y = 22 + 1 which are 4 units from the point (—1, 3).

27.

28.

29.

30.

Jeff can walk comfortably at 3 miles per hour. Find a linear function d that represents the
total distance Jeff can walk in ¢t hours, assuming he doesn’t take any breaks.

Carl can stuff 6 envelopes per minute. Find a linear function F that represents the total
number of envelopes Carl can stuff after ¢ hours, assuming he doesn’t take any breaks.

A landscaping company charges $45 per cubic yard of mulch plus a delivery charge of $20.
Find a linear function which computes the total cost C' (in dollars) to deliver x cubic yards
of mulch.
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31.

32.

33.

34.

35.

36.

37.

38.

39.

LINEAR AND QUADRATIC FUNCTIONS

A plumber charges $50 for a service call plus $80 per hour. If she spends no longer than 8
hours a day at any one site, find a linear function that represents her total daily charges C'
(in dollars) as a function of time ¢ (in hours) spent at any one given location.

A salesperson is paid $200 per week plus 5% commission on her weekly sales of x dollars.
Find a linear function that represents her total weekly pay, W (in dollars) in terms of z.
What must her weekly sales be in order for her to earn $475.00 for the week?

An on-demand publisher charges $22.50 to print a 600 page book and $15.50 to print a 400
page book. Find a linear function which models the cost of a book C' as a function of the
number of pages p. Interpret the slope of the linear function and find and interpret C(0).

The Topology Taxi Company charges $2.50 for the first fifth of a mile and $0.45 for each
additional fifth of a mile. Find a linear function which models the taxi fare F' as a function
of the number of miles driven, m. Interpret the slope of the linear function and find and
interpret F'(0).

Water freezes at 0° Celsius and 32° Fahrenheit and it boils at 100°C and 212°F.

(a) Find a linear function F' that expresses temperature in the Fahrenheit scale in terms of
degrees Celsius. Use this function to convert 20°C into Fahrenheit.

(b) Find a linear function C that expresses temperature in the Celsius scale in terms of
degrees Fahrenheit. Use this function to convert 110°F into Celsius.

(c) Is there a temperature n such that Fi(n) = C(n)?

Legend has it that a bull Sasquatch in rut will howl approximately 9 times per hour when it is
40°F outside and only 5 times per hour if it’s 70°F. Assuming that the number of howls per
hour, IV, can be represented by a linear function of temperature Fahrenheit, find the number
of howls per hour he’ll make when it’s only 20°F outside. What is the applied domain of this
function? Why?

Economic forces beyond anyone’s control have changed the cost function for PortaBoys to
C(x) = 1052 4+ 175. Rework Example 2.1.5 with this new cost function.

In response to the economic forces in Exercise 37 above, the local retailer sets the selling price
of a PortaBoy at $250. Remarkably, 30 units were sold each week. When the systems went
on sale for $220, 40 units per week were sold. Rework Examples 2.1.6 and 2.1.7 with this new
data. What difficulties do you encounter?

A local pizza store offers medium two-topping pizzas delivered for $6.00 per pizza plus a
$1.50 delivery charge per order. On weekends, the store runs a ‘game day’ special: if six or
more medium two-topping pizzas are ordered, they are $5.50 each with no delivery charge.
Write a piecewise-defined linear function which calculates the cost C' (in dollars) of p medium
two-topping pizzas delivered during a weekend.
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40. A restaurant offers a buffet which costs $15 per person. For parties of 10 or more people, a
group discount applies, and the cost is $12.50 per person. Write a piecewise-defined linear
function which calculates the total bill T" of a party of n people who all choose the buffet.

41. A mobile plan charges a base monthly rate of $10 for the first 500 minutes of air time plus
a charge of 15¢ for each additional minute. Write a piecewise-defined linear function which
calculates the monthly cost C' (in dollars) for using m minutes of air time.

HINT: You may want to revisit Exercise 74 in Section 1.4
42. The local pet shop charges 12¢ per cricket up to 100 crickets, and 10¢ per cricket thereafter.

Write a piecewise-defined linear function which calculates the price P, in dollars, of purchasing
¢ crickets.

43. The cross-section of a swimming pool is below. Write a piecewise-defined linear function
which describes the depth of the pool, D (in feet) as a function of:

(a) the distance (in feet) from the edge of the shallow end of the pool, d.
(b) the distance (in feet) from the edge of the deep end of the pool, s.

(c) Graph each of the functions in (a) and (b). Discuss with your classmates how to trans-
form one into the other and how they relate to the diagram of the pool.

d ft. s ft.
37 ft.

an

8 ft. 10 ft.

15 ft.

In Exercises 44 - 49, compute the average rate of change of the function over the specified interval.

44. f(z) =23, [-1,2] 45. f(z) = % 1, 5]
46. f(x) =+/z, [0,16] 47. f(x) = 2%, [-3,3]
48, f(z) = 12 5.7 49. f(z) =322 +22 -7, [-4,2]

=3
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In Exercises 50 - 53, compute the average rate of change of the given function over the interval
[z, + h]. Here we assume [z, x + h] is in the domain of the function.

50.

52.

54.

55.

56.

57.

58.

1
f(z) =23 51. f(z) = -
r+4 9
fz) = 53. f(x) =32 +2x -7
z—3
The height of an object dropped from the roof of an eight story building is modeled by:

h(t) = —16t> + 64, 0 < t < 2. Here, h is the height of the object off the ground in feet, ¢
seconds after the object is dropped. Find and interpret the average rate of change of h over
the interval [0, 2].

Using data from Bureau of Transportation Statistics, the average fuel economy F' in miles
per gallon for passenger cars in the US can be modeled by F(t) = —0.0076t? + 0.45t + 16,
0 <t <28, where t is the number of years since 1980. Find and interpret the average rate of
change of F' over the interval [0, 28].

The temperature T' in degrees Fahrenheit ¢ hours after 6 AM is given by:

1
T(t):—§t2+8t+32, 0<t<12

(a) Find and interpret 7'(4), T'(8) and T°(12).

(b) Find and interpret the average rate of change of T" over the interval [4, §].
)
)

(c

(d) Find and interpret the average rate of temperature change between 10 AM and 6 PM.

Find and interpret the average rate of change of T' from ¢t = 8 to ¢t = 12.

Suppose C(x) = 22 — 10z + 27 represents the costs, in hundreds, to produce z thousand pens.
Find and interpret the average rate of change as production is increased from making 3000
to 5000 pens.

With the help of your classmates find several other “real-world” examples of rates of change
that are used to describe non-linear phenomena.

(Parallel Lines) Recall from Intermediate Algebra that parallel lines have the same slope. (Please
note that two vertical lines are also parallel to one another even though they have an undefined
slope.) In Exercises 59 - 64, you are given a line and a point which is not on that line. Find the
line parallel to the given line which passes through the given point.

59.

y=3x+2, P(0,0) 60. y = —6x +5, P(3,2)


http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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_ 2 4-
6l. y =32 -7, P(6,0) 62. y = Txa P(1,-1)

63. y =6, P(3,-2) 64. 2 =1, P(=5,0)

(Perpendicular Lines) Recall from Intermediate Algebra that two non-vertical lines are perpendic-
ular if and only if they have negative reciprocal slopes. That is to say, if one line has slope m; and
the other has slope m, then m, - my, = —1. (You will be guided through a proof of this result in
Exercise 71.) Please note that a horizontal line is perpendicular to a vertical line and vice versa, so
we assume m, # 0 and m, # 0. In Exercises 65 - 70, you are given a line and a point which is not
on that line. Find the line perpendicular to the given line which passes through the given point.

65. y = sz +2, P(0,0) 66. y = —62 + 5, P(3,2)
67. y = 22 — 7, P(6,0) 68. y:4;$’ P, —1)
69. y =6, P(3,-2) 70. z =1, P(=5,0)

71. We shall now prove that y = my,x + b, is perpendicular to y = myz + b, if and only if
m, - my = —1. To make our lives easier we shall assume that m; > 0 and m, < 0. We can
also “move” the lines so that their point of intersection is the origin without messing things
up, so we’'ll assume b, = b, = 0. (Take a moment with your classmates to discuss why this is
okay.) Graphing the lines and plotting the points O(0,0) , P(1,m;) and Q(1,m,) gives us
the following set up.

T

A

The line y = myx will be perpendicular to the line y = m,x if and only if AOPQ is a right
triangle. Let d; be the distance from O to P, let d, be the distance from O to ) and let d;
be the distance from P to ). Use the Pythagorean Theorem to show that AOPQ is a right
triangle if and only if m, - m, = —1 by showing d? + d? = d? if and only if m, - m, = —1.
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72. Show that if a # b, the line containing the points (a, b) and (b, a) is perpendicular to the line
y = z. (Coupled with the result from Example 1.1.7 on page 13, we have now shown that the
line y = x is a perpendicular bisector of the line segment connecting (a,b) and (b,a). This
means the points (a,b) and (b,a) are symmetric about the line y = z. We will revisit this
symmetry in section 5.2.)

73. The function defined by I(x) = x is called the Identity Function.

(a) Discuss with your classmates why this name makes sense.

(b) Show that the point-slope form of a line (Equation 2.2) can be obtained from I using a
sequence of the transformations defined in Section 1.7.
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2.1.2 ANSWERS

l.y+1=3(z—-3)

y=3x — 10
B.y+l=—(z+7)
y=—-xr—38
5.y—4=—1(z—10)
yz—%x—i—b’
7. y—117=0
y =117
9. y—2v3=—5(x—3)
y:—51:+7\/§
11 y=—-52
13. y:%m—8
15. y=5

17. y:—%l‘—F@
19. y=—2

21. f(x)=2x—-1
slope: m = 2
y-intercept: (0, —1)

z-intercept: (% , O)

22. f(z)=3—x
slope: m = —1
y-intercept: (0, 3)
x-intercept: (3,0)

10.

12.

14.

16.

18.

20.

169

. y—8=—-2(x+5)
y=—2x—2

Ly—1=2(z+2)
y:%x—i-%
y—4=1(z+1)
y:%x—i-?

.Yy +3=—V2(z—-0)
y=—V2x—3
y+ 12 =678(x + 1)
y = 678z + 666
y=-2
y=gqr-7%
y=-—8
y:2aj—|—%3
y= 4

Yy
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23.

24.

25.

26.

27.

29.

31.

33.

34.

f(z) =3
slope: m =10
y-intercept: (0, 3)

zr-intercept: none

flz) =0
slope: m =10
y-intercept: (0,0)

z-intercept: {(x,0)|x is a real number}

fl@)=3a+3

slope: m = %

)

,0)

y-intercept: (0,

W= ol

z-intercept: (—

_l—x

fla) ==

. - _1
slope: m = —3

y-intercept: (0, )
(

zr-intercept:

E(t) = 360t, t > 0.

C(t) =80t +50, 0 < t < 8.

LINEAR AND QUADRATIC FUNCTIONS

Y
a4l
3
21
14
\ \ A
} 1 ——t
—2 -1 1 2 g
Y
14
D s s B T
—14
Y
21
14
e S
—2 1 2
—14
Y
21
\_
1 1 \ 1
} 1 }
—2 -1 E\Kx
—14

98. d(t) = 3t, t > 0.
30. C(z) =452 + 20, x > 0.

32. W(z) =200+.052, x > 0 She must make
$5500 in weekly sales.

C(p) = 0.035p + 1.5 The slope 0.035 means it costs 3.5¢ per page. C'(0) = 1.5 means there
is a fixed, or start-up, cost of $1.50 to make each book.

F(m) = 2.25m+2.05 The slope 2.25 means it costs an additional $2.25 for each mile beyond
the first 0.2 miles. F'(0) = 2.05, so according to the model, it would cost $2.05 for a trip of 0
miles. Would this ever really happen? Depends on the driver and the passenger, we suppose.
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35. (a) F(C)=3C +32 (b) C(F) = 3(F —32) = 3F — 100
(c) F(—40) = —40 = C(—40).

36. N(T) = —2T + % and N(20) = 32 ~ 12 howls per hour.

Having a negative number of howls makes no sense and since N(107.5) = 0 we can put an
upper bound of 107.5°F on the domain. The lower bound is trickier because there’s nothing
other than common sense to go on. As it gets colder, he howls more often. At some point
it will either be so cold that he freezes to death or he’s howling non-stop. So we’re going to
say that he can withstand temperatures no lower than —60°F' so that the applied domain is
[—60,107.5].

6p+15 if 1<p<5
Cp) =4 " e
5.5p if p>6

39.

10. T(n) = 15m if 1<n<9
' 12.5n if n>10

10 if 0<m <500

41. C(m) =

10 + 0.15(m — 500) if m > 500

. i <ec<

12. P(c) = 0.12¢ if 1<e¢<100

12 +0.1(c —100) if ¢ > 100
43. (a)

if 0<d<15
D(d)=4 —id+3 if 15<d<27

2 if 271<d <37

2 if 0<s<10
D(s)=<¢ 1s-3 if 10<s<22
8 if 22<s<37

— L

15 27 37 10 29 37
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44.

46.

48.

50.

52.

54.

55.

56.

o7.

59.

62.

65.

68.

LINEAR AND QUADRATIC FUNCTIONS

23 — (=1 3 1 _ 1
# =3 45. 5 1 _ _}
2—(-1) 5—-1 5
VI6—v0 _ 1 . B2V
16—-0 4 " 3—(-3)
% _ % _ _Z 49. (3(2)2 +2(2) - 7; : E?i(4_)4)2 +2(-4)-7) _ )
7—5 8
322 + 3zh + h? T P——
" z(z+h)
il 53. 62 + 3h + 2
(x —=3)(x+h—-3) '
The average rate of change is % = —32. During the first two seconds after it is

dropped, the object has fallen at an average rate of 32 feet per second. (This is called the
average velocity of the object.)

The average rate of change is % = 0.2372. During the years from 1980 to 2008, the
average fuel economy of passenger cars in the US increased, on average, at a rate of 0.2372

miles per gallon per year.
(a) T'(4) = 56, so at 10 AM (4 hours after 6 AM), it is 56°F. T'(8) = 64, so at 2 PM (8 hours
after 6 AM), it is 64°F. T'(12) = 56, so at 6 PM (12 hours after 6 AM), it is 56°F.

(b) The average rate of change is % = 2. Between 10 AM and 2 PM, the temperature
increases, on average, at a rate of 2°F per hour.

(c) The average rate of change is TU2D-TE) _ _9 Between 2 PM and 6 PM, the temperature

12-8
decreases, on average, at a rate of 2°F per hour.
(d) The average rate of change is % = 0. Between 10 AM and 6 PM, the tempera-

ture, on average, remains constant.

The average rate of change is % = —2. As production is increased from 3000 to 5000

pens, the cost decreases at an average rate of $200 per 1000 pens produced (20¢ per pen.)

y = 3z 60. y = —6z + 20 61. y =2z —4
y:—% _% 63. y=—2 64. x = -5
y=—3x 66.y:%x+% 67.y:—%x+9

y =31 —4 69. z =3 70. y =0
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2.2 ABSOLUTE VALUE FUNCTIONS

There are a few ways to describe what is meant by the absolute value |z| of a real number z. You
may have been taught that |z| is the distance from the real number z to 0 on the number line. So,
for example, |5| =5 and | — 5| = 5, since each is 5 units from 0 on the number line.

distance is 5 units distance is 5 units

A | | | | | | | | | *
* t t t t t t t t t *
-5 —4 -3 -2 -1 0 1 2 3 4 5

Another way to define absolute value is by the equation |z| = Vx2. Using this definition, we have
15| = v/(5)2 = V25 = 5 and | — 5| = \/(=5)2 = V25 = 5. The long and short of both of these
procedures is that |z| takes negative real numbers and assigns them to their positive counterparts
while it leaves positive numbers alone. This last description is the one we shall adopt, and is
summarized in the following definition.

Definition 2.4. The absolute value of a real number z, denoted |z|, is given by

—z, if z<0
|z| = .
z, if >0

In Definition 2.4, we define |z| using a piecewise-defined function. (See page 62 in Section 1.4.) To
check that this definition agrees with what we previously understood as absolute value, note that
since 5 > 0, to find |5 we use the rule |z| = x, so |5| = 5. Similarly, since —5 < 0, we use the
rule |x| = —x, so that | — 5| = —(—5) = 5. This is one of the times when it’s best to interpret the
expression ‘—x’ as ‘the opposite of &’ as opposed to ‘negative x’. Before we begin studying absolute
value functions, we remind ourselves of the properties of absolute value.

Theorem 2.1. Properties of Absolute Value: Let a, b and x be real numbers and let n be
an integer.® Then

e Product Rule: |ab| = |a||b]

e Power Rule: |a"| = |a|™ whenever a” is defined
. a| _|al :
¢ Quotient Rule: ‘B‘ = m, provided b # 0

Equality Properties:
e |z| =0 if and only if z = 0.
e For ¢ >0, |z =cifand only if x = c or —z = c.

e For ¢ < 0, |z| = ¢ has no solution.

“See page 2 if you don’t remember what an integer is.
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The proofs of the Product and Quotient Rules in Theorem 2.1 boil down to checking four cases:
when both a and b are positive; when they are both negative; when one is positive and the other
is negative; and when one or both are zero.

For example, suppose we wish to show that |ab| = |a||b]. We need to show that this equation is
true for all real numbers a and b. If @ and b are both positive, then so is ab. Hence, |a| = a, [b| = b
and |ab| = ab. Hence, the equation |ab| = |a||b| is the same as ab = ab which is true. If both a
and b are negative, then ab is positive. Hence, |a| = —a, |b| = —b and |ab| = ab. The equation
|ab| = |a||b| becomes ab = (—a)(—b), which is true. Suppose a is positive and b is negative. Then
ab is negative, and we have |ab| = —ab, |a| = a and |b| = —b. The equation |ab| = |a||b| reduces to
—ab = a(—b) which is true. A symmetric argument shows the equation |ab| = |a||b| holds when a is
negative and b is positive. Finally, if either a or b (or both) are zero, then both sides of |ab| = |al|b|
are zero, so the equation holds in this case, too. All of this rhetoric has shown that the equation
|ab| = |a||b| holds true in all cases.

The proof of the Quotient Rule is very similar, with the exception that b # 0. The Power Rule can
be shown by repeated application of the Product Rule. The ‘Equality Properties’ can be proved
using Definition 2.4 and by looking at the cases when = > 0, in which case |z| = z, or when x < 0,
in which case |z| = —x. For example, if ¢ > 0, and || = ¢, then if z > 0, we have x = |z| = c.
If, on the other hand, z < 0, then —x = |z| = ¢, so x = —c. The remaining properties are proved
similarly and are left for the Exercises. Our first example reviews how to solve basic equations
involving absolute value using the properties listed in Theorem 2.1.

Example 2.2.1. Solve each of the following equations.

1. |3z —1]=6 2.3—|z+5/=1 3.322+1]-5=0
4. 4 — |5z +3| =5 5. x| =22 -6 6. lr—2|+1=2x
Solution.

1. The equation |3x — 1| = 6 is of the form |z| = ¢ for ¢ > 0, so by the Equality Properties,
|3z — 1| = 6 is equivalent to 3z —1 = 6 or 3x —1 = —6. Solving the former, we arrive at z = %,
and solving the latter, we get © = —g. We may check both of these solutions by substituting

them into the original equation and showing that the arithmetic works out.

2. To use the Equality Properties to solve 3 — |x + 5| = 1, we first isolate the absolute value.

3—|z+5 =1
—|lz+5 = -2 subtract 3
|lt+5] = 2  divide by —1

From the Equality Properties, we have x +5 =2 or z + 5 = —2, and get our solutions to be
x=—3 or x = —7. We leave it to the reader to check both answers in the original equation.
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3. Asin the previous example, we first isolate the absolute value in the equation 3|2z +1|—5 =0

and get |2z + 1| = g Using the Equality Properties, we have 2z + 1 = % or 2z +1 = —%.
Solving the former gives x = % and solving the latter gives x = —%. As usual, we may

substitute both answers in the original equation to check.

4. Upon isolating the absolute value in the equation 4 — |5z + 3| = 5, we get |5x + 3| = —1. At
this point, we know there cannot be any real solution, since, by definition, the absolute value
of anything is never negative. We are done.

5. The equation |z| = 22 — 6 presents us with some difficulty, since x appears both inside and
outside of the absolute value. Moreover, there are values of x for which 2> — 6 is positive,
negative and zero, so we cannot use the Equality Properties without the risk of introducing
extraneous solutions, or worse, losing solutions. For this reason, we break equations like this
into cases by rewriting the term in absolute values, |z|, using Definition 2.4. For z < 0,
|z| = —x, so for < 0, the equation |z| = 2 — 6 is equivalent to —z = x> — 6. Rearranging
this gives us 22+ —6 =0, or (z+3)(x—2) = 0. We get = —3 or = 2. Since only v = —3
satisfies # < 0, this is the answer we keep. For # > 0, || = z, so the equation |z| = 22 — 6
becomes x = 2 — 6. From this, we get > —x — 6 = 0 or (x — 3)(x + 2) = 0. Our solutions
are x = 3 or x = —2, and since only x = 3 satisfies x > 0, this is the one we keep. Hence, our
two solutions to |z| = 22 — 6 are = —3 and x = 3.

6. To solve |x —2|4+1 = z, we first isolate the absolute value and get |z —2| = z—1. Since we see
x both inside and outside of the absolute value, we break the equation into cases. The term
with absolute values here is |z — 2|, so we replace ‘z’ with the quantity ‘(z —2)’ in Definition

2.4 to get
37—2\—{ ~@=2), if @=2)<0
(z —2)

Simplifying yields

—r+2, if r<2
2| = |
rx—2, if x>2

So, for x < 2, |x—2| = —x+2 and our equation |z —2| = x —1 becomes —x +2 = z — 1, which
gives x = % Since this solution satisfies z < 2, we keep it. Next, for z > 2, |z —2| =z —2, so
the equation |z — 2| = x — 1 becomes = — 2 = = — 1. Here, the equation reduces to —2 = —1,
which signifies we have no solutions here. Hence, our only solution is x = % O

Next, we turn our attention to graphing absolute value functions. Our strategy in the next example
is to make liberal use of Definition 2.4 along with what we know about graphing linear functions
(from Section 2.1) and piecewise-defined functions (from Section 1.4).

Example 2.2.2. Graph each of the following functions.
1. f(z) = |z| 2. g(x) = |z — 3] 3. h(z) =|z| -3 4. i(z) =4-2[3z+1|
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Find the zeros of each function and the z- and y-intercepts of each graph, if any exist. From the
graph, determine the domain and range of each function, list the intervals on which the function is
increasing, decreasing or constant, and find the relative and absolute extrema, if they exist.

Solution.

1. To find the zeros of f, we set f(x) = 0. We get |z| = 0, which, by Theorem 2.1 gives us z = 0.
Since the zeros of f are the z-coordinates of the z-intercepts of the graph of y = f(x), we get
(0,0) as our only z-intercept. To find the y-intercept, we set x = 0, and find y = f(0) = 0,
so that (0,0) is our y-intercept as well.! Using Definition 2.4, we get

—x, if <0
z, if >0

fz) = || = {

Hence, for x < 0, we are graphing the line y = —z; for x > 0, we have the line y = z.
Proceeding as we did in Section 1.6, we get

+——t—+ —t— +—t— —t—
-3 -2 -1 1 2 3 g -3 -2 -1 1 2 3 g

f(@) = Jal, # < 0 f(2) = |a], > 0

Notice that we have an ‘open circle’ at (0,0) in the graph when x < 0. As we have seen before,
this is due to the fact that the points on y = —x approach (0,0) as the z-values approach 0.
Since « is required to be strictly less than zero on this stretch, the open circle is drawn at the
origin. However, notice that when x > 0, we get to fill in the point at (0,0), which effectively
‘plugs’ the hole indicated by the open circle. Thus we get,

I T b s
f@) = ||

! Actually, since functions can have at most one y-intercept (Do you know why?), as soon as we found (0, 0) as the
z-intercept, we knew this was also the y-intercept.
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By projecting the graph to the z-axis, we see that the domain is (—o0,00). Projecting to
the y-axis gives us the range [0,00). The function is increasing on [0,00) and decreasing on
(—00,0]. The relative minimum value of f is the same as the absolute minimum, namely 0
which occurs at (0,0). There is no relative maximum value of f. There is also no absolute
maximum value of f, since the y values on the graph extend infinitely upwards.

2. To find the zeros of g, we set g(x) = |x — 3| = 0. By Theorem 2.1, we get = —3 = 0 so
that x = 3. Hence, the z-intercept is (3,0). To find our y-intercept, we set x = 0 so that
y = ¢(0) = |0 — 3| = 3, which yields (0, 3) as our y-intercept. To graph g(x) = |z — 3|, we use
Definition 2.4 to rewrite g as

g(a:)=|x—3|:{ —(2—3% %f (x—3)§o

Simplifying, we get

g(z) = —x+3, if <3
r—3, if x>3

As before, the open circle we introduce at (3,0) from the graph of y = —x + 3 is filled by the
point (3,0) from the line y = x — 3. We determine the domain as (—o0,00) and the range as
[0,00). The function g is increasing on [3,00) and decreasing on (—o0,3]. The relative and
absolute minimum value of g is 0 which occurs at (3,0). As before, there is no relative or
absolute maximum value of g.

3. Setting h(x) = 0 to look for zeros gives |z| —3 = 0. As in Example 2.2.1, we isolate the
absolute value to get |z| = 3 so that z = 3 or z = —3. As a result, we have a pair of z-
intercepts: (—3,0) and (3,0). Setting z = 0 gives y = h(0) = |0] — 3 = —3, so our y-intercept
is (0, —3). As before, we rewrite the absolute value in h to get

h(z) = —x—3, if <0
r—3, if x>0

Once again, the open circle at (0, —3) from one piece of the graph of h is filled by the point
(0, —3) from the other piece of h. From the graph, we determine the domain of & is (—o0, c0)
and the range is [—3,00). On [0,00), h is increasing; on (—oo, 0] it is decreasing. The relative
minimum occurs at the point (0, —3) on the graph, and we see —3 is both the relative and
absolute minimum value of h. Also, h has no relative or absolute maximum value.
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g(x) = |z — 3| h(z) = |z| -3

4. As before, we set i(x) = 0 to find the zeros of ¢ and get 4—2|3z+1| = 0. Isolating the absolute
value term gives |3x+ 1| = 2, so either 3z+1 =2or 3x+1 = —2. We get z = % orx =—1,s0
our z-intercepts are (3,0) and (—1,0). Substituting = = 0 gives y = i(0) = 4—2[3(0)+1| = 2,

for a y-intercept of (0,2). Rewriting the formula for i(x) without absolute values gives

i(m):{4_2(_(3x+1))’ if (z+1)<0 { 60+6, if z<—1

4-2Br+1), if Bet1)>0 | —6z+2, if x> -1

The usual analysis near the trouble spot x = —% gives the ‘corner’ of this graph is (—%, 4),
and we get the distinctive ‘v’ shape:

i(z) =4 — 2|3z + 1|

The domain of i is (—oo,00) while the range is (—o0,4]. The function i is increasing on
(—oo, —%] and decreasing on [—%, oo). The relative maximum occurs at the point (—%,4)
and the relative and absolute maximum value of ¢ is 4. Since the graph of ¢ extends downwards
forever more, there is no absolute minimum value. As we can see from the graph, there is no
relative minimum, either. O

Note that all of the functions in the previous example bear the characteristic ‘v’ shape of the graph
of y = |z|. We could have graphed the functions g, h and ¢ in Example 2.2.2 starting with the
graph of f(z) = |z| and applying transformations as in Section 1.7 as our next example illustrates.
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Example 2.2.3. Graph the following functions starting with the graph of f(z) = |z| and using
transformations.

1. g(x) = |z — 3] 2. h(z) =l|z|—3 3. i(z) =4 —2[3z + 1|

Solution. We begin by graphing f(x) = |z| and labeling three points, (—1,1), (0,0) and (1, 1).
y

44
34
24

(-1,1) 14+ (1,1)

g e S T A
f(z) = |z|

1. Since g(z) = |z — 3| = f(x — 3), Theorem 1.7 tells us to add 3 to each of the xz-values of the
points on the graph of y = f(x) to obtain the graph of y = g(z). This shifts the graph of
y = f(x) to the right 3 units and moves the point (—1,1) to (2,1), (0,0) to (3,0) and (1,1)
to (4,1). Connecting these points in the classic ‘v’ fashion produces the graph of y = g(x).

Y Y
44
34

24

(717 1) 1T (171)
S o 2 b e shift right 3 units T b0 s 5 6 e
f(.l)) = |.CU‘ add 3 to each x-coordinate g(w) = f(x — 3) = |x — 3’

2. For h(z) = |z| —3 = f(x) — 3, Theorem 1.7 tells us to subtract 3 from each of the y-values of
the points on the graph of y = f(x) to obtain the graph of y = h(x). This shifts the graph of
y = f(x) down 3 units and moves (—1,1) to (—1,—2), (0,0) to (0,—3) and (1,1) to (1, —2).
Connecting these points with the ‘v’ shape produces our graph of y = h(x).

44

34
24

(-1,1) N 1+ £(1,1)

3 2 1 (0,001 2 3 g shift down 3 units

f(l‘) = |l" subtract 3 from each y-coordinate



180 LINEAR AND QUADRATIC FUNCTIONS

3. We re-write i(z) =4 —2[3x+ 1| =4 —-2fB3x+1) = —=2f(3z + 1) + 4 and apply Theorem
1.7. First, we take care of the changes on the ‘inside’ of the absolute value. Instead of ||,
we have |3z + 1], so, in accordance with Theorem 1.7, we first subtract 1 from each of the
x-values of points on the graph of y = f(x), then divide each of those new values by 3. This
effects a horizontal shift left 1 unit followed by a horizontal shrink by a factor of 3. These
transformations move (—1,1) to (—%,1), (0,0) to (—3,0) and (1,1) to (0,1). Next, we take
care of what’s happening ‘outside of’ the absolute value. Theorem 1.7 instructs us to first
multiply each y-value of these new points by —2 then add 4. Geometrically, this corresponds
to a vertical stretch by a factor of 2, a reflection across the z-axis and finally, a vertical shift
up 4 units. These transformations move (—%, 1) to (—%, 2), (—%,0) to (—%,4), and (0,1) to
(0,2). Connecting these points with the usual ‘v’ shape produces our graph of y = i(z).

y
y
44
5] (0,2)
21
LD N 1+ (1,1 =
T T
f(z) = |x] i(x) = =2f(Bz +1) +4
=23z +1|+4

O

While the methods in Section 1.7 can be used to graph an entire family of absolute value functions,
not all functions involving absolute values posses the characteristic ‘v’ shape. As the next example
illustrates, often there is no substitute for appealing directly to the definition.

Example 2.2.4. Graph each of the following functions. Find the zeros of each function and the
x- and y-intercepts of each graph, if any exist. From the graph, determine the domain and range
of each function, list the intervals on which the function is increasing, decreasing or constant, and
find the relative and absolute extrema, if they exist.

1. f(l.):@ 2. g(x)=lz+2|—|z-3|+1

Solution.

1. We first note that, due to the fraction in the formula of f(z),  # 0. Thus the domain is
(—00,0) U (0,00). To find the zeros of f, we set f(x) = % = 0. This last equation implies
|z| = 0, which, from Theorem 2.1, implies z = 0. However, z = 0 is not in the domain of f,
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which means we have, in fact, no z-intercepts. We have no y-intercepts either, since f(0) is
undefined. Re-writing the absolute value in the function gives

X .
R it e <0 _{—1, it ©<0
X

To graph this function, we graph two horizontal lines: y = —1 for x < 0 and y = 1 for = > 0.
We have open circles at (0, —1) and (0,1) (Can you explain why?) so we get

As we found earlier, the domain is (—o0,0) U (0, 00). The range consists of just two y-values:
{—1,1}. The function f is constant on (—o0,0) and (0,00). The local minimum value of f
is the absolute minimum value of f, namely —1; the local maximum and absolute maximum
values for f also coincide — they both are 1. Every point on the graph of f is simultaneously
a relative maximum and a relative minimum. (Can you remember why in light of Definition
1.117 This was explored in the Exercises in Section 1.6.2.)

2. To find the zeros of g, we set g(x) = 0. The result is |z + 2| — |z — 3] + 1 = 0. Attempting
to isolate the absolute value term is complicated by the fact that there are two terms with
absolute values. In this case, it easier to proceed using cases by re-writing the function g with
two separate applications of Definition 2.4 to remove each instance of the absolute values, one
at a time. In the first round we get

g(@) = —(x42)—|z—3|+1, if (+2)<0 | —z—-1—|z-3|, if =< -2
(x4+2)—|z—=3[+1, if (z+2)>0 r+3—|x—3|, if v>-2

Given that

|z — 3| = _(93_3); if ($—3)<0 —x+3, if <3
x—3, if (x—3)>0

") z-3, if z>3

we need to break up the domain again at x = 3. Note that if x < —2, then z < 3, so we
replace |x — 3| with —x 4 3 for that part of the domain, too. Our completed revision of the
form of g yields
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—zrz—1—(—z+3), if z<-2 —4, if z< -2
g(z) = xr+3—(—x+3), if z>-2and <3 = 2z, if -2<x<3
r+3—(x—-3), if >3 6, if >3

To solve g(z) = 0, we see that the only piece which contains a variable is g(z) = 2x for —2 < z < 3.
Solving 2z = 0 gives = 0. Since = = 0 is in the interval [—2,3), we keep this solution and have
(0,0) as our only x-intercept. Accordingly, the y-intercept is also (0,0). To graph g, we start with
x < —2 and graph the horizontal line y = —4 with an open circle at (—2,—4). For -2 < z < 3,
we graph the line y = 2z and the point (—2, —4) patches the hole left by the previous piece. An
open circle at (3,6) completes the graph of this part. Finally, we graph the horizontal line y = 6
for x > 3, and the point (3,6) fills in the open circle left by the previous part of the graph. The
finished graph is

— |z —=3]+1

The domain of g is all real numbers, (—oo, 00), and the range of g is all real numbers between —4
and 6 inclusive, [—4, 6]. The function is increasing on [—2, 3] and constant on (—oo, —2] and [3, 00).
The relative minimum value of f is —4 which matches the absolute minimum. The relative and
absolute maximum values also coincide at 6. Every point on the graph of y = g(x) for z < —2 and
x > 3 yields both a relative minimum and relative maximum. The point (—2, —4), however, gives
only a relative minimum and the point (3, 6) yields only a relative maximum. (Recall the Exercises
in Section 1.6.2 which dealt with constant functions.) O

Many of the applications that the authors are aware of involving absolute values also involve
absolute value inequalities. For that reason, we save our discussion of applications for Section 2.4.
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2.2.1 EXERCISES

In Exercises 1 - 15, solve the equation.

1. |z| =6 2. |3z — 1| =10 3. [4—z2|=7
4. 4—|z| =3 5 25z +1-3=0 6. |7Tx—1]+2=0
7.5_2|$|:1 8 25—2x|—1=5 9. 2| =2 +3
10. 22— 1=z +1 1. 4—|z| =22 +1 12. [x—4|=2-5
13. |z| = 22 14. |z| =12 — 22 15. |22 —1] =3

Prove that if |f(x)| = |g(x)| then either f(z) = g(x) or f(z) = —g(x). Use that result to solve the
equations in Exercises 16 - 21.

16. |3z — 2| = |22 + 7| 17. 32 + 1| = |4z 18. |1 — 22| = |z + 1|
19. 4—z|—|x+2|=0 20. |2 — 5z| = 5|z + 1| 21. 3|z — 1| = 2|z + 1]

In Exercises 22 - 33, graph the function. Find the zeros of each function and the x- and y-intercepts
of each graph, if any exist. From the graph, determine the domain and range of each function, list
the intervals on which the function is increasing, decreasing or constant, and find the relative and
absolute extrema, if they exist.

22, f(x) = |z +4] 23. f(x)=|z|+4 24. f(x) = |4z

25. f(z) = -3l 2. f(z) =3z +4| —4 27, f(z) = %m —

28. f(ac)—|i::__;ll 29. f(w)—gii’ 30. f(z)=a+|z|—3

3l. f(x)=|z+2|—x 32. f(x) =|z+2| —|z] 33. f(z)=|z+4|+|z—2|

34. With the help of your classmates, find an absolute value function whose graph is given below.

ST 654501 12345678 @
35. With help from your classmates, prove the second, third and fifth parts of Theorem 2.1.

36. Prove The Triangle Inequality: For all real numbers a and b, |a + b| < |a| + |b].
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2.2.2 ANSWERS

1.

4.

7.

10.

13.

16.

19.

22.

23.

r=—-6orx=06 2.z=—-3orzxz =
r=—lorz=1 5.&0:—%01?3::
r=-3o0orx =3 S.m:—%ora::
r=0o0rz=2 11. =1
r=—-1l,z=0o0rz=1 4. x =—-3orz=
r=—-lorxz=9 17.x:f%0raj:
z=1 2. z=—75
f(@) = |z + 4]

f(=4)=0

x-intercept (—4,0)
y-intercept (0,4)
Domain (—o0, c0)
Range [0, 00)
Decreasing on (—oo, —4]

LINEAR AND QUADRATIC FUNCTIONS

.x=-3orx=11
. no solution
_ _3
L x =3
. no solution

.x=—-2o0rx=2

.2=0o0rax=2

Increasing on [—4, c0)
Relative and absolute min. at (—4,0)
No relative or absolute maximum

f(@) = |a] +4

No zeros

No z-intercepts

y-intercept (0,4)

Domain (—o0, o0)

Range [4, )

Decreasing on (—o0, 0]

Increasing on [0, 00)

Relative and absolute minimum at (0, 4)
No relative or absolute maximum

-8 -7 —6 —5 —4 -3 -2 -1 1

-4 -3 -2 —1
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24. f(z) = |4z|
f(0)=0
x-intercept (0,0)
y-intercept (0, 0)
Domain (—o0,c0)
Range [0, c0)
Decreasing on (—o0, 0]
Increasing on [0, 00)
Relative and absolute minimum at (0, 0)
No relative or absolute maximum

25. f(x) = —3|z|
F(0) =0
x-intercept (0,0)
y-intercept (0, 0)
Domain (—o0, 00)
Range (—o0, 0]
Increasing on (—o0, 0]
Decreasing on [0, c0)
Relative and absolute maximum at (0, 0)
No relative or absolute minimum

26. f(z ) = 3|z +4] -
TCB 0 () -
x—intercepts (— 0) ( 8 0)
y-intercept (0, 8)
Domain (—o0, 00)
Range [—4, 00)
Decreasing on (—oo, —4]
Increasing on [—4, 00)
Relative and absolute min. at (—4, —4)
No relative or absolute maximum

27. f(zx) = 3|22 — 1
J(3) =0
z-intercepts (%,0)
y-intercept (0, %)
Domain (—o0, 00)
Range [0, 00)
Decreasing on (
Increasing on [%

)

Yy
81
71
64
51
44
31
S| 12 e
Yy
-2 -1 I1 2z
21
31
41
51
—6l

Relative and absolute min. at (%, ())
No relative or absolute maximum

T T I
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28.

29.

30.

|z +4
fla) = z+4
No zeros

No z-intercept

y-intercept (0, 1)

Domain (—oo, —4) U (—4, 00)

Range {—1,1}

Constant on (—oo, —4)

Constant on (—4, c0)

Absolute minimum at every point (z,—1)

)= 221
No zeros
No z-intercept

y-intercept (0, 1)

Domain (—o0,2) U (2,00)
Range {—1,1}

Constant on (—o0, 2)
Constant on (2, 00)

Absolute minimum at every

— T

point (x,—1)

Re-write f(x) =z + |x| — 3 as

-3 if <0
/(@) { 20 -3 if x>0
f(3)=0
z-intercept (%,0)
y-intercept (0, —3)
Domain (—o0, o0)
Range [—3, 00)
Increasing on [0, c0)
Constant on (—o0, 0]
Absolute minimum at
where x <0
No absolute maximum

every point (x,—3)

LINEAR AND QUADRATIC FUNCTIONS

where x < —4

Absolute maximum at every point (z,1)
where x > —4

Relative maximum AND minimum at every
point on the graph

o 1

-8 -7 —6 -5 —4 —3 —2 —1 1 2
— —14

where x > 2

Absolute maximum at every point (z,1)
where x < 2

Relative maximum AND minimum at every
point on the graph

y

He
o

|
oo
|
N

|
—
.
ot
oo
.
o
8

Relative minimum at every point (z,—3)
where £ <0
Relative maximum at every point (z,—3)
where z < 0

<~ —34
41
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31.

32.

33.

35.

Re-write f(z) = |x + 2| — x as
—2r—2 if <=2
o]

2 if z>-2
No zeros
No z-intercepts
y-intercept (0, 2)
Domain (—o0, o)
Range [2, 00)
Decreasing on (—oo, —2]
Constant on [—2, 00)
Absolute minimum at every point (z,2) where
> =2

Re-write f(x) = |z + 2| — |z| as

-2 if < -2
flx)=4q 22+2 if —-2<2<0

2 if x>0
f(=1)=0

a-intercept (—1,0)

y-intercept (0, 2)

Domain (—o00, c0)

Range [—2, 2]

Increasing on [—2, 0]

Constant on (—oo, —2]

Constant on [0, 00)

Absolute minimum at every point
< -2

Re-write f(z) = |z + 4| + | — 2| as

—2r—-2 if x<-4
f(z) = 6 if —4<z<?2
20 +2 if x>2

No zeros

No z-intercept

y-intercept (0, 6)

Domain (—o0, 00)

Range [6, c0)

Decreasing on (—oo, —4]

Constant on [—4, 2]

Increasing on [2,00)

Absolute minimum at every point (z,6) where
—4<xr<2

No absolute maximum

Relative minimum at every point (x,6) where

f(@) = x| — 4|

187

No absolute maximum

Relative minimum at every point (x,2) where
T > —2

Relative maximum at every point (z,2) where
> =2

Y
'\ )
9

-3 -2 -1 1 27z

Absolute maximum at every point (x,2) where
x>0

Relative minimum at every point (z,—2) where
x < —2 and at every point (z,2) where x > 0
Relative maximum at every point (z, —2) where
x < —2 and at every point (z,2) where x > 0

A

S AR
—14
(z,—2) where -2

A4 <xr<2
Relative maximum at every point (z,6) where
—4 <z <2
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2.3 (QUADRATIC FUNCTIONS

You may recall studying quadratic equations in Intermediate Algebra. In this section, we review
those equations in the context of our next family of functions: the quadratic functions.

Definition 2.5. A quadratic function is a function of the form

f(z) = az® + bz +c,

where a, b and ¢ are real numbers with a # 0. The domain of a quadratic function is (—o0, 00).

The most basic quadratic function is f(z) = 22, whose graph appears below. Its shape should look
familiar from Intermediate Algebra — it is called a parabola. The point (0,0) is called the vertex
of the parabola. In this case, the vertex is a relative minimum and is also the where the absolute
minimum value of f can be found.

(—2,4) 4l (2,4)
34
24

(—1,1)% 11 #4(1,1)

-2 -1 (0,001 2 =z

f(a) =a?

Much like many of the absolute value functions in Section 2.2, knowing the graph of f(z) =

enables us to graph an entire family of quadratic functions using transformations.

Example 2.3.1. Graph the following functions starting with the graph of f(z) = 2% and using
transformations. Find the vertex, state the range and find the z- and y-intercepts, if any exist.

1. gz)=(z+2)*-3 2. h(z) = —2(x —3)2+1
Solution.

1. Since g(z) = (v + 2)? — 3 = f(x +2) — 3, Theorem 1.7 instructs us to first subtract 2 from
each of the z-values of the points on y = f(x). This shifts the graph of y = f(z) to the left
2 units and moves (—2,4) to (—4,4), (—1,1) to (=3,1), (0,0) to (-=2,0), (1,1) to (—1,1) and
(2,4) to (0,4). Next, we subtract 3 from each of the y-values of these new points. This moves
the graph down 3 units and moves (—4,4) to (—4,1), (—=3,1) to (=3,-2), (—2,0) to (—2,3),
(—=1,1) to (—1,—2) and (0,4) to (0,1). We connect the dots in parabolic fashion to get
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1+ (1,1)

= YRR
f(2) = a? g(@) = f@+2)—3=(a+2)?>—3

From the graph, we see that the vertex has moved from (0,0) on the graph of y = f(x)
to (—2,—3) on the graph of y = g(z). This sets [-3,00) as the range of g. We see that
the graph of y = g(x) crosses the z-axis twice, so we expect two z-intercepts. To find
these, we set y = g(x) = 0 and solve. Doing so yields the equation (z +2)?> —3 = 0, or
(x + 2)2 = 3. Extracting square roots gives x 4+ 2 = ++/3, or £ = —2 + /3. Our z-intercepts
are (—2 —1/3,0) ~ (—3.73,0) and (—2 + v/3,0) = (—0.27,0). The y-intercept of the graph,
(0,1) was one of the points we originally plotted, so we are done.

2. Following Theorem 1.7 once more, to graph h(z) = —2(x —3)2+1 = —2f(x — 3) + 1, we first
start by adding 3 to each of the z-values of the points on the graph of y = f(z). This effects
a horizontal shift right 3 units and moves (—2,4) to (1,4), (—1,1) to (2,1), (0,0) to (3,0),
(1,1) to (4,1) and (2,4) to (5,4). Next, we multiply each of our y-values first by —2 and then
add 1 to that result. Geometrically, this is a vertical stretch by a factor of 2, followed by a
reflection about the z-axis, followed by a vertical shift up 1 unit. This moves (1,4) to (1, —7),
(2,1) to (2,—1), (3,0) to (3,1), (4,1) to (4,—1) and (5,4) to (5,—7).

(-2,4) al (2,4)

h(zx)

—2f(z—3)+1
—2(z—3)2+1

The vertex is (3,1) which makes the range of h (—oo,1]. From our graph, we know that
there are two z-intercepts, so we set y = h(z) = 0 and solve. We get —2(z —3)2 +1 =10
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which gives (z — 3)% = % Extracting square roots' gives x — 3 = :t@, so that when we

add 3 to each side,? we get x = %. Hence, our z-intercepts are (6_‘/§,O> ~ (2.29,0) and

2
<6+2‘/§, 0) ~ (3.71,0). Although our graph doesn’t show it, there is a y-intercept which can

be found by setting x = 0. With h(0) = —2(0 — 3)? + 1 = —17, we have that our y-intercept
is (0, —17). O

A few remarks about Example 2.3.1 are in order. First note that neither the formula given for
g(x) nor the one given for h(x) match the form given in Definition 2.5. We could, of course,
convert both g(z) and h(z) into that form by expanding and collecting like terms. Doing so, we
find g(z) = (x +2)2 -3 =2%2+42 + 1 and h(z) = —2(z — 3)2 + 1 = —22% + 122 — 17. While
these ‘simplified’ formulas for g(x) and h(z) satisfy Definition 2.5, they do not lend themselves to
graphing easily. For that reason, the form of g and h presented in Example 2.3.2 is given a special
name, which we list below, along with the form presented in Definition 2.5.

Definition 2.6. Standard and General Form of Quadratic Functions: Suppose f is a
quadratic function.

e The general form of the quadratic function f is f(z) = az? + bx + ¢, where a, b and ¢
are real numbers with a # 0.

e The standard form of the quadratic function f is f(z) = a(z — h)? + k, where a, h and
k are real numbers with a # 0.

It is important to note at this stage that we have no guarantees that every quadratic function can
be written in standard form. This is actually true, and we prove this later in the exposition, but
for now we celebrate the advantages of the standard form, starting with the following theorem.

Theorem 2.2. Vertex Formula for Quadratics in Standard Form: For the quadratic
function f(x) = a(x — h)? + k, where a, h and k are real numbers with a # 0, the vertex of the

graph of y = f(x) is (h, k).

We can readily verify the formula given Theorem 2.2 with the two functions given in Example
2.3.1. After a (slight) rewrite, g(z) = (z +2)? — 3 = (z — (—2))? + (=3), and we identify h = —2
and k = —3. Sure enough, we found the vertex of the graph of y = g(x) to be (—2,-3). For
h(x) = —2(x — 3)? + 1, no rewrite is needed. We can directly identify h = 3 and k = 1 and, sure
enough, we found the vertex of the graph of y = h(z) to be (3,1).

To see why the formula in Theorem 2.2 produces the vertex, consider the graph of the equation
y = a(x —h)?+k. When we substitute x = h, we get y = k, so (h, k) is on the graph. If  # h, then
r—h # 0so (z—h)? is a positive number. If a > 0, then a(z — h)? is positive, thus y = a(x —h)>+k
is always a number larger than k. This means that when a > 0, (h, k) is the lowest point on the
graph and thus the parabola must open upwards, making (h, k) the vertex. A similar argument

'and rationalizing denominators!
Zand get common denominators!
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shows that if a < 0, (h, k) is the highest point on the graph, so the parabola opens downwards, and
(h, k) is also the vertex in this case.

Alternatively, we can apply the machinery in Section 1.7. Since the vertex of y = x2 is (0, 0), we can
determine the vertex of y = a(x —h)%+k by determining the final destination of (0, 0) as it is moved
through each transformation. To obtain the formula f(x) = a(x — h)? + k, we start with g(z) = 22
and first define g,(x) = ag(z) = az?. This is results in a vertical scaling and/or reflection.? Since
we multiply the output by a, we multiply the y-coordinates on the graph of g by a, so the point
(0,0) remains (0,0) and remains the vertex. Next, we define g,(z) = g,(z — h) = a(x — h)%. This
induces a horizontal shift right or left i units* moves the vertex, in either case, to (h,0). Finally,
f(x) = go(x) + k = a(x — h)? + k which effects a vertical shift up or down & units® resulting in the
vertex moving from (h,0) to (h, k).

In addition to verifying Theorem 2.2, the arguments in the two preceding paragraphs have also
shown us the role of the number a in the graphs of quadratic functions. The graph of y = a(z—h)%+k
is a parabola ‘opening upwards’ if a > 0, and ‘opening downwards’ if a < 0. Moreover, the symmetry
enjoyed by the graph of y = 22 about the y-axis is translated to a symmetry about the vertical line
x = h which is the vertical line through the vertex.® This line is called the axis of symmetry of
the parabola and is dashed in the figures below.

vertex

I
I
I
I
I
vertex :

a>0 a<0

Graphs of y = a(z — h)? + k.

Without a doubt, the standard form of a quadratic function, coupled with the machinery in Section
1.7, allows us to list the attributes of the graphs of such functions quickly and elegantly. What
remains to be shown, however, is the fact that every quadratic function can be written in standard
form. To convert a quadratic function given in general form into standard form, we employ the
ancient rite of ‘Completing the Square’. We remind the reader how this is done in our next example.

Example 2.3.2. Convert the functions below from general form to standard form. Find the vertex,
axis of symmetry and any x- or y-intercepts. Graph each function and determine its range.

1. f(x)=2% -4z +3. 2. g(z) =6 —x — 22

3Just a scaling if a > 0. If a < 0, there is a reflection involved.
4Right if h > 0, left if b < 0.

SUpifk >0, downif k<0

5You should use transformations to verify this!



192 LINEAR AND QUADRATIC FUNCTIONS

Solution.

1. To convert from general form to standard form, we complete the square.” First, we verify
that the coefficient of 22 is 1. Next, we find the coefficient of z, in this case —4, and take half
of it to get 2(—4) = —2. This tells us that our target perfect square quantity is (z — 2)2. To
get an expression equivalent to (z — 2)2, we need to add (—2)% = 4 to the 2 — 4z to create
a perfect square trinomial, but to keep the balance, we must also subtract it. We collect the
terms which create the perfect square and gather the remaining constant terms. Putting it
all together, we get

flz) = 2?2 —4x+3 (Compute £(—4) = —2.)
(22 =4z +4—4) +3 (Add and subtract (—2)? =4 to (z? + 4x).)

(mQ —4r + 4) —443 (Group the perfect square trinomial.)

= (z-22-1 (Factor the perfect square trinomial.)

Of course, we can always check our answer by multiplying out f(z) = (x — 2)? — 1 to see
that it simplifies to f(z) = 22 — 4z — 1. In the form f(z) = (z — 2)? — 1, we readily find the
vertex to be (2, —1) which makes the axis of symmetry z = 2. To find the x-intercepts, we
set y = f(xz) = 0. We are spoiled for choice, since we have two formulas for f(x). Since we
recognize f(x) = x? — 4z + 3 to be easily factorable,® we proceed to solve z? — 4z + 3 = 0.
Factoring gives (z —3)(z —1) = 0 so that = 3 or = 1. The z-intercepts are then (1,0) and
(3,0). To find the y-intercept, we set x = 0. Once again, the general form f(z) = 2% — 4z +3
is easiest to work with here, and we find y = f(0) = 3. Hence, the y-intercept is (0,3). With
the vertex, axis of symmetry and the intercepts, we get a pretty good graph without the need
to plot additional points. We see that the range of f is [~1,00) and we are done.

2. To get started, we rewrite g(r) = 6 — x — 22 = —2? — ¥ + 6 and note that the coefficient of

22 is —1, not 1. This means our first step is to factor out the (—1) from both the 2? and z

terms. We then follow the completing the square recipe as above.

g(z) = —2*2—-2+6
= (1) (2*+2)+6 (Factor the coefficient of 22 from z? and x.)
11
= (_1)($2+$+;—;>+6
= (-1 (z*+z+31)+(-1)(-3) +6 (Group the perfect square trinomial.)

— @} F

"If you forget why we do what we do to complete the square, start with a(xz — h)? + k, multiply it out, step by
step, and then reverse the process.
8Experience pays off, here!
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From g(x )1 ( )2 + 245, we get the vertex to be (—l @) and the axis of symmetry to

27 4
be x = —1. To get the z-intercepts, we opt to set the given formula g(z) = 6 — z — 22 = 0.
Solving, We get © = —3 and x = 2, so the z-intercepts are (—3,0) and (2,0). Setting = = 0,
we find ¢g(0) = 6, so the y—intercept is (0,6). Plotting these points gives us the graph below.

We see that the range of g is (—oo 25].

’ 4
Yy !
|
|
|
|
|
x¥2
|
|
|
2 I
|
|
a0\ 1 /6o
,171" \f/z’s 1 5 g
(27_1)

O

With Example 2.3.2 fresh in our minds, we are now in a position to show that every quadratic
function can be written in standard form. We begin with f(z) = az? + bz + ¢, assume a # 0, and
complete the square in complete generality.

f(x) = az?+bx+c

b
= a <x2 + x) +c (Factor out coefficient of 22 from 22 and z.)
a
= N
N v a’ 402 4a? ¢
+b +b2 b’ + (Group the perfect square trinomial.)
= z? T — c rou r uare trinomial.
0 4a2 4a2 p p q
b\? b2
= a (:E + 2> + T (Factor and get a common denominator.)
a a
Comparing this last expression with the standard form, we identify (z — h) with (3: + %) so that
h = —%. Instead of memorizing the value k = 4“2 b2 , we see that f ( 2@) = 4“Z;b2. As such, we

have derived a vertex formula for the general form. We summarize both vertex formulas in the box
at the top of the next page.
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Equation 2.4. Vertex Formulas for Quadratic Functions: Suppose a, b, ¢, h and k are
real numbers with a # 0.

e If f(z) = a(x — h)? + k, the vertex of the graph of y = f(x) is the point (h, k).

b b
o If f(z) = ax® + bz + ¢, the vertex of the graph of y = f(z) is the point (—2(1, f <_2a)>'

There are two more results which can be gleaned from the completed-square form of the general
form of a quadratic function,

b\?  dac—b?
— 2 —
f(x) =ax +bx+c—a<x+2a> + 1a

We have seen that the number a in the standard form of a quadratic function determines whether
the parabola opens upwards (if @ > 0) or downwards (if a < 0). We see here that this number
a is none other than the coefficient of 22 in the general form of the quadratic function. In other
words, it is the coefficient of 22 alone which determines this behavior — a result that is generalized
in Section 3.1. The second treasure is a re-discovery of the quadratic formula.

Equation 2.5. The Quadratic Formula: If a, b and ¢ are real numbers with a ## 0, then the
solutions to ax? + bx 4+ ¢ = 0 are

. —b+ Vb%2 — 4dac
- 2a '

Assuming the conditions of Equation 2.5, the solutions to az? + bz 4+ ¢ = 0 are precisely the zeros
of f(z) = az? + bx + c. Since

b\?  dac—b?
f(fl:):aa:2+b:z+c:a<x+2a> +GCT

the equation az? 4 bx + ¢ = 0 is equivalent to

NPT
2a 4a

Solving gives
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< b>2 dac — b2
ale+—) +=—= =0

2a 4a
4 b2 dac — b2
alzr+ — = ———
2a 4a
1 n b2 1 /b2 — dac
—lalz+ — = - —
a 2a a 4a
4 i 2 B b% — dac
YT % N 4a?
b b2 — dac
r+— = £/ —— extract square roots
2a 4a?
b Vb% — dac
r+— = £—+-——
2a 2a
b Vb2 — 4dac
€T = _— :l: N
2a 2a
—b++vb? —4ac
x pry
2a

In our discussions of domain, we were warned against having negative numbers underneath the
square root. Given that v/b2 — 4ac is part of the Quadratic Formula, we will need to pay special
attention to the radicand b? — 4ac. It turns out that the quantity b> — 4ac plays a critical role in
determining the nature of the solutions to a quadratic equation. It is given a special name.

Definition 2.7. If a, b and ¢ are real numbers with a # 0, then the discriminant of the
quadratic equation ax? + bx + ¢ = 0 is the quantity b — 4ac.

The discriminant ‘discriminates’ between the kinds of solutions we get from a quadratic equation.
These cases, and their relation to the discriminant, are summarized below.

Theorem 2.3. Discriminant Trichotomy: Let a, b and ¢ be real numbers with a # 0.

e If b — 4ac < 0, the equation az? 4+ bx + ¢ = 0 has no real solutions.
o If b2 — 4ac = 0, the equation azx? + bx + ¢ = 0 has exactly one real solution.

e If b?> — 4ac > 0, the equation az? + bx + ¢ = 0 has exactly two real solutions.

The proof of Theorem 2.3 stems from the position of the discriminant in the quadratic equation,
and is left as a good mental exercise for the reader. The next example exploits the fruits of all of
our labor in this section thus far.
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Example 2.3.3. Recall that the profit (defined on page 82) for a product is defined by the equation
Profit = Revenue — Cost, or P(z) = R(x) — C(z). In Example 2.1.7 the weekly revenue, in dollars,
made by selling x PortaBoy Game Systems was found to be R(z) = —1.52% + 250z with the
restriction (carried over from the price-demand function) that 0 < x < 166. The cost, in dollars,
to produce x PortaBoy Game Systems is given in Example 2.1.5 as C'(x) = 80x + 150 for x > 0.

1.

2.

Determine the weekly profit function P(x).

Graph y = P(x). Include the z- and y-intercepts as well as the vertex and axis of symmetry.

. Interpret the zeros of P.
. Interpret the vertex of the graph of y = P(z).

. Recall that the weekly price-demand equation for PortaBoys is p(z) = —1.5z + 250, where

p(x) is the price per PortaBoy, in dollars, and z is the weekly sales. What should the price
per system be in order to maximize profit?

Solution.

1.

To find the profit function P(x), we subtract
P(z) = R(z) — C(z) = (—1.52% + 2502) — (80x + 150) = —1.52° + 170z — 150.

Since the revenue function is valid when 0 < x < 166, P is also restricted to these values.

. To find the z-intercepts, we set P(z) = 0 and solve —1.52% 4+ 170z — 150 = 0. The mere

thought of trying to factor the left hand side of this equation could do serious psychological
damage, so we resort to the quadratic formula, Equation 2.5. Identifying a = —1.5, b = 170,
and ¢ = —150, we obtain

—b+ Vb? — 4dac
2a
—170 & /1702 — 4(—1.5)(—150)
2(—1.5)
—170 + /28000
-3
170 £ 204/70
3

We get two x- mtercepts (170 20170 0) and (m 0) To find the y-intercept, we set

x =0 and find y = = —150 for a y-intercept of (0, —150). To find the vertex, we use

the fact that P(x) = —1.53: + 1702 — 150 is in the general form of a quadratic function and

appeal to Equation 2.4. Substituting a = —1.5 and b = 170, we get « = —2(1_7195) = %.
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1499 and find that our vertex

To find the y-coordinate of the vertex, we compute P (%) =
is (%O, @). The axis of symmetry is the vertical line passing through the vertex so it is
the line x = 13@' To sketch a reasonable graph, we approximate the z-intercepts, (0.89,0)
and (112.44,0), and the vertex, (56.67,4666.67). (Note that in order to get the z-intercepts
and the vertex to show up in the same picture, we had to scale the z-axis differently than
the y-axis. This results in the left-hand z-intercept and the y-intercept being uncomfortably

close to each other and to the origin in the picture.)

y 1
4000+
3000+
2000+

1000+

/ 10 20 30 40 50

60 70 80 90 100 115\1‘20 s

3. The zeros of P are the solutions to P(z) = 0, which we have found to be approximately
0.89 and 112.44. As we saw in Example 1.5.3, these are the ‘break-even’ points of the profit
function, where enough product is sold to recover the cost spent to make the product. More
importantly, we see from the graph that as long as = is between 0.89 and 112.44, the graph
y = P(z) is above the z-axis, meaning y = P(x) > 0 there. This means that for these values
of z, a profit is being made. Since x represents the weekly sales of PortaBoy Game Systems,
we round the zeros to positive integers and have that as long as 1, but no more than 112
game systems are sold weekly, the retailer will make a profit.

4. From the graph, we see that the maximum value of P occurs at the vertex, which is approx-
imately (56.67,4666.67). As above, x represents the weekly sales of PortaBoy systems, so we
can’t sell 56.67 game systems. Comparing P(56) = 4666 and P(57) = 4666.5, we conclude
that we will make a maximum profit of $4666.50 if we sell 57 game systems.

5. In the previous part, we found that we need to sell 57 PortaBoys per week to maximize profit.
To find the price per PortaBoy, we substitute x = 57 into the price-demand function to get
p(57) = —1.5(57) + 250 = 164.5. The price should be set at $164.50. O

Our next example is another classic application of quadratic functions.

Example 2.3.4. Much to Donnie’s surprise and delight, he inherits a large parcel of land in
Ashtabula County from one of his (e)strange(d) relatives. The time is finally right for him to
pursue his dream of farming alpaca. He wishes to build a rectangular pasture, and estimates that
he has enough money for 200 linear feet of fencing material. If he makes the pasture adjacent to
a stream (so no fencing is required on that side), what are the dimensions of the pasture which
maximize the area? What is the maximum area? If an average alpaca needs 25 square feet of
grazing area, how many alpaca can Donnie keep in his pasture?
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Solution. It is always helpful to sketch the problem situation, so we do so below.

river

We are tasked to find the dimensions of the pasture which would give a maximum area. We let
w denote the width of the pasture and we let [ denote the length of the pasture. Since the units
given to us in the statement of the problem are feet, we assume w and [ are measured in feet. The
area of the pasture, which we’ll call A, is related to w and [ by the equation A = wl. Since w and
[ are both measured in feet, A has units of feet?, or square feet. We are given the total amount
of fencing available is 200 feet, which means w + [ + w = 200, or, [ + 2w = 200. We now have
two equations, A = wl and [ + 2w = 200. In order to use the tools given to us in this section to
mazximize A, we need to use the information given to write A as a function of just one variable,
either w or [. This is where we use the equation [ + 2w = 200. Solving for [, we find | = 200 — 2w,
and we substitute this into our equation for A. We get A = wl = w(200 — 2w) = 200w — 2w?. We
now have A as a function of w, A(w) = 200w — 2w? = —2w? + 200w.

Before we go any further, we need to find the applied domain of A so that we know what values
of w make sense in this problem situation.’ Since w represents the width of the pasture, w > 0.
Likewise, [ represents the length of the pasture, so [ = 200 — 2w > 0. Solving this latter inequality,
we find w < 100. Hence, the function we wish to maximize is A(w) = —2w?+200w for 0 < w < 100.
Since A is a quadratic function (of w), we know that the graph of y = A(w) is a parabola. Since
the coefficient of w? is —2, we know that this parabola opens downwards. This means that there
is a maximum value to be found, and we know it occurs at the vertex. Using the vertex formula,
we find w = —;Eg) =50, and A(50) = —2(50)2 4+ 200(50) = 5000. Since w = 50 lies in the applied
domain, 0 < w < 100, we have that the area of the pasture is maximized when the width is 50
feet. To find the length, we use | = 200 — 2w and find [ = 200 — 2(50) = 100, so the length of the
pasture is 100 feet. The maximum area is A(50) = 5000, or 5000 square feet. If an average alpaca

requires 25 square feet of pasture, Donnie can raise %go = 200 average alpaca. O

We conclude this section with the graph of a more complicated absolute value function.
Example 2.3.5. Graph f(z) = |2% — x — 6.

Solution. Using the definition of absolute value, Definition 2.4, we have

—(x2—$—6), if 22—2—-6<0
f(x)—{ 22—z —6, if 22—2-6>0

The trouble is that we have yet to develop any analytic techniques to solve nonlinear inequalities
such as 22 — x — 6 < 0. You won’t have to wait long; this is one of the main topics of Section 2.4.

9Donnie would be very upset if, for example, we told him the width of the pasture needs to be —50 feet.
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Nevertheless, we can attack this problem graphically. To that end, we graph y = g(x) = 2> — 2 —6

using the intercepts and the vertex. To find the z-intercepts, we solve 22 — x — 6 = 0. Factoring
gives (x — 3)(x +2) = 0sox = —2 or x = 3. Hence, (—2,0) and (3,0) are z-intercepts. The

y-intercept (0, —6) is found by setting 2 = 0. To plot the vertex, we find z = — 2 — =1 and

2¢ —  2(1) T 2

Yy = (%)2 — (%) —6= —% = —6.25. Plotting, we get the parabola seen below on the left. To obtain
points on the graph of y = f(z) = |2 — 2 — 6|, we can take points on the graph of g(z) = 2> —2—6
and apply the absolute value to each of the y values on the parabola. We see from the graph of g
that for x < —2 or x > 3, the y values on the parabola are greater than or equal to zero (since the
graph is on or above the z-axis), so the absolute value leaves these portions of the graph alone. For
x between —2 and 3, however, the y values on the parabola are negative. For example, the point
(0,—6) on y = 2 — x — 6 would result in the point (0, | — 6|) = (0, —(—6)) = (0,6) on the graph of
f(x) = |22 — 2 — 6]. Proceeding in this manner for all points with 2-coordinates between —2 and
3 results in the graph seen below on the right.

Y Y

y=f(2)=|a® —z 6

O

If we take a step back and look at the graphs of g and f in the last example, we notice that to
obtain the graph of f from the graph of g, we reflect a portion of the graph of g about the z-axis.
We can see this analytically by substituting g(z) = 22 — x — 6 into the formula for f(x) and calling
to mind Theorem 1.4 from Section 1.7.

| —g(z), if g(x) <0
f“)‘{ g(x), if g(z)>0

The function f is defined so that when g(x) is negative (i.e., when its graph is below the z-axis),
the graph of f is its refection across the x-axis. This is a general template to graph functions
of the form f(x) = |g(z)|. From this perspective, the graph of f(x) = |z| can be obtained by
reflecting the portion of the line g(x) = = which is below the z-axis back above the z-axis creating
the characteristic ‘v’ shape.
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2.3.1 EXERCISES

In Exercises 1 - 9, graph the quadratic function. Find the z- and y-intercepts of each graph, if any
exist. If it is given in general form, convert it into standard form; if it is given in standard form,
convert it into general form. Find the domain and range of the function and list the intervals on
which the function is increasing or decreasing. Identify the vertex and the axis of symmetry and
determine whether the vertex yields a relative and absolute maximum or minimum.

1. f(z) =22 +2 2. f(z) = —(z+2)? 3. f(z) =22 —-22-38
4. flz) = =2(x+1)2+4 5. f(x) =222 —4x —1 6. f(x)=—322+42 -7
7. flz) =22 +z+1 8. f(z) =322 +5x+4 910 f(x):xQ—ﬁx—l

In Exercises 10 - 14, the cost and price-demand functions are given for different scenarios. For each
scenario,

e Find the profit function P(z).

e Find the number of items which need to be sold in order to maximize profit.
e Find the maximum profit.

e Find the price to charge per item in order to maximize profit.

e Find and interpret break-even points.

10. The cost, in dollars, to produce x “I’d rather be a Sasquatch” T-Shirts is C'(z) =
x > 0 and the price-demand function, in dollars per shirt, is p(z) =30 — 2z, 0 < z

11. The cost, in dollars, to produce z bottles of 100% All-Natural Certified Free-Trade Organic
Sasquatch Tonic is C(z) = 10x + 100, z > 0 and the price-demand function, in dollars per
bottle, is p(z) =35 —x, 0 < x < 35.

12. The cost, in cents, to produce x cups of Mountain Thunder Lemonade at Junior’s Lemonade
Stand is C'(x) = 18z + 240, x > 0 and the price-demand function, in cents per cup, is
p(z) =90 — 3z, 0 < z < 30.

z + 36, x > 0 and

13. The daily cost, in dollars, to produce x Sasquatch Berry Pies is C(z) = 3
r < 24.

the price-demand function, in dollars per pie, is p(z) = 12 — 0.5z, 0

14. The monthly cost, in hundreds of dollars, to produce x custom built electric scooters is
C(x) = 20z + 1000, z > 0 and the price-demand function, in hundreds of dollars per scooter,
is p(x) =140 — 2z, 0 <z < 70.

"We have already seen the graph of this function. It was used as an example in Section 1.6 to show how the
graphing calculator can be misleading.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

The International Silver Strings Submarine Band holds a bake sale each year to fund their
trip to the National Sasquatch Convention. It has been determined that the cost in dollars
of baking z cookies is C(z) = 0.1z 4+ 25 and that the demand function for their cookies is
p =10 — .01x. How many cookies should they bake in order to maximize their profit?

Using data from Bureau of Transportation Statistics, the average fuel economy F' in miles
per gallon for passenger cars in the US can be modeled by F(t) = —0.0076t> + 0.45¢ + 16,
0 <t < 28, where t is the number of years since 1980. Find and interpret the coordinates of
the vertex of the graph of y = F(t).

The temperature T, in degrees Fahrenheit, ¢ hours after 6 AM is given by:
1
T(t) = —§t2+8t+32, 0<t<12

What is the warmest temperature of the day? When does this happen?

Suppose C(z) = x? — 10x + 27 represents the costs, in hundreds, to produce = thousand pens.
How many pens should be produced to minimize the cost? What is this minimum cost?

Skippy wishes to plant a vegetable garden along one side of his house. In his garage, he found
32 linear feet of fencing. Since one side of the garden will border the house, Skippy doesn’t
need fencing along that side. What are the dimensions of the garden which will maximize
the area of the garden? What is the maximum area of the garden?

In the situation of Example 2.3.4, Donnie has a nightmare that one of his alpaca herd fell into
the river and drowned. To avoid this, he wants to move his rectangular pasture away from
the river. This means that all four sides of the pasture require fencing. If the total amount
of fencing available is still 200 linear feet, what dimensions maximize the area of the pasture
now? What is the maximum area? Assuming an average alpaca requires 25 square feet of
pasture, how many alpaca can he raise now?

What is the largest rectangular area one can enclose with 14 inches of string?

The height of an object dropped from the roof of an eight story building is modeled by
h(t) = —16t> 4+ 64, 0 < t < 2. Here, h is the height of the object off the ground, in feet, ¢
seconds after the object is dropped. How long before the object hits the ground?

The height h in feet of a model rocket above the ground ¢ seconds after lift-off is given by
h(t) = —5t2 4+ 100¢, for 0 < ¢t < 20. When does the rocket reach its maximum height above
the ground? What is its maximum height?

Carl’s friend Jason participates in the Highland Games. In one event, the hammer throw, the
height h in feet of the hammer above the ground ¢ seconds after Jason lets it go is modeled by
h(t) = —16t% + 22.08t 4+ 6. What is the hammer’s maximum height? What is the hammer’s
total time in the air? Round your answers to two decimal places.


http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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26.

27.
28.

29.

30.
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Assuming no air resistance or forces other than the Earth’s gravity, the height above the
ground at time ¢ of a falling object is given by s(t) = —4.9t2 4 vyt + s, where s is in meters, ¢
is in seconds, v, is the object’s initial velocity in meters per second and s, is its initial position
in meters.

What is the applied domain of this function?
Discuss with your classmates what each of v, > 0, v, = 0 and v, < 0 would mean.
Come up with a scenario in which s, < 0.

Let’s say a slingshot is used to shoot a marble straight up from the ground (s, = 0) with
an initial velocity of 15 meters per second. What is the marble’s maximum height above
the ground? At what time will it hit the ground?

(e) Now shoot the marble from the top of a tower which is 25 meters tall. When does it hit
the ground?

(f) What would the height function be if instead of shooting the marble up off of the tower,
you were to shoot it straight DOWN from the top of the tower?

The two towers of a suspension bridge are 400 feet apart. The parabolic cable!! attached to
the tops of the towers is 10 feet above the point on the bridge deck that is midway between
the towers. If the towers are 100 feet tall, find the height of the cable directly above a point
of the bridge deck that is 50 feet to the right of the left-hand tower.

Graph f(z) = |1 — 22|
Find all of the points on the line y = 1 — 2 which are 2 units from (1, —1).

Let L be the line y = 2x+ 1. Find a function D(z) which measures the distance squared from
a point on L to (0,0). Use this to find the point on L closest to (0,0).

With the help of your classmates, show that if a quadratic function f(z) = ax?® + bx + ¢ has
two real zeros then the z-coordinate of the vertex is the midpoint of the zeros.

In Exercises 31 - 36, solve the quadratic equation for the indicated variable.

31.

34.

2?2 —10y? =0 for z 32. y? —4y =2% — 4 for x 33. 22 —mx =1for

y? — 3y = 4x for y 35. y2 —dy =22 —4fory 36. —gt® 4+ vyt + s, = 0 for t
(Assume g # 0.)

"The weight of the bridge deck forces the bridge cable into a parabola and a free hanging cable such as a power
line does not form a parabola. We shall see in Exercise 35 in Section 6.5 what shape a free hanging cable makes.
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2.3.2 ANSWERS

1. f(x) = 2% + 2 (this is both forms!)
No z-intercepts
y-intercept (0, 2)
Domain: (—o0,00)
Range: [2, 00)
Decreasing on (—o0, 0]
Increasing on [0, c0)
Vertex (0,2) is a minimum
Axis of symmetry z =0

2. f(x)=—(z+2)%2=—-22—42 -4
x-intercept (—2,0)
y-intercept (0, —4)
Domain: (—o0,00)
Range: (—o0, 0]
Increasing on (—oo, —2]
Decreasing on [—2, 00)
Vertex (—2,0) is a maximum
Axis of symmetry z = —2

3. fx) =22 -22-8=(x—1)2-9
x-intercepts (—2,0) and (4,0)
y-intercept (0, —8)

Domain: (—o0,00)

Range: [—9, 00)

Decreasing on (—oo, 1]
Increasing on [1, 00)

Vertex (1, —9) is a minimum
Axis of symmetry z =1

4. f(z)=-2(x+1)?+4=—222 — 4o +2
x-intercepts (—1 —1/2,0) and (—1+ v/2,0)
y-intercept (0, 2)

Domain: (—o0,00)

Range: (—o0,4]

Increasing on (—oo, —1]
Decreasing on [—1, 00)
Vertex (—1,4) is a maximum
Axis of symmetry z = —1
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5. f(x) =222 —dr —1=2(x—1)>-3

(2_2‘/6,0) and (—24'2‘/6,0)

y-intercept (0, —1)

Domain: (—o0,c0)

Range: [—3, 00)

Increasing on [1, 00)
Decreasing on (—o0, 1]
Vertex (1, —3) is a minimum
Axis of symmetry z =1

z-intercepts

6. f(z)=—322+4x—7T=-3(x—2)" -

No z-intercepts
y-intercept (0, —7)

Domain: (—o0, c0)
Range: (—oo,—%7
Increasing on (—oo,

Decreasing on [ , 00
2 17\ .
Vertex (g, —g) is a maximum

Axis of symmetry x = %

win
—"W0IND

T f@)=a?ta+1=(z+3)"+3

No z-intercepts

y-intercept (0, 1)

Domain: (—o0,c0)

Range: [%, oo)
Increasing on [—%, oo)
Decreasing on (—oo7 —%]
Vertex (—%, %) is a minimum
Axis of symmetry x = —%

LINEAR AND QUADRATIC FUNCTIONS
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8. f(z)=—322+5x+4=-3(x-2)"+1
x-intercepts (5_6@,0) and (%’0)
y-intercept (0,4)

Domain: (—o0,00)

Range: (—oo, 3]

Increasing on (—oo, %]
Decreasing on [%’ oo)

Vertex (%, %) is a maximum
5

w-
8
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10.

11.

Axis of symmetry z = 3

zr-intercepts ( 500
y-intercept (0, —1)
Domain: (—o0,00)
Range: [—m, 00
Decreasing on (—oo, ﬁ]
Increasing on [%,

T a0y ‘s
Vertex (200, 40000) is a minimum
Axis of symmetry z = 555

_ 2 1o 4 _ (. _1)2 _ 40001
=T 100% 1—(9” 200) 20000

144/40001 d (1=v40001 Y
an 200

40001 )

o)
12

’/1593

|

ot

|

-

/wa»mmﬂoo
A S S S
————t

P(z) = —22% + 282 — 26, for 0 < x < 15.

7 T-shirts should be made and sold to maximize profit.

The maximum profit is $72.

The price per T-shirt should be set at $16 to maximize profit.

The break even points are x = 1 and x = 13, so to make a profit, between 1 and 13
T-shirts need to be made and sold.

P(z) = —x2 + 25z — 100, for 0 < x < 35

Since the vertex occurs at x = 12.5, and it is impossible to make or sell 12.5 bottles of
tonic, maximum profit occurs when either 12 or 13 bottles of tonic are made and sold.

The maximum profit is $56.

The price per bottle can be either $23 (to sell 12 bottles) or $22 (to sell 13 bottles.)
Both will result in the maximum profit.

The break even points are x = 5 and z = 20, so to make a profit, between 5 and 20
bottles of tonic need to be made and sold.

12¥owll need to use your calculator to zoom in far enough to see that the vertex is not the y-intercept.
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12.

13.

14.

15.
16.

17.
18.
19.
20.
21.
22.
23.
24.
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e P(r) = —3z%+ 72x — 240, for 0 < x < 30

e 12 cups of lemonade need to be made and sold to maximize profit.

e The maximum profit is 192¢ or $1.92.

e The price per cup should be set at 54¢ per cup to maximize profit.

e The break even points are x = 4 and = = 20, so to make a profit, between 4 and 20 cups
of lemonade need to be made and sold.

e P(x)=—0.522 492 — 36, for 0 < x < 24

e 9 pies should be made and sold to maximize the daily profit.

e The maximum daily profit is $4.50.

e The price per pie should be set at $7.50 to maximize profit.

e The break even points are x = 6 and x = 12, so to make a profit, between 6 and 12 pies
need to be made and sold daily.

e P(z) = —2z% + 1202 — 1000, for 0 < x < 70

e 30 scooters need to be made and sold to maximize profit.

e The maximum monthly profit is 800 hundred dollars, or $80,000.

e The price per scooter should be set at 80 hundred dollars, or $8000 per scooter.

e The break even points are £ = 10 and x = 50, so to make a profit, between 10 and 50
scooters need to be made and sold monthly.

495 cookies

The vertex is (approximately) (29.60,22.66), which corresponds to a maximum fuel economy
of 22.66 miles per gallon, reached sometime between 2009 and 2010 (29 — 30 years after 1980.)
Unfortunately, the model is only valid up until 2008 (28 years after 1908.) So, at this point,
we are using the model to predict the maximum fuel economy.

64° at 2 PM (8 hours after 6 AM.)

5000 pens should be produced for a cost of $200.

8 feet by 16 feet; maximum area is 128 square feet.

50 feet by 50 feet; maximum area is 2500 feet; he can raise 100 average alpacas.
The largest rectangle has area 12.25 square inches.

2 seconds.

The rocket reaches its maximum height of 500 feet 10 seconds after lift-off.

The hammer reaches a maximum height of approximately 13.62 feet. The hammer is in the
air approximately 1.61 seconds.



2.3 QUADRATIC FUNCTIONS 207

25. (a) The applied domain is [0, c0).
(d) The height function is this case is s(t) = —4.9t> + 15t. The vertex of this parabola

is approximately (1.53,11.48) so the maximum height reached by the marble is 11.48
meters. It hits the ground again when ¢ ~ 3.06 seconds.

(e) The revised height function is s(t) = —4.9t> 4 15t + 25 which has zeros at t ~ —1.20 and
t =~ 4.26. We ignore the negative value and claim that the marble will hit the ground
after 4.26 seconds.

(f) Shooting down means the initial velocity is negative so the height functions becomes
s(t) = —4.9t% — 15t + 25.

26. Make the vertex of the parabola (0,10) so that the point on the top of the left-hand tower
where the cable connects is (—200, 100) and the point on the top of the right-hand tower is
(200, 100). Then the parabola is given by p(z) = ﬁa@ + 10. Standing 50 feet to the right of
the left-hand tower means you're standing at x = —150 and p(—150) = 60.625. So the cable
is 60.625 feet above the bridge deck there.

27. y = |1 — 22| 25, (3—ﬁ—1+ﬁ> <3+ﬁ —1—ﬁ>

Y 2 2 2 2

-2 -1 1 2 x

29. D(z) = 2*+(2z+1)? = 52> +4z+1, D is minimized when z = —2, so the point on y = 2z+1
closest to (0,0) is (=2, 1)

575
+vVmItd
31. @ = +yv/10 32. 7 =+(y—2) 33. o = +
+ /1 + o4
34y:@ 35y:2ix 36't:U0 'U0+ gSo

2 29
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2.4 INEQUALITIES WITH ABSOLUTE VALUE AND (QUADRATIC FUNCTIONS

In this section, not only do we develop techniques for solving various classes of inequalities analyt-
ically, we also look at them graphically. The first example motivates the core ideas.
Example 2.4.1. Let f(z) =2z — 1 and g(x) = 5.
1. Solve f(z) = g(z).
2. Solve f(x) < g(x).
)

3. Solve f(x) > g(x)

>
4. Graph y = f(z) and y = g(x) on the same set of axes and interpret your solutions to parts 1
through 3 above.

Solution.

1. To solve f(x) = g(z), we replace f(x) with 2z — 1 and g(z) with 5 to get 2o — 1 = 5. Solving
for x, we get x = 3.

2. The inequality f(x) < g(x) is equivalent to 2x — 1 < 5. Solving gives = < 3 or (—o0, 3).
3. To find where f(z) > g(z), we solve 2z — 1 > 5. We get x > 3, or (3,00).

4. To graph y = f(x), we graph y = 2z — 1, which is a line with a y-intercept of (0, —1) and a
slope of 2. The graph of y = g(x) is y = 5 which is a horizontal line through (0, 5).

To see the connection between the graph and the Algebra, we recall the Fundamental Graph-
ing Principle for Functions in Section 1.6: the point (a,b) is on the graph of f if and only if
f(a) = b. In other words, a generic point on the graph of y = f(z) is (x, f(z)), and a generic
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point on the graph of y = g(z) is (z, g(z)). When we seek solutions to f(z) = g(x), we are
looking for x values whose y values on the graphs of f and g are the same. In part 1, we
found x = 3 is the solution to f(z) = g(x). Sure enough, f(3) =5 and ¢g(3) = 5 so that the
point (3,5) is on both graphs. In other words, the graphs of f and g intersect at (3,5). In
part 2, we set f(z) < g(x) and solved to find x < 3. For x < 3, the point (z, f(x)) is below
(z,g(x)) since the y values on the graph of f are less than the y values on the graph of g
there. Analogously, in part 3, we solved f(z) > g(z) and found x > 3. For = > 3, note that
the graph of f is above the graph of g, since the y values on the graph of f are greater than
the y values on the graph of g for those values of .

Yy Yy
’ ’ y = f(x)
74 7
Ty =g ¢
54
y = g(x)

O]

The preceding example demonstrates the following, which is a consequence of the Fundamental
Graphing Principle for Functions.

Graphical Interpretation of Equations and Inequalities

Suppose f and g are functions.

e The solutions to f(x) = g(z) are the x values where the graphs of y = f(z) and y = g(z)
intersect.

e The solution to f(x) < g(x) is the set of z values where the graph of y = f(x) is below the
graph of y = g(x).

e The solution to f(z) > g(z) is the set of x values where the graph of y = f(z) above the
graph of y = g(z).

The next example turns the tables and furnishes the graphs of two functions and asks for solutions
to equations and inequalities.
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Example 2.4.2. The graphs of f and g are below. (The graph of y = g(z) is bolded.) Use these
graphs to answer the following questions.

34 y = g(z)

(-1,2) ol (1,2)

y=f(z)
1. Solve f(z) = g(x). 2. Solve f(x) < g(z). 3. Solve f(x) > g(x).
Solution.

1. To solve f(x) = g(x), we look for where the graphs of f and ¢ intersect. These appear to be
at the points (—1,2) and (1,2), so our solutions to f(x) = g(x) are z = —1 and = = 1.

2. To solve f(z) < g(x), we look for where the graph of f is below the graph of g. This appears
to happen for the x values less than —1 and greater than 1. Our solution is (—oo, —1)U(1, 00).

3. To solve f(x) > g(z), we look for solutions to f(x) = g(x) as well as f(z) > g(z). We solved
the former equation and found x = +1. To solve f(x) > g(x), we look for where the graph
of f is above the graph of g. This appears to happen between x = —1 and = = 1, on the
interval (—1,1). Hence, our solution to f(z) > g(z) is [-1,1].

y y

y = g(x)

(1,2)
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We now turn our attention to solving inequalities involving the absolute value. We have the
following theorem from Intermediate Algebra to help us.

Theorem 2.4. Inequalities Involving the Absolute Value: Let ¢ be a real number.

e For ¢ > 0, |z| < cis equivalent to —c < z < c.

For ¢ > 0, |z| < ¢ is equivalent to —c < x < c.

For ¢ <0, |z| < ¢ has no solution, and for ¢ < 0, |z| < ¢ has no solution.

For ¢ > 0, |z| > ¢ is equivalent to x < —c or x > c.

For ¢ > 0, |z| > ¢ is equivalent to x < —c or z > c.

e For ¢ <0, |z| > c and |z| > ¢ are true for all real numbers.

As with Theorem 2.1 in Section 2.2, we could argue Theorem 2.4 using cases. However, in light
of what we have developed in this section, we can understand these statements graphically. For
instance, if ¢ > 0, the graph of y = ¢ is a horizontal line which lies above the z-axis through (0, c).
To solve |z| < ¢, we are looking for the = values where the graph of y = |z| is below the graph of
y = c¢. We know that the graphs intersect when |z| = ¢, which, from Section 2.2, we know happens
when x = ¢ or x = —c¢. Graphing, we get

N

We see that the graph of y = |z| is below y = ¢ for z between —c and ¢, and hence we get |z| < ¢
is equivalent to —c < & < c¢. The other properties in Theorem 2.4 can be shown similarly.

Example 2.4.3. Solve the following inequalities analytically; check your answers graphically.

L jz—1/>3 2. 4—320+1] > —2
4
3.2<|z—1<5 4oz 41> 25
Solution.

1. From Theorem 2.4, |z — 1| > 3 is equivalent to x — 1 < =3 or x — 1 > 3. Solving, we get
x < —2 or x > 4, which, in interval notation is (—oo, —2] U [4,00). Graphically, we have
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S

We see that the graph of y = |z — 1| is above the horizontal line y = 3 for x < —2 and = > 4
hence this is where |z — 1| > 3. The two graphs intersect when z = —2 and = = 4, so we have
graphical confirmation of our analytic solution.

. To solve 4 — 3|2z + 1| > —2 analytically, we first isolate the absolute value before applying

Theorem 2.4. To that end, we get —3|2x + 1| > —6 or |2z + 1| < 2. Rewriting, we now have
—2 < 2x+1 < 2so that —% <z < % In interval notation, we write (—%, %) Graphically we

see that the graph of y = 4 — 3|2z + 1| is above y = —2 for z values between —% and %

y=4—3]2z+1]

|
Hl
i\y:- [
I
~3 —
-
t
.
o
8

. Rewriting the compound inequality 2 < [z — 1| <5 as ‘2 < |x — 1| and |x — 1| < 5’ allows us

to solve each piece using Theorem 2.4. The first inequality, 2 < |z — 1| can be re-written as
|t —1]>2s0x—1< —2o0raxz—1>2 Wegetx < —1orz>3. Our solution to the first
inequality is then (—oo, —1)U (3, 00). For |z —1| < 5, we combine results in Theorems 2.1 and
2.4 to get =5 <z —1 <5 so that —4 <z <6, or [—4,6]. Our solution to 2 < |z — 1| <5 is
comprised of values of x which satisfy both parts of the inequality, so we take the intersection!
of (=00, —1) U (3,00) and [—4,6] to get [—4, —1) U (3, 6]. Graphically, we see that the graph
of y = |x — 1| is ‘between’ the horizontal lines y = 2 and y = 5 for = values between —4 and
—1 as well as those between 3 and 6. Including the z values where y = |x — 1] and y = 5
intersect, we get

1See Definition 1.2 in Section 1.1.1.
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~8 -7 —6 —5 -4 -3 —2 —1 1 2 3 4 5 6 7 8 9 g

4. We need to exercise some special caution when solving |z 4 1| > ‘”TH. As we saw in Example

2.2.1 in Section 2.2, when variables are both inside and outside of the absolute value, it’s
usually best to refer to the definition of absolute value, Definition 2.4, to remove the absolute
values and proceed from there. To that end, we have |[x + 1| = —(x + 1) if z < —1 and
|r +1] = 2+ 1if x > —1. We break the inequality into cases, the first case being when
x < —1. For these values of x, our inequality becomes —(z + 1) > %*‘4. Solving, we get
—2x — 2 > x + 4, so that —3x > 6, which means z < —2. Since all of these solutions fall
into the category x < —1, we keep them all. For the second case, we assume z > —1. Our
inequality becomes z+1 > ITH, which gives 2x +2 > x+4 or z > 2. Since all of these values
of = are greater than or equal to —1, we accept all of these solutions as well. Our final answer
is (—o0, —2] U [2, 00).

O]

We now turn our attention to quadratic inequalities. In the last example of Section 2.3, we needed
to determine the solution to 22 —x — 6 < 0. We will now re-visit this problem using some of the
techniques developed in this section not only to reinforce our solution in Section 2.3, but to also
help formulate a general analytic procedure for solving all quadratic inequalities. If we consider
f(x) = 22 — 2 — 6 and g(x) = 0, then solving 22 — 2 — 6 < 0 corresponds graphically to finding
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the values of x for which the graph of y = f(x) = 22 — x — 6 (the parabola) is below the graph of

y = g(z) = 0 (the z-axis). We’ve provided the graph again for reference.

We can see that the graph of f does dip below the x-axis between its two z-intercepts. The zeros
of f are z = —2 and x = 3 in this case and they divide the domain (the z-axis) into three intervals:
(=00, —2), (—2,3) and (3,00). For every number in (—oo, —2), the graph of f is above the z-axis;
in other words, f(z) > 0 for all x in (—oo, —2). Similarly, f(z) < 0 for all z in (-2, 3), and f(x) > 0
for all x in (3,00). We can schematically represent this with the sign diagram below.

()0 (=) 0(+)

) 5

Here, the (4) above a portion of the number line indicates f(x) > 0 for those values of z; the (—)
indicates f(z) < 0 there. The numbers labeled on the number line are the zeros of f, so we place
0 above them. We see at once that the solution to f(z) < 0 is (—2,3).

Our next goal is to establish a procedure by which we can generate the sign diagram without
graphing the function. An important property? of quadratic functions is that if the function is
positive at one point and negative at another, the function must have at least one zero in between.
Graphically, this means that a parabola can’t be above the xz-axis at one point and below the z-axis
at another point without crossing the z-axis. This allows us to determine the sign of all of the
function values on a given interval by testing the function at just ome value in the interval. This
gives us the following.

2We will give this property a name in Chapter 3 and revisit this concept then.
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Steps for Solving a Quadratic Inequality

1. Rewrite the inequality, if necessary, as a quadratic function f(z) on one side of the in-
equality and 0 on the other.

2. Find the zeros of f and place them on the number line with the number 0 above them.
3. Choose a real number, called a test value, in each of the intervals determined in step 2.

4. Determine the sign of f(z) for each test value in step 3, and write that sign above the
corresponding interval.

5. Choose the intervals which correspond to the correct sign to solve the inequality.

Example 2.4.4. Solve the following inequalities analytically using sign diagrams. Verify your
answer graphically.

1. 222 <3 -z 2. 22 —2x>1
3.2 +1< 2 4. 20 —ax? > v —1| -1
Solution.

1. To solve 222 < 3 — z, we first get 0 on one side of the inequality which yields 222+ —3 < 0.
We find the zeros of f(x) = 222 + x — 3 by solving 222 + 2 — 3 = 0 for . Factoring gives

(224 3)(x —1) = 0,50 2 = —2 or z = 1. We place these values on the number line with 0
above them and choose test values in the intervals (—oo, —%), (—%, 1) and (1,00). For the
interval (—oo, —%), we choose® z = —2; for (—%, 1), we pick x = 0; and for (1,00), = = 2.

Evaluating the function at the three test values gives us f(—2) = 3 > 0, so we place (+)
above (—oo,—%); f(0) = =3 < 0, so (—) goes above the interval (—%,1); and, f(2) =7,
which means (+) is placed above (1,00). Since we are solving 222 + z — 3 < 0, we look for
solutions to 222 + z — 3 < 0 as well as solutions for 222 + 2 —3 = 0. For 222 +z — 3 < 0, we
need the intervals which we have a (—). Checking the sign diagram, we see this is (—%, 1).
We know 222 + 2 — 3 = 0 when z = —% and x = 1, so our final answer is [—%, 1].

To verify our solution graphically, we refer to the original inequality, 222 < 3 — 2. We let
g(z) = 222 and h(x) = 3 — x. We are looking for the z values where the graph of g is below
that of h (the solution to g(z) < h(x)) as well as the points of intersection (the solutions to
g(x) = h(x)). The graphs of g and h are given on the right with the sign chart on the left.

3We have to choose something in each interval. If you don’t like our choices, please feel free to choose different
numbers. You’ll get the same sign chart.
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2. Once again, we re-write 2 — 2z > 1 as 22 — 2z — 1 > 0 and we identify f(z) = 2> — 22 — 1.
When we go to find the zeros of f, we find, to our chagrin, that the quadratic 2> — 2z — 1
doesn’t factor nicely. Hence, we resort to the quadratic formula to solve 22 — 2z — 1 = 0, and
arrive at = 1 + /2. As before, these zeros divide the number line into three pieces. To
help us decide on test values, we approximate 1 — /2 ~ —0.4 and 1 + v/2 ~ 2.4. We choose
x = -1,z =0 and z = 3 as our test values and find f(—1) = 2, which is (+); f(0) = —1
which is (=); and f(3) = 2 which is (+) again. Our solution to 22 — 2z — 1 > 0 is where
we have (+), so, in interval notation (—oo, 1-— \/é) U (1 +V2, oo). To check the inequality
2?2 — 22 > 1 graphically, we set g(z) = 2 — 2z and h(z) = 1. We are looking for the z values
where the graph of ¢ is above the graph of h. As before we present the graphs on the right
and the sign chart on the left.

1—:\/5 1:\/5 y
! )V —/

-1

3. To solve 22 + 1 < 2z, as before, we solve 22 — 2z + 1 < 0. Setting f(z) = 22 — 22 + 1 = 0,
we find the only one zero of f, x = 1. This one z value divides the number line into two
intervals, from which we choose z = 0 and = = 2 as test values. We find f(0) =1 > 0 and
f(2) =1 > 0. Since we are looking for solutions to 22 — 2z + 1 < 0, we are looking for x
values where 22 — 2z +1 < 0 as well as where 2 — 22 + 1 = 0. Looking at our sign diagram,
there are no places where 22 — 2x + 1 < 0 (there are no (—)), so our solution is only x = 1
(where 22 — 22 +1 = 0). We write this as {1}. Graphically, we solve 22 4+ 1 < 2z by graphing
g(z) = 22 + 1 and h(z) = 22. We are looking for the z values where the graph of g is below
the graph of h (for #2+1 < 2z) and where the two graphs intersect (z2+1 = 2z). Notice that
the line and the parabola touch at (1,2), but the parabola is always above the line otherwise.?

“In this case, we say the line y = 2z is tangent to y = x> +1 at (1,2). Finding tangent lines to arbitrary functions
is a fundamental problem solved, in general, with Calculus.
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)
() 0 (+)
to Lo
0 2

y =2z

4. To solve our last inequality, 2o — 22 > |z — 1| — 1, we re-write the absolute value using cases.
Forz<1,|Jz—1|=—(x—1)=1—x,s0we get 2z —2? > 1—x—1, or 22 — 3z < 0. Finding
the zeros of f(z) = 22 — 3z, we get = 0 and = = 3. However, we are only concerned with
the portion of the number line where = < 1, so the only zero that we concern ourselves with
is = 0. This divides the interval < 1 into two intervals: (—o0,0) and (0,1). We choose
r=—1and z = % as our test values. We find f(—1) = 4 and f(%) = —% Hence, our
solution to #? — 3x < 0 for x < 1is [0,1). Next, we turn our attention to the case z > 1.
Here, |z — 1| = x —1, so our original inequality becomes 2z —2? >z —1—1, or 22—z —2 < 0.
Setting g(x) = 22 —x — 2, we find the zeros of g to be # = —1 and 2 = 2. Of these, only x = 2
lies in the region = > 1, so we ignore z = —1. Our test intervals are now [1,2) and (2, 00).
We choose z = 1 and « = 3 as our test values and find g(1) = —2 and g(3) = 4. Hence, our
solution to g(z) = 22 — x — 2 < 0, in this region is [1, 2).

(+) 0 () () 0 ()

t 0
1

N|—= —>
—_

_—0

wW —>

Combining these into one sign diagram, we have that our solution is [0,2]. Graphically, to
check 22 — 22 > |z — 1] — 1, we set h(x) = 2z — 22 and i(z) = |z — 1| — 1 and look for the
x values where the graph of h is above the the graph of i (the solution of h(x) > i(x)) as
well as the z-coordinates of the intersection points of both graphs (where h(z) = i(z)). The
combined sign chart is given on the left and the graphs are on the right.

y:2x—x2
()0 (=) 0(+) |
£ 0 4 2t e 1 :
-1 0 3 x

y=lz—-1-1
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One of the classic applications of inequalities is the notion of tolerances.” Recall that for real
numbers z and ¢, the quantity | — ¢| may be interpreted as the distance from = to c¢. Solving
inequalities of the form |x —¢| < d for d > 0 can then be interpreted as finding all numbers x which
lie within d units of ¢. We can think of the number d as a ‘tolerance’ and our solutions x as being
within an accepted tolerance of c. We use this principle in the next example.

Example 2.4.5. The area A (in square inches) of a square piece of particle board which measures
x inches on each side is A(z) = 22. Suppose a manufacturer needs to produce a 24 inch by 24 inch
square piece of particle board as part of a home office desk kit. How close does the side of the piece
of particle board need to be cut to 24 inches to guarantee that the area of the piece is within a
tolerance of 0.25 square inches of the target area of 576 square inches?

Solution. Mathematically, we express the desire for the area A(z) to be within 0.25 square inches
of 576 as |A — 576] < 0.25. Since A(z) = 2%, we get |22 — 576/ < 0.25, which is equivalent
to —0.25 < 2 — 576 < 0.25. One way to proceed at this point is to solve the two inequalities
—0.25 < 22 — 576 and 22 — 576 < 0.25 individually using sign diagrams and then taking the
intersection of the solution sets. While this way will (eventually) lead to the correct answer, we
take this opportunity to showcase the increasing property of the square root: if 0 < a < b, then
Va < v/b. To use this property, we proceed as follows

—0.25 < 22 -576 <0.25

575.75 < x? < 576.25 (add 576 across the inequalities.)
Va2 </576.25 (take square roots.)

lz| < /57625 (Va? = |z])

By Theorem 2.4, we find the solution to v/575.75 < || to be (—oco, —v/575.75 | U [v/575.75,00) and
the solution to |z| < v/576.25 to be [—/576.25,/576.25]. To solve v/575.75 < |z| < v/576.25, we
intersect these two sets to get [—v/576.25, —/575.75] U [\/575.75,1/576.25]. Since x represents a
length, we discard the negative answers and get [\/ 575.75, V. 576.25]. This means that the side of
the piece of particle board must be cut between v/575.75 = 23.995 and v/576.25 ~ 24.005 inches, a
tolerance of (approximately) 0.005 inches of the target length of 24 inches. O

Our last example in the section demonstrates how inequalities can be used to describe regions in
the plane, as we saw earlier in Section 1.2.

Example 2.4.6. Sketch the following relations.
L R={(z,y):y > |z[}
2. S ={(v,y):y <2—2?}

8. T={(a,y): 2] <y <227}

5The underlying concept of Calculus can be phrased in terms of tolerances, so this is well worth your attention.
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Solution.

1. The relation R consists of all points (z,y) whose y-coordinate is greater than |x|. If we graph
y = |x|, then we want all of the points in the plane above the points on the graph. Dotting
the graph of y = |x| as we have done before to indicate that the points on the graph itself are
not in the relation, we get the shaded region below on the left.

2. For a point to be in S, its y-coordinate must be less than or equal to the y-coordinate on the

parabola iy = 2 — 2. This is the set of all points below or on the parabola y = 2 — z2.

Y Y
* 2+ -
\ s
N s
N 7
e 14
N s
1 N 7 1 1 1 1 1 1
- Ty ;2/_'1 '1\295
—14 —14+
The graph of R The graph of S

3. Finally, the relation T takes the points whose y-coordinates satisfy both the conditions given
in R and those of S. Thus we shade the region between y = |z| and y = 2 — 22, keeping those
points on the parabola, but not the points on y = |z|. To get an accurate graph, we need to
find where these two graphs intersect, so we set |z| = 2 — 22. Proceeding as before, breaking

this equation into cases, we get x = —1,1. Graphing yields
y
N 4
N 4
N 4
! I N ! !
-2 -1 1 2
T
—14

The graph of T'
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2.4.1 EXERCISES

In Exercises 1 - 32, solve the inequality. Write your answer using interval notation.

1. |3z —5] <4 2. [Tx+2] > 10

3. 2c+1]-5<0 4. 12—z —-4>-3
5. 13z +5|+2<1 6. 2|7T—z|+4>1
7.2<|4—z| <7 8. 1<|22—-9<3
9. |z +3|> |6z +9| 10. |z —3] -2z +1| <0
1. |1 -2z >z +5 12. £ +5 < |z + 5|
13. =z > |z + 1 4. 22+1|<6—2
15. x+ 2z — 3| < 2 16. 3—z|>z-5
17. 22+ 20 —-3>0 18. 1622 +8x+1>0
19. 2249 < 62 20. 922 + 16 > 24z
21. 2?2 +4 < dx 22. 2 4+1<0

23. 322 < 1lz +4 24. x> x?

25. 222 —4x—1>0 26. 5z +4 < 3x?

27. 2< |22 -9] <9 28. 22 < |4z — 3|

29. 22 +2+1>0 30. 22 > |7|

31. z|z+5]> -6 32, z|lx —3| <2

33. The profit, in dollars, made by selling = bottles of 100% All-Natural Certified Free-Trade
Organic Sasquatch Tonic is given by P(x) = —2% + 252 — 100, for 0 < z < 35. How many
bottles of tonic must be sold to make at least $50 in profit?

34. Suppose C(x) = 22 — 10z + 27, x > 0 represents the costs, in hundreds of dollars, to produce
x thousand pens. Find the number of pens which can be produced for no more than $1100.

35. The temperature T, in degrees Fahrenheit, ¢ hours after 6 AM is given by T'(t) = —%t2—|—8t—|—32,
for 0 <t < 12. When is it warmer than 42° Fahrenheit?
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36.

37.

38.

The height h in feet of a model rocket above the ground t seconds after lift-off is given by
h(t) = —5t% +100t, for 0 < ¢t < 20. When is the rocket at least 250 feet off the ground?
Round your answer to two decimal places.

If a slingshot is used to shoot a marble straight up into the air from 2 meters above the
ground with an initial velocity of 30 meters per second, for what values of time ¢ will the
marble be over 35 meters above the ground? (Refer to Exercise 25 in Section 2.3 for assistance
if needed.) Round your answers to two decimal places.

What temperature values in degrees Celsius are equivalent to the temperature range 50°F to
95°F'? (Refer to Exercise 35 in Section 2.1 for assistance if needed.)

In Exercises 39 - 42, write and solve an inequality involving absolute values for the given statement.

39

40.
41.
42.

43.

44.

Find all real numbers = so that z is within 4 units of 2.

Find all real numbers = so that 3x is within 2 units of —1.

Find all real numbers z so that 2?2 is within 1 unit of 3.

Find all real numbers x so that 22 is at least 7 units away from 4.

The surface area S of a cube with edge length z is given by S(z) = 622 for > 0. Suppose the
cubes your company manufactures are supposed to have a surface area of exactly 42 square
centimeters, but the machines you own are old and cannot always make a cube with the
precise surface area desired. Write an inequality using absolute value that says the surface
area of a given cube is no more than 3 square centimeters away (high or low) from the target
of 42 square centimeters. Solve the inequality and write your answer using interval notation.

Suppose f is a function, L is a real number and ¢ is a positive number. Discuss with your
classmates what the inequality |f(z) — L| < € means algebraically and graphically.®

In Exercises 45 - 50, sketch the graph of the relation.

45.

47.

49.

51.

R={(z,y):y<z-—1} 46. R={(z,y) 1y > z* + 1}
R={(z,y): —1<y<2x+1} 48. R={(z,y) :2* <y <z +2}
R={(z,y):|z|—-4<y<2—xa} 50. R={(z,y):2? <y < |4z - 3|}
Prove the second, third and fourth parts of Theorem 2.4.

5Understanding this type of inequality is really important in Calculus.
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2.4.2 ANSWERS

1.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

34.

35.

£,3] 2. (~00,~2) U (3,00)
(-3,2) 4. (00,1 U [3,00)

No solution 6. (—00,00)
(—3,2]U[6,11) 8. [3,4) U (5,6]

(-2, -] 10. (~00, ~4) U (3, 00)
(—o00,—3] U [6,00) 12. (=00, —5)

No Solution. 14. [-7,2]

(1,2) 16. (—o00,00)

(=00, =3] U1, 00) 18. (=00, —1) U (~7,)
No solution 20. (—o0, 00)

{2} 22. No solution

[—1,4] 24. (0,1)
(=)o 1 10 5 (o) [ )

(-3v2,~vii| u[-v7,0) u (0,v7| U [VIT,3v2) 28. [-2—V7,—2+ V7| U[L,3]
(—00,00) 30. (—o0, —1]U{0} U[1,00)

-6, — — 3+V17

(-6, —3] U[~2, 00) 32, (—o0,1) U (2, 21T

P(z) > 50 on [10,15]. This means anywhere between 10 and 15 bottles of tonic need to be
sold to earn at least $50 in profit.

C(z) <11 on [2,8]. This means anywhere between 2000 and 8000 pens can be produced and
the cost will not exceed $1100.

T(t) > 42 on (8 — 2v/11,8 + 2¢/11) =~ (1.37,14.63), which corresponds to between 7:22 AM
(1.37 hours after 6 AM) to 8:38 PM (14.63 hours after 6 AM.) However, since the model is
valid only for ¢, 0 <t < 12, we restrict our answer and find it is warmer than 42° Fahrenheit
from 7:22 AM to 6 PM.
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36.

37.

38.
39.
40.
41.
42.

43.

45.

h(t) > 250 on [10 — 5v/2,10 4 5v/2] ~ [2.93,17.07]. This means the rocket is at least 250 feet
off the ground between 2.93 and 17.07 seconds after lift off.

s(t) = —4.9t% 4+ 30t + 2. s(t) > 35 on (approximately) (1.44,4.68). This means between 1.44
and 4.68 seconds after it is launched into the air, the marble is more than 35 feet off the
ground.

From our previous work C(F) = 3(F — 32) so 50 < F < 95 becomes 10 < C < 35.
|z — 2] <4, [-2,6]

Bz + 1] <2, [-1,1]
|2 = 3] <1, [-2,-V2]U[v2,2]

|22 — 4] > 7, (—o0, —/11] U [V/11, 00)

Solving |S(x) — 42] < 3, and disregarding the negative solutions yields [,/%,,/12—5] ~
[2.550,2.739]. The edge length must be within 2.550 and 2.739 centimeters.

46.

48.
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49. 50.
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2.5 REGRESSION

We have seen examples already in the text where linear and quadratic functions are used to model
a wide variety of real world phenomena ranging from production costs to the height of a projectile
above the ground. In this section, we use some basic tools from statistical analysis to quantify
linear and quadratic trends that we may see in real world data in order to generate linear and
quadratic models. Our goal is to give the reader an understanding of the basic processes involved,
but we are quick to refer the reader to a more advanced course! for a complete exposition of this
material. Suppose we collected three data points: {(1,2),(3,1),(4,3)}. By plotting these points,
we can clearly see that they do not lie along the same line. If we pick any two of the points, we can
find a line containing both which completely misses the third, but our aim is to find a line which
is in some sense ‘close’ to all the points, even though it may go through none of them. The way
we measure ‘closeness’ in this case is to find the total squared error between the data points
and the line. Consider our three data points and the line y = %:U + % For each of our data points,
we find the vertical distance between the point and the line. To accomplish this, we need to find
a point on the line directly above or below each data point - in other words, a point on the line
with the same x-coordinate as our data point. For example, to find the point on the line directly
below (1,2), we plug z = 1 into y = %w + % and we get the point (1,1). Similarly, we get (3,1) to
correspond to (3,2) and (4, %) for (4,3).

We find the total squared error E by taking the sum of the squares of the differences of the y-
coordinates of each data point and its corresponding point on the line. For the data and line above
E=(2-124(1-22%+(3- %)2 = 2. Using advanced mathematical machinery,? it is possible to
find the line which results in the lowest value of . This line is called the least squares regression
line, or sometimes the ‘line of best fit’. The formula for the line of best fit requires notation we
won’t present until Chapter 9.1, so we will revisit it then. The graphing calculator can come to our
assistance here, since it has a built-in feature to compute the regression line. We enter the data
and perform the Linear Regression feature and we get

land authors with more expertise in this area,
2Like Calculus and Linear Algebra
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g=gx+hk

=, 2142857143
b=1.428571429
Fe=, 1871423571
= 327326853504
[

The calculator tells us that the line of best fit is y = ax 4+ b where the slope is a ~ 0.214 and the
y-coordinate of the y-intercept is b &~ 1.428. (We will stick to using three decimal places for our
approximations.) Using this line, we compute the total squared error for our data to be E' ~ 1.786.
The value r is the correlation coefficient and is a measure of how close the data is to being on
the same line. The closer |r| is to 1, the better the linear fit. Since r ~ 0.327, this tells us that the
line of best fit doesn’t fit all that well - in other words, our data points aren’t close to being linear.
The value 72 is called the coefficient of determination and is also a measure of the goodness of
fit.> Plotting the data with its regression line results in the picture below.

Our first example looks at energy consumption in the US over the past 50 years.

4

Year | Energy Usage,
in Quads®
1950 34.6
1960 45.1
1970 67.8
1980 78.3
1990 84.6
2000 98.9

Example 2.5.1. Using the energy consumption data given above,

1. Plot the data using a graphing calculator.

3We refer the interested reader to a course in Statistics to explore the significance of r and 2.
4See this Department of Energy activity

5The unit 1 Quad is 1 Quadrillion = 10*® BTUs, which is enough heat to raise Lake Erie roughly 1°F


http://www.eia.doe.gov/kids/classactivities/EnergyAnalysisEIA.pdf
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2. Find the least squares regression line and comment on the goodness of fit.
3. Interpret the slope of the line of best fit.
4. Use the regression line to predict the annual US energy consumption in the year 2013.

5. Use the regression line to predict when the annual consumption will reach 120 Quads.
Solution.

1. Entering the data into the calculator gives

L1 Lz Lz K] . o

The data certainly appears to be linear in nature.

2. Performing a linear regression produces

LinRe=a
J=3x+h
a=1.287142857
b=-247V3. 8968475
FE=.97416196814
=. 9269954039
[ |

We can tell both from the correlation coefficient as well as the graph that the regression line
is a good fit to the data.

3. The slope of the regression line is a =~ 1.287. To interpret this, recall that the slope is the
rate of change of the y-coordinates with respect to the x-coordinates. Since the y-coordinates
represent the energy usage in Quads, and the x-coordinates represent years, a slope of positive
1.287 indicates an increase in annual energy usage at the rate of 1.287 Quads per year.

4. To predict the energy needs in 2013, we substitute x = 2013 into the equation of the line of
best fit to get y = 1.287(2013) — 2473.890 ~ 116.841. The predicted annual energy usage of
the US in 2013 is approximately 116.841 Quads.
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5. To predict when the annual US energy usage will reach 120 Quads, we substitute y = 120
into the equation of the line of best fit to get 120 = 1.287x — 2473.908. Solving for x yields
x ~ 2015.454. Since the regression line is increasing, we interpret this result as saying the
annual usage in 2015 won’t yet be 120 Quads, but that in 2016, the demand will be more
than 120 Quads. O

Our next example gives us an opportunity to find a nonlinear model to fit the data. According to
the National Weather Service, the predicted hourly temperatures for Painesville on March 3, 2009
were given as summarized below.

Time | Temperature, °F
10AM 17
11AM 19
12PM 21
1PM 23
2PM 24
3PM 24
4PM 23

To enter this data into the calculator, we need to adjust the z values, since just entering the
numbers could cause confusion. (Do you see why?) We have a few options available to us. Perhaps
the easiest is to convert the times into the 24 hour clock time so that 1 PM is 13, 2 PM is 14, etc..
If we enter these data into the graphing calculator and plot the points we get

L1 Lz B 3 j P
10 i7? —— i o o
11 19
1z 1 o
13 £3
1k £ o
1K Y
1@ £ o
ERIE

While the beginning of the data looks linear, the temperature begins to fall in the afternoon hours.
This sort of behavior reminds us of parabolas, and, sure enough, it is possible to find a parabola of
best fit in the same way we found a line of best fit. The process is called quadratic regression
and its goal is to minimize the least square error of the data with their corresponding points on
the parabola. The calculator has a built in feature for this as well which yields
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The coefficient of determination R? seems reasonably close to 1, and the graph visually seems to
be a decent fit. We use this model in our next example.

Example 2.5.2. Using the quadratic model for the temperature data above, predict the warmest
temperature of the day. When will this occur?

Solution. The maximum temperature will occur at the vertex of the parabola. Recalling the
Vertex Formula, Equation 2.4, x = —% ~ —% ~ 14.741. This corresponds to roughly 2:45
PM. To find the temperature, we substitute x = 14.741 into y = —0.32122 4 9.464x — 45.857 to get

y ~ 23.899, or 23.899°F. [

The results of the last example should remind you that regression models are just that, models. Our
predicted warmest temperature was found to be 23.899°F, but our data says it will warm to 24°F.
It’s all well and good to observe trends and guess at a model, but a more thorough investigation
into why certain data should be linear or quadratic in nature is usually in order - and that, most
often, is the business of scientists.
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2.5.1 EXERCISES

1. According to this website®, the census data for Lake County, Ohio is:

Year 1970 1980 1990 2000
Population | 197200 | 212801 | 215499 | 227511

(a) Find the least squares regression line for these data and comment on the goodness of
fit.” Interpret the slope of the line of best fit.

(b) Use the regression line to predict the population of Lake County in 2010. (The recorded
figure from the 2010 census is 230,041)

(c¢) Use the regression line to predict when the population of Lake County will reach 250,000.

2. According to this website®, the census data for Lorain County, Ohio is:

Year 1970 1980 1990 2000
Population | 256843 | 274909 | 271126 | 284664

(a) Find the least squares regression line for these data and comment on the goodness of fit.
Interpret the slope of the line of best fit.

(b) Use the regression line to predict the population of Lorain County in 2010. (The recorded
figure from the 2010 census is 301,356)

(¢) Use the regression line to predict when the population of Lake County will reach 325,000.

3. Using the energy production data given below

Year 1950 | 1960 | 1970 | 1980 | 1990 | 2000
Production
(in Quads) | 35.6 | 42.8 | 63.5 | 67.2 | 70.7 | 71.2

(a) Plot the data using a graphing calculator and explain why it does not appear to be
linear.

(b) Discuss with your classmates why ignoring the first two data points may be justified
from a historical perspective.

(c) Find the least squares regression line for the last four data points and comment on the
goodness of fit. Interpret the slope of the line of best fit.

(d) Use the regression line to predict the annual US energy production in the year 2010.

(e) Use the regression line to predict when the annual US energy production will reach 100
Quads.

Shttp://www.ohiobiz.com /census/Lake.pdf

"We'll develop more sophisticated models for the growth of populations in Chapter 6. For the moment, we use a
theorem from Calculus to approximate those functions with lines.
Shttp://www.ohiobiz.com/census,/Lorain.pdf



http://www.ohiobiz.com/census/Lake.pdf
http://www.ohiobiz.com/census/Lorain.pdf
http://www.ohiobiz.com/census/Lake.pdf
http://www.ohiobiz.com/census/Lorain.pdf
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4. The chart below contains a portion of the fuel consumption information for a 2002 Toyota
Echo that I (Jeff) used to own. The first row is the cumulative number of gallons of gasoline
that I had used and the second row is the odometer reading when I refilled the gas tank. So,
for example, the fourth entry is the point (28.25, 1051) which says that I had used a total of
28.25 gallons of gasoline when the odometer read 1051 miles.

Gasoline Used

(Gallons) 0] 9.26 | 19.03 | 28.25 | 36.45 | 44.64 | 53.57 | 62.62 | 71.93 | 81.69 | 90.43
Odometer

(Miles) 41 | 356 731 | 1051 | 1347 | 1631 | 1966 | 2310 | 2670 | 3030 | 3371

Find the least squares line for this data. Is it a good fit? What does the slope of the line
represent? Do you and your classmates believe this model would have held for ten years had
I not crashed the car on the Turnpike a few years ago? (I'm keeping a fuel log for my 2006
Scion xA for future College Algebra books so I hope not to crash it, too.)

5. On New Year’s Day, I (Jeff, again) started weighing myself every morning in order to have an
interesting data set for this section of the book. (Discuss with your classmates if that makes
me a nerd or a geek. Also, the professionals in the field of weight management strongly
discourage weighing yourself every day. When you focus on the number and not your overall
health, you tend to lose sight of your objectives. I was making a noble sacrifice for science,
but you should not try this at home.) The whole chart would be too big to put into the book
neatly, so I've decided to give only a small portion of the data to you. This then becomes a
Civics lesson in honesty, as you shall soon see. There are two charts given below. One has my
weight for the first eight Thursdays of the year (January 1, 2009 was a Thursday and we’ll
count it as Day 1.) and the other has my weight for the first 10 Saturdays of the year.

Day #

(Thursday) 1 8 15 22 29 36 43 50
My weight

in pounds 238.2 | 237.0 | 235.6 | 234.4 | 233.0 | 233.8 | 232.8 | 232.0

Day #

(Saturday) 3 10 17 24 31 38 45 52 59 66
My weight

in pounds 238.4 | 235.8 | 235.0 | 234.2 | 236.2 | 236.2 | 235.2 | 233.2 | 236.8 | 238.2

(a) Find the least squares line for the Thursday data and comment on its goodness of fit.
(b) Find the least squares line for the Saturday data and comment on its goodness of fit.

(¢) Use Quadratic Regression to find a parabola which models the Saturday data and com-
ment on its goodness of fit.

(d) Compare and contrast the predictions the three models make for my weight on January
1, 2010 (Day #366). Can any of these models be used to make a prediction of my weight
20 years from now? Explain your answer.




232

(e)

LINEAR AND QUADRATIC FUNCTIONS

Why is this a Civics lesson in honesty? Well, compare the two linear models you obtained
above. One was a good fit and the other was not, yet both came from careful selections
of real data. In presenting the tables to you, I have not lied about my weight, nor
have you used any bad math to falsify the predictions. The word we’re looking for
here is ‘disingenuous’. Look it up and then discuss the implications this type of data
manipulation could have in a larger, more complex, politically motivated setting. (Even
Obi-Wan presented the truth to Luke only “from a certain point of view.”)

6. (Data that is neither linear nor quadratic.) We’ll close this exercise set with two data sets that,
for reasons presented later in the book, cannot be modeled correctly by lines or parabolas. It
is a good exercise, though, to see what happens when you attempt to use a linear or quadratic
model when it’s not appropriate.

(a)

This first data set came from a Summer 2003 publication of the Portage County Animal
Protective League called “Tattle Tails”. They make the following statement and then
have a chart of data that supports it. “It doesn’t take long for two cats to turn into 80
million. If two cats and their surviving offspring reproduced for ten years, you’d end up
with 80,399,780 cats.” We assume N (0) = 2.

Year z 1 2 3 4 5 6 7 8 9 10
Number of
Cats N(z) 12 | 66 | 382 | 2201 | 12680 | 73041 | 420715 | 2423316 | 13968290 | 80399780

Use Quadratic Regression to find a parabola which models this data and comment on its
goodness of fit. (Spoiler Alert: Does anyone know what type of function we need here?)

This next data set comes from the U.S. Naval Observatory. That site has loads of
awesome stuff on it, but for this exercise I used the sunrise/sunset times in Fairbanks,
Alaska for 2009 to give you a chart of the number of hours of daylight they get on the
2150 of each month. We'll let z = 1 represent January 21, 2009, x = 2 represent February
21, 2009, and so on.

Month
Number 1 2 3 4 5 6 7 8 9| 10| 11| 12

Hours of
Daylight | 5.8 | 9.3 | 124 | 159 | 194 | 21.8 | 19.4 | 156 | 124 | 9.1 | 5.6 | 3.3

Use Quadratic Regression to find a parabola which models this data and comment on its
goodness of fit. (Spoiler Alert: Does anyone know what type of function we need here?)


http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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2.5.2 ANSWERS

1.

(a)

(d)
(e)

y = 936.31x — 1645322.6 with » = 0.9696 which indicates a good fit. The slope 936.31
indicates Lake County’s population is increasing at a rate of (approximately) 936 people
per year.

According to the model, the population in 2010 will be 236,660.
According to the model, the population of Lake County will reach 250,000 sometime
between 2024 and 2025.

y = 796.8z — 1309762.5 with » = 0.8916 which indicates a reasonable fit. The slope
796.8 indicates Lorain County’s population is increasing at a rate of (approximately)
797 people per year.

According to the model, the population in 2010 will be 291,805.

According to the model, the population of Lake County will reach 325,000 sometime
between 2051 and 2052.

y = 0.2662 —459.86 with r = 0.9607 which indicates a good fit. The slope 0.266 indicates
the country’s energy production is increasing at a rate of 0.266 Quad per year.
According to the model, the production in 2010 will be 74.8 Quad.

According to the model, the production will reach 100 Quad in the year 2105.

. The line is y = 36.8z + 16.39. We have r = .99987 and 2 = .9997 so this is an excellent fit
to the data. The slope 36.8 represents miles per gallon.

(a)
(b)
()
(d)

The line for the Thursday data is y = —.12x 4+ 237.69. We have r = —.9568 and
r2 = 9155 so this is a really good fit.

The line for the Saturday data is y = —0.000693x + 235.94. We have r = —0.008986 and
72 = 0.0000807 which is horrible. This data is not even close to linear.

The parabola for the Saturday data is y = 0.00322 —0.212+238.30. We have R? = .47497
which isn’t good. Thus the data isn’t modeled well by a quadratic function, either.

The Thursday linear model had my weight on January 1, 2010 at 193.77 pounds. The
Saturday models give 235.69 and 563.31 pounds, respectively. The Thursday line has
my weight going below 0 pounds in about five and a half years, so that’s no good. The
quadratic has a positive leading coefficient which would mean unbounded weight gain
for the rest of my life. The Saturday line, which mathematically does not fit the data at
all, yields a plausible weight prediction in the end. I think this is why grown-ups talk
about “Lies, Damned Lies and Statistics.”

The quadratic model for the cats in Portage county is y = 1917803.5422 —16036408.29x+
24094857.7. Although R? = .70888 this is not a good model because it’s so far off for

small values of . Case in point, the model gives us 24,094,858 cats when z = 0 but we
know N(0) = 2.
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(b) The quadratic model for the hours of daylight in Fairbanks, Alaska is y = .512%46.237 —
.36. Even with R? = .92295 we should be wary of making predictions beyond the data.
Case in point, the model gives —4.84 hours of daylight when z = 13. So January 21,

2010 will be “extra dark”? Obviously a parabola pointing down isn’t telling us the whole
story.



CHAPTER 3

PoLYNOMIAL FUNCTIONS

3.1 GRAPHS OF POLYNOMIALS

Three of the families of functions studied thus far — constant, linear and quadratic — belong to
a much larger group of functions called polynomials. We begin our formal study of general
polynomials with a definition and some examples.

Definition 3.1. A polynomial function is a function of the form
f(2) = apnz™ + an—2" '+ ...+ ax® + ayx + ay,

where aq, a;, ..., a, are real numbers and n > 1 is a natural number. The domain of a
polynomial function is (—oo, 00).

There are several things about Definition 3.1 that may be off-putting or downright frightening. The
best thing to do is look at an example. Consider f(x) = 42° — 322 + 2z — 5. Is this a polynomial
function? We can re-write the formula for f as f(x) = 4a® + 0z* + 023 4 (=3)2? + 2z + (-5).
Comparing this with Definition 3.1, we identify n = 5, as = 4, a, =0, a3 =0, a, = =3, a, = 2
and a, = —5. In other words, as is the coefficient of z°, a, is the coefficient of 2, and so forth; the
subscript on the a’s merely indicates to which power of x the coefficient belongs. The business of
restricting n to be a natural number lets us focus on well-behaved algebraic animals.!

Example 3.1.1. Determine if the following functions are polynomials. Explain your reasoning.

4+ 23 4 3 4 3
Logle) = =" 2. pla) = = 3oql@) =
4. f(x) = Jx 5. h(z) = |z| 6. z(x) =0

'Enjoy this while it lasts. Before we’re through with the book, you’ll have been exposed to the most terrible of
algebraic beasts. We will tame them all, in time.
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Solution.

1. We note directly that the domain of g(x) = IBTH is ¢ # 0. By definition, a polynomial has
all real numbers as its domain. Hence, g can’t be a polynomial.

2. Even though p(x) = 753%4”3 simplifies to p(x) = 22 + 4, which certainly looks like the form
given in Definition 3.1, the domain of p, which, as you may recall, we determine before we
simplify, excludes 0. Alas, p is not a polynomial function for the same reason g isn’t.

3. After whgmt happened with p in the previous part, you may be a little shy about simplifying
q(z) = xx;ff to gq(z) = x, which certainly fits Definition 3.1. If we look at the domain of
q before we simplified, we see that it is, indeed, all real numbers. A function which can be

written in the form of Definition 3.1 whose domain is all real numbers is, in fact, a polynomial.

4. We can rewrite f(x) = ¥z as f(z) = z3. Since % is not a natural number, f is not a
polynomial.
5. The function h(x) = |z| isn’t a polynomial, since it can’t be written as a combination of

powers of x even though it can be written as a piecewise function involving polynomials. As
we shall see in this section, graphs of polynomials possess a quality? that the graph of h does
not.

6. There’s nothing in Definition 3.1 which prevents all the coefficients a,, etc., from being 0.
Hence, z(z) = 0, is an honest-to-goodness polynomial.

Definition 3.2. Suppose f is a polynomial function.

e Given f(x) = apnz™ + ap— " '+ ... + ayx®> + ayx + a, with a, # 0, we say

The natural number n is called the degree of the polynomial f.
— The term a,z" is called the leading term of the polynomial f.
— The real number a,, is called the leading coefficient of the polynomial f.

— The real number qa, is called the constant term of the polynomial f.

e If f(z) = a,, and a, # 0, we say f has degree 0.

e If f(z) =0, we say f has no degree.®

“Some authors say f(z) =0 has degree —oco for reasons not even we will go into.

The reader may well wonder why we have chosen to separate off constant functions from the other
polynomials in Definition 3.2. Why not just lump them all together and, instead of forcing n to be
a natural number, n = 1,2, ..., allow n to be a whole number, n = 0,1,2,.... We could unify all

20ne which really relies on Calculus to verify.
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of the cases, since, after all, isn’t a,2” = a,? The answer is ‘yes, as long as = # 0.” The function
f(z) = 3 and g(x) = 320 are different, because their domains are different. The number f(0) = 3 is
defined, whereas g(0) = 3(0)? is not.> Indeed, much of the theory we will develop in this chapter
doesn’t include the constant functions, so we might as well treat them as outsiders from the start.
One good thing that comes from Definition 3.2 is that we can now think of linear functions as
degree 1 (or ‘first degree’) polynomial functions and quadratic functions as degree 2 (or ‘second
degree’) polynomial functions.

Example 3.1.2. Find the degree, leading term, leading coefficient and constant term of the fol-
lowing polynomial functions.

1. f(x) =425 - 322 + 22 -5 2. g(z) =122 + a3
4—x 3
3. h(z) = ; 4. p(z) = 2z — 1)°(x — 2)(3x + 2)
Solution.

1. There are no surprises with f(z) = 42° — 3z% 4+ 22 — 5. It is written in the form of Definition
3.2, and we see that the degree is 5, the leading term is 4x°, the leading coefficient is 4 and
the constant term is —5.

2. The form given in Definition 3.2 has the highest power of z first. To that end, we re-write
g(z) = 122 + 23 = 23 + 122, and see that the degree of g is 3, the leading term is 23, the
leading coefficient is 1 and the constant term is 0.

3. We need to rewrite the formula for A so that it resembles the form given in Definition 3.2:

h(z) = 4_?”" = % —£= —%1‘ + %. The degliee of h is 1, the leading term is —%x, the leading
coefficient is —% and the constant term is =.

4. It may seem that we have some work ahead of us to get p in the form of Definition 3.2.
However, it is possible to glean the information requested about p without multiplying out
the entire expression (22 — 1)3(x — 2)(3z + 2). The leading term of p will be the term which
has the highest power of z. The way to get this term is to multiply the terms with the
highest power of x from each factor together - in other words, the leading term of p(z) is
the product of the leading terms of the factors of p(z). Hence, the leading term of p is
(22)3(2)(3x) = 242°. This means that the degree of p is 5 and the leading coefficient is 24.
As for the constant term, we can perform a similar trick. The constant term is obtained by
multiplying the constant terms from each of the factors (—1)3(—2)(2) = 4. O

Our next example shows how polynomials of higher degree arise ‘naturally’® in even the most basic
geometric applications.

3Technically, 0° is an indeterminant form, which is a special case of being undefined. The authors realize this is
beyond pedantry, but we wouldn’t mention it if we didn’t feel it was neccessary.
4this is a dangerous word...
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Example 3.1.3. A box with no top is to be fashioned from a 10 inch x 12 inch piece of cardboard
by cutting out congruent squares from each corner of the cardboard and then folding the resulting
tabs. Let x denote the length of the side of the square which is removed from each corner.

12 in

height I

10 in

1. Find the volume V of the box as a function of z. Include an appropriate applied domain.

2. Use a graphing calculator to graph y = V() on the domain you found in part 1 and approx-
imate the dimensions of the box with maximum volume to two decimal places. What is the
maximum volume?

Solution.

1. From Geometry, we know that Volume = width x height x depth. The key is to find each of
these quantities in terms of . From the figure, we see that the height of the box is x itself.
The cardboard piece is initially 10 inches wide. Removing squares with a side length of x
inches from each corner leaves 10 — 2z inches for the width.? As for the depth, the cardboard
is initially 12 inches long, so after cutting out = inches from each side, we would have 12 — 2z
inches remaining. As a function® of z, the volume is

V(z) = 2(10 — 22)(12 — 2z) = 423 — 442 + 120z

To find a suitable applied domain, we note that to make a box at all we need z > 0. Also the
shorter of the two dimensions of the cardboard is 10 inches, and since we are removing 2x
inches from this dimension, we also require 10 — 2z > 0 or x < 5. Hence, our applied domain
is0<x<bd.

2. Using a graphing calculator, we see that the graph of y = V' (z) has a relative maximum. For
0 < x < 5, this is also the absolute maximum. Using the ‘Maximum’ feature of the calculator,
we get x ~ 1.81, y =~ 96.77. This yields a height of x =~ 1.81 inches, a width of 10 — 2x ~ 6.38
inches, and a depth of 12 — 2z ~ 8.38 inches. The y-coordinate is the maximum volume,
which is approximately 96.77 cubic inches (also written in?®).

5There’s no harm in taking an extra step here and making sure this makes sense. If we chopped out a 1 inch
square from each side, then the width would be 8 inches, so chopping out x inches would leave 10 — 2z inches.
SWhen we write V(x), it is in the context of function notation, not the volume V times the quantity x.
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Haxirura
n=1.B107/448 V=957 05FE - O

In order to solve Example 3.1.3, we made good use of the graph of the polynomial y = V(z), so we
ought to turn our attention to graphs of polynomials in general. Below are the graphs of y = 22,
y = x* and y = 2%, side-by-side. We have omitted the axes to allow you to see that as the exponent
increases, the ‘bottom’ becomes ‘flatter’ and the ‘sides’ become ‘steeper.’ If you take the the time

to graph these functions by hand,” you will see why.

y=x y=x y=x

All of these functions are even, (Do you remember how to show this?) and it is exactly because
the exponent is even.® This symmetry is important, but we want to explore a different yet equally
important feature of these functions which we can be seen graphically — their end behavior.

The end behavior of a function is a way to describe what is happening to the function values
(the y-values) as the z-values approach the ‘ends’ of the z-axis.” That is, what happens to y as
x becomes small without bound'? (written  — —o0) and, on the flip side, as = becomes large
without bound!! (written 2 — o).

For example, given f(z) = 22, as x — —o0, we imagine substituting x = —100, x = —1000, etc.,

into f to get f(—100) = 10000, f(—1000) = 1000000, and so on. Thus the function values are
becoming larger and larger positive numbers (without bound). To describe this behavior, we write:
as © — —oo, f(x) — oo. If we study the behavior of f as x — oo, we see that in this case,
too, f(z) — oo. (We told you that the symmetry was important!) The same can be said for any
function of the form f(z) = 2™ where n is an even natural number. If we generalize just a bit to
include vertical scalings and reflections across the z-axis,'? we have

"Make sure you choose some z-values between —1 and 1.

8Herein lies one of the possible origins of the term ‘even’ when applied to functions.

90f course, there are no ends to the z-axis.

10We think of x as becoming a very large (in the sense of its absolute value) negative number far to the left of zero.
1We think of  as moving far to the right of zero and becoming a very large positive number.

12See Theorems 1.4 and 1.5 in Section 1.7.
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End Behavior of functions f(z) = az", n even.

Suppose f(z) = ax™ where a # 0 is a real number and n is an even natural number. The end
behavior of the graph of y = f(z) matches one of the following:

e for a >0, as z — —o0, f(x) = oo and as x — o0, f(z) = 0o

e for a <0, as x — —o0, f(r) > —o0 and as x — oo, f(z) = —©

Graphically:

N—4 /N

a>0 a<0

We now turn our attention to functions of the form f(z) = x™ where n > 3 is an odd natural
number. (We ignore the case when n = 1, since the graph of f(z) = z is a line and doesn’t fit the
general pattern of higher-degree odd polynomials.) Below we have graphed y = 23, y = 2%, and
y = 2. The ‘flattening’ and ‘steepening’ that we saw with the even powers presents itself here as
well, and, it should come as no surprise that all of these functions are odd 13 The end behavior of
these functions is all the same, with f(x) — —oc0 as x — —o0 and f(z) — 0o as  — 0.

S

y = a? y=a’

As with the even degreed functions we studied earlier, we can generalize their end behavior.

End Behavior of functions f(z) = az™, n odd.

Suppose f(z) = az™ where a # 0 is a real number and n > 3 is an odd natural number. The
end behavior of the graph of y = f(x) matches one of the following:

e fora >0, as z — —oo, f(x) > —oo and as x — oo, f(x) — 00

e for a <0, as z — —o0, f(x) = oo and as © — oo, f(x) = —c0

Graphically:

/ N

a>0 a<0

13 And are, perhaps, the inspiration for the moniker ‘odd function’.
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Despite having different end behavior, all functions of the form f(x) = az™ for natural numbers n
share two properties which help distinguish them from other animals in the algebra zoo: they are
continuous and smooth. While these concepts are formally defined using Calculus,'* informally,
graphs of continuous functions have no ‘breaks’ or ‘holes’ in them, and the graphs of smooth
functions have no ‘sharp turns’. It turns out that these traits are preserved when functions are
added together, so general polynomial functions inherit these qualities. Below we find the graph of a
function which is neither smooth nor continuous, and to its right we have a graph of a polynomial,
for comparison. The function whose graph appears on the left fails to be continuous where it
has a ‘break’ or ‘hole’ in the graph; everywhere else, the function is continuous. The function is
continuous at the ‘corner’ and the ‘cusp’, but we consider these ‘sharp turns’, so these are places
where the function fails to be smooth. Apart from these four places, the function is smooth and
continuous. Polynomial functions are smooth and continuous everywhere, as exhibited in the graph
on the right.

‘hole’
‘ 5
corner
‘cusp’

‘break’
Pathologies not found on graphs of polynomials The graph of a polynomial

The notion of smoothness is what tells us graphically that, for example, f(x) = |x|, whose graph is
the characteristic ‘v’ shape, cannot be a polynomial. The notion of continuity is what allowed us
to construct the sign diagram for quadratic inequalities as we did in Section 2.4. This last result is
formalized in the following theorem.

Theorem 3.1. The Intermediate Value Theorem (Zero Version): Suppose f is a con-
tinuous function on an interval containing x = a and z = b with a < b. If f(a) and f(b) have
different signs, then f has at least one zero between x = a and x = b; that is, for at least one
real number ¢ such that a < ¢ < b, we have f(c) = 0.

The Intermediate Value Theorem is extremely profound; it gets to the heart of what it means to be
a real number, and is one of the most often used and under appreciated theorems in Mathematics.
With that being said, most students see the result as common sense since it says, geometrically,
that the graph of a polynomial function cannot be above the z-axis at one point and below the
zr-axis at another point without crossing the x-axis somewhere in between. The following example
uses the Intermediate Value Theorem to establish a fact that that most students take for granted.
Many students, and sadly some instructors, will find it silly.

Y“In fact, if you take Calculus, yowll find that smooth functions are automatically continuous, so that saying
‘polynomials are continuous and smooth’ is redundant.
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Example 3.1.4. Use the Intermediate Value Theorem to establish that V/2 is a real number.

Solution. Consider the polynomial function f(x) = 22 — 2. Then f(1) = —1 and f(3) = 7. Since
f(1) and f(3) have different signs, the Intermediate Value Theorem guarantees us a real number
¢ between 1 and 3 with f(c) = 0. If ¢ — 2 = 0 then ¢ = £+/2. Since c is between 1 and 3, c is
positive, so ¢ = /2. ]

Our primary use of the Intermediate Value Theorem is in the construction of sign diagrams, as in
Section 2.4, since it guarantees us that polynomial functions are always positive (+) or always neg-
ative (—) on intervals which do not contain any of its zeros. The general algorithm for polynomials
is given below.

Steps for Constructing a Sign Diagram for a Polynomial Function

Suppose f is a polynomial function.

1. Find the zeros of f and place them on the number line with the number 0 above them.
2. Choose a real number, called a test value, in each of the intervals determined in step 1.

3. Determine the sign of f(z) for each test value in step 2, and write that sign above the
corresponding interval.

Example 3.1.5. Construct a sign diagram for f(z) = z3(z — 3)%*(z + 2) (z* + 1). Use it to give a
rough sketch of the graph of y = f(x).

Solution. First, we find the zeros of f by solving 23(z — 3)?(z + 2) (z* + 1) = 0. We get = = 0,
r =3 and = —2. (The equation 22 + 1 = 0 produces no real solutions.) These three points divide
the real number line into four intervals: (—oo, —2), (—2,0), (0,3) and (3,00). We select the test
values t = =3, z = —1, x = 1 and =z = 4. We find f(-3) is (+), f(—1) is (—) and f(1) is (+) as
is f(4). Wherever f is (+), its graph is above the z-axis; wherever f is (—), its graph is below the
x-axis. The z-intercepts of the graph of f are (—2,0), (0,0) and (3,0). Knowing f is smooth and

continuous allows us to sketch its graph.
y

(+) 0(=)o(+)0 (+)

—203 T A
—TS—T1T111 V ’

A sketch of y = f(x) ]

A couple of notes about the Example 3.1.5 are in order. First, note that we purposefully did not
label the y-axis in the sketch of the graph of y = f(z). This is because the sign diagram gives us the
zeros and the relative position of the graph - it doesn’t give us any information as to how high or low
the graph strays from the z-axis. Furthermore, as we have mentioned earlier in the text, without
Calculus, the values of the relative maximum and minimum can only be found approximately using
a calculator. If we took the time to find the leading term of f, we would find it to be z®. Looking
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at the end behavior of f, we notice that it matches the end behavior of y = 28. This is no accident,
as we find out in the next theorem.

Theorem 3.2. End Behavior for Polynomial Functions: The end behavior of a polynomial
f(z) = apz™+an— "' +.. .+ a2’ +a,x+a, with a,, # 0 matches the end behavior of y = a, 2.

To see why Theorem 3.2 is true, let’s first look at a specific example. Consider f(z) = 423 —x +5.
If we wish to examine end behavior, we look to see the behavior of f as x — +oo. Since we're
concerned with z’s far down the z-axis, we are far away from x = 0 so can rewrite f(z) for these

values of = as
1 5
4.3
fz) =4z (1‘4x2+4x3>

As z becomes unbounded (in either direction), the terms ﬁ and % become closer and closer to
0, as the table below indicates.

—1000 || 0.00000025 | —0.00000000125
—100 0.000025 —0.00000125
—10 0.0025 —0.00125
10 0.0025 0.00125
100 0.000025 0.00000125
1000 || 0.00000025 0.00000000125

In other words, as * — 400, f(z) ~ 423 (1 — 0+ 0) = 423, which is the leading term of f. The
formal proof of Theorem 3.2 works in much the same way. Factoring out the leading term leaves

Ap—1 (22 aq )
x) =apz" [ 1+ +...+ + +
f(@) " ( anT a2 apxt! am:”)
As © — 400, any term with an z in the denominator becomes closer and closer to 0, and we
have f(z) = apz™. Geometrically, Theorem 3.2 says that if we graph y = f(x) using a graphing
calculator, and continue to ‘zoom out’, the graph of it and its leading term become indistinguishable.

Below are the graphs of y = 423 — x 4+ 5 (the thicker line) and y = 423 (the thinner line) in two
different windows.

A view ‘close’ to the origin. A ‘zoomed out’ view.



244 PoryNoMIAL FUNCTIONS

Let’s return to the function in Example 3.1.5, f(z) = 3(z—3)?(z+2) (2 + 1), whose sign diagram
and graph are reproduced below for reference. Theorem 3.2 tells us that the end behavior is the
same as that of its leading term 28. This tells us that the graph of y = f(z) starts and ends above
the z-axis. In other words, f(z) is (+) as # — %00, and as a result, we no longer need to evaluate
f at the test values = —3 and = = 4. Is there a way to eliminate the need to evaluate f at the
other test values? What we would really need to know is how the function behaves near its zeros -
does it cross through the z-axis at these points, as it does at * = —2 and = = 0, or does it simply
touch and rebound like it does at x = 3. From the sign diagram, the graph of f will cross the
x-axis whenever the signs on either side of the zero switch (like they do at x = —2 and = = 0); it
will touch when the signs are the same on either side of the zero (as is the case with = 3). What
we need to determine is the reason behind whether or not the sign change occurs.

y

(+) 0(=)0(+)0 (+)

—203 T S A
—Ts—T1T111 \/ ’

A sketch of y = f(x)

Fortunately, f was given to us in factored form: f(z) = z3(z — 3)?(x + 2). When we attempt to
determine the sign of f(—4), we are attempting to find the sign of the number (—4)3(—7)%(-2),
which works out to be (—)(+)(—) which is (+). If we move to the other side of + = —2, and find
the sign of f(—1), we are determining the sign of (—1)3(—4)2(+1), which is (=)(+)(+) which gives
us the (—). Notice that signs of the first two factors in both expressions are the same in f(—4) and
f(=1). The only factor which switches sign is the third factor, (z + 2), precisely the factor which
gave us the zero x = —2. If we move to the other side of 0 and look closely at f(1), we get the sign
pattern (+1)3(—2)%(+3) or (+)(+)(+) and we note that, once again, going from f(—1) to f(1),
the only factor which changed sign was the first factor, 2%, which corresponds to the zero z = 0.
Finally, to find f(4), we substitute to get (+4)3(+2)%(+5) which is (+)(+)(+) or (+). The sign
didn’t change for the middle factor (x — 3)2. Even though this is the factor which corresponds to
the zero z = 3, the fact that the quantity is squared kept the sign of the middle factor the same on
either side of 3. If we look back at the exponents on the factors (z + 2) and 3, we see that they
are both odd, so as we substitute values to the left and right of the corresponding zeros, the signs
of the corresponding factors change which results in the sign of the function value changing. This
is the key to the behavior of the function near the zeros. We need a definition and then a theorem.

Definition 3.3. Suppose f is a polynomial function and m is a natural number. If (z —¢)™ is
a factor of f(z) but (z — ¢)™*! is not, then we say x = c is a zero of multiplicity m.

Hence, rewriting f(z) = 23(z — 3)%(xz +2) as f(x) = (z — 0)3(z — 3)%(z — (=2))!, we see that z = 0
is a zero of multiplicity 3, x = 3 is a zero of multiplicity 2 and x = —2 is a zero of multiplicity 1.
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Theorem 3.3. The Role of Multiplicity: Suppose f is a polynomial function and = = ¢ is
a zero of multiplicity m.

e If m is even, the graph of y = f(z) touches and rebounds from the z-axis at (c, 0).

e If m is odd, the graph of y = f(z) crosses through the z-axis at (c,0).

Our last example shows how end behavior and multiplicity allow us to sketch a decent graph without
appealing to a sign diagram.

Example 3.1.6. Sketch the graph of f(z) = —3(2z — 1)(z + 1)? using end behavior and the
multiplicity of its zeros.

Solution. The end behavior of the graph of f will match that of its leading term. To find the
leading term, we multiply by the leading terms of each factor to get (—3)(2x)(z)? = —623. This
tells us that the graph will start above the z-axis, in Quadrant II, and finish below the z-axis, in
Quadrant IV. Next, we find the zeros of f. Fortunately for us, f is factored.'® Setting each factor
equal to zero gives is x = % and x = —1 as zeros. To find the multiplicity of x = % we note that it
corresponds to the factor (2z — 1). This isn’t strictly in the form required in Definition 3.3. If we
factor out the 2, however, we get (22 — 1) = 2 (:1: — %), and we see that the multiplicity of x = %
is 1. Since 1 is an odd number, we know from Theorem 3.3 that the graph of f will cross through
the z-axis at (%,0). Since the zero # = —1 corresponds to the factor (z + 1)* = (z — (-1))?,
we find its multiplicity to be 2 which is an even number. As such, the graph of f will touch and
rebound from the z-axis at (—1,0). Though we're not asked to, we can find the y-intercept by
finding f(0) = —3(2(0) — 1)(0 + 1)? = 3. Thus (0, 3) is an additional point on the graph. Putting
this together gives us the graph below.

150Obtaining the factored form of a polynomial is the main focus of the next few sections.
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3.1.1 EXERCISES

PoryNoMIAL FUNCTIONS

In Exercises 1 - 10, find the degree, the leading term, the leading coefficient, the constant term and

the end behavior of the given polynomial.

1. f(x) =4—x — 32? 2.
3. q(r)=1-16r* 4.
5. f(z) = V32" + 225210 — 727 + & 6.
7. P(z) = (z — 1)(z — 2)(z — 3)(z — 4) 8.
9. f(z) = —223(z + 1)(x + 2)? 10.

g(z) =325 —222 + 2 +1
Z(b) = 42b — b?

s(t) = —4.9t% + vet + s,

p(t) = —t2(3 — 5t) (12 +t + 4)

G(t) =4(t—2)*(t+3)

In Exercises 11 - 20, find the real zeros of the given polynomial and their corresponding multiplic-
ities. Use this information along with a sign chart to provide a rough sketch of the graph of the
polynomial. Compare your answer with the result from a graphing utility.

11. a(z) = z(x + 2)? 12.
13. f(z) = —2(z — 2)%(x + 1) 14.
15. F(z) = 23(z +2)? 16.
17. Q(z) = (z + 5)2(z — 3)* 18.
19. H(t) = 3—-t)(t*+1) 20.

g(x) = z(z +2)°

g(x) = 2z +1)*(z - 3)

P(x) = (z—1)(z—2)(z—3)(z—4)
h(z) = 22(z — 2)%(x + 2)?

Z(b) = b(42 — b?)

In Exercises 21 - 26, given the pair of functions f and g, sketch the graph of y = g(x) by starting
with the graph of y = f(z) and using transformations. Track at least three points of your choice
through the transformations. State the domain and range of g.

21. f(x) =23 g(z) = (z+2)>+1 22.
23. f(x) =2 g(z) =2 —3(x — 1)* 24.
25. f(z) =2°, g(x) = (x +1)° + 10 26.

fz) =2 g(z) = (z +2)* +1
fz) =2%, g(z) = —a° -3

flz) =2% g(z) =8 —a®

27. Use the Intermediate Value Theorem to prove that f(z) = 23 — 9z + 5 has a real zero in each
of the following intervals: [—4, —3], [0, 1] and [2, 3].

28. Rework Example 3.1.3 assuming the box is to be made from an 8.5 inch by 11 inch sheet of
paper. Using scissors and tape, construct the box. Are you surprised?'®

'8Consider decorating the box and presenting it to your instructor. If done well enough, maybe your instructor

will issue you some bonus points. Or maybe not.
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In Exercises 29 - 31, suppose the revenue R, in thousands of dollars, from producing and selling x
hundred LCD TVs is given by R(x) = —5x3 + 3522 + 1552 for 0 < x < 10.07.

29.

30.

31.

32.

33.

Use a graphing utility to graph y = R(z) and determine the number of TVs which should be
sold to maximize revenue. What is the maximum revenue?

Assume that the cost, in thousands of dollars, to produce x hundred LCD TVs is given by
C(z) = 200z + 25 for x > 0. Find and simplify an expression for the profit function P(x).
(Remember: Profit = Revenue - Cost.)

Use a graphing utility to graph y = P(x) and determine the number of TVs which should be
sold to maximize profit. What is the maximum profit?

While developing their newest game, Sasquatch Attack!, the makers of the PortaBoy (from
Example 2.1.5) revised their cost function and now use C(z) = .032> — 4.52% + 225z + 250,
for > 0. As before, C(x) is the cost to make z PortaBoy Game Systems. Market research
indicates that the demand function p(z) = —1.52 + 250 remains unchanged. Use a graphing
utility to find the production level x that maximizes the profit made by producing and selling
x PortaBoy game systems.

According to US Postal regulations, a rectangular shipping box must satisfy the inequality
“Length 4+ Girth < 130 inches” for Parcel Post and “Length 4+ Girth < 108 inches” for other
services. Let’s assume we have a closed rectangular box with a square face of side length = as
drawn below. The length is the longest side and is clearly labeled. The girth is the distance
around the box in the other two dimensions so in our case it is the sum of the four sides of
the square, 4x.

(a) Assuming that we’ll be mailing a box via Parcel Post where Length + Girth = 130
inches, express the length of the box in terms of x and then express the volume V' of the
box in terms of z.

(b) Find the dimensions of the box of maximum volume that can be shipped via Parcel Post.

(c) Repeat parts 33a and 33b if the box is shipped using “other services”.

length
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34.

35.

36.

PoryNoMIAL FUNCTIONS

We now revisit the data set from Exercise 6b in Section 2.5. In that exercise, you were given
a chart of the number of hours of daylight they get on the 215% of each month in Fairbanks,
Alaska based on the 2009 sunrise and sunset data found on the U.S. Naval Observatory web-
site. We let x = 1 represent January 21, 2009, x = 2 represent February 21, 2009, and so on.
The chart is given again for reference.

Month
Number 1 2 3 4 5 6 7 8 91 10| 11 12

Hours of
Daylight | 5.8 | 9.3 | 12.4 | 15.9 | 19.4 | 21.8 | 19.4 | 15.6 | 12.4 | 9.1 | 5.6 | 3.3

Find cubic (third degree) and quartic (fourth degree) polynomials which model this data and
comment on the goodness of fit for each. What can we say about using either model to make
predictions about the year 20207 (Hint: Think about the end behavior of polynomials.) Use
the models to see how many hours of daylight they got on your birthday and then check the
website to see how accurate the models are. Knowing that Sasquatch are largely nocturnal,
what days of the year according to your models are going to allow for at least 14 hours of
darkness for field research on the elusive creatures?

An electric circuit is built with a variable resistor installed. For each of the following resis-
tance values (measured in kilo-ohms, k€2), the corresponding power to the load (measured in
milliwatts, mW) is given in the table below. 7

Resistance: (k) | 1.012 | 2.199 | 3.275 | 4.676 | 6.805 | 9.975
Power: (mW) 1.063 | 1.496 | 1.610 | 1.613 | 1.505 | 1.314

(a) Make a scatter diagram of the data using the Resistance as the independent variable
and Power as the dependent variable.

(b) Use your calculator to find quadratic (2nd degree), cubic (3rd degree) and quartic (4th
degree) regression models for the data and judge the reasonableness of each.

(c) For each of the models found above, find the predicted maximum power that can be
delivered to the load. What is the corresponding resistance value?

(d) Discuss with your classmates the limitations of these models - in particular, discuss the
end behavior of each.

Show that the end behavior of a linear function f(z) = max + b is as it should be according to
the results we've established in the section for polynomials of odd degree.!® (That is, show
that the graph of a linear function is “up on one side and down on the other” just like the
graph of y = a,z™ for odd numbers n.)

17"The authors wish to thank Don Anthan and Ken White of Lakeland Community College for devising this problem
and generating the accompanying data set.
18Remember, to be a linear function, m # 0.


http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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37. There is one subtlety about the role of multiplicity that we need to discuss further; specifically
we need to see ‘how’ the graph crosses the x-axis at a zero of odd multiplicity. In the section,
we deliberately excluded the function f(z) = x from the discussion of the end behavior of
f(x) = 2™ for odd numbers n and we said at the time that it was due to the fact that f(x) = =
didn’t fit the pattern we were trying to establish. You just showed in the previous exercise
that the end behavior of a linear function behaves like every other polynomial of odd degree,
so what doesn’t f(z) = x do that g(x) = 23 does? It’s the ‘flattening’ for values of = near zero.
It is this local behavior that will distinguish between a zero of multiplicity 1 and one of higher
odd multiplicity. Look again closely at the graphs of a(z) = z(z + 2)? and F(z) = 23(z + 2)?
from Exercise 3.1.1. Discuss with your classmates how the graphs are fundamentally different
at the origin. It might help to use a graphing calculator to zoom in on the origin to see
the different crossing behavior. Also compare the behavior of a(x) = x(x + 2)? to that of
g(z) = z(z + 2)3 near the point (—2,0). What do you predict will happen at the zeros of
fl@) = (z = (@ - 2)*(z - 3)*(x — 4)*(z — 5)°?

38. Here are a few other questions for you to discuss with your classmates.

(a) How many local extrema could a polynomial of degree n have? How few local extrema
can it have?

(b) Could a polynomial have two local maxima but no local minima?

(c) If a polynomial has two local maxima and two local minima, can it be of odd degree?
Can it be of even degree?

Can a polynomial have local extrema without having any real zeros?
Why must every polynomial of odd degree have at least one real zero?

)
)
f) Can a polynomial have two distinct real zeros and no local extrema?
) Can an z-intercept yield a local extrema? Can it yield an absolute extrema?
)

If the y-intercept yields an absolute minimum, what can we say about the degree of the
polynomial and the sign of the leading coefficient?
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3.1.2 ANSWERS

1. f(x) =4—x — 32? 2. g(z) =32 —222 + 2 +1

Degree 2

Leading term —3z2
Leading coefficient —3
Constant term 4

As x — —o0, f(x) = —00
As x — o0, f(x) = —o0

3. q(r)=1-16r"
Degree 4
Leading term —16r%
Leading coefficient —16
Constant term 1
Asr — —o0, q(r) = —o0
Asr — o0, q(r) = —o0

Degree 17

Leading term v/3z!7
Leading coefficient /3
Constant term %

As x — —o0, f(z) - —o0
As x — o0, f(z) = 00

Degree 4
Leading term x
Leading coefficient 1
Constant term 24

As x — —o0, P(x) — o0
As x — 00, P(x) — o0

4

1
(@) = V32T + 22,5210 — 727 4 4

Pr) = (x—1)(x—2)(x—3)(x—4)

Degree 5

Leading term 3z°
Leading coefficient 3
Constant term 1

As x — —o0, g(x) = —00
As x — o0, g(x) = 00

. Z(b) = 42b - 1?

Degree 3

Leading term —b?
Leading coefficient —1
Constant term 0

As b — —o0, Z(b) — o0
As b — o0, Z(b) = —o0

. s(t) = —4.9t2 + vot + s

Degree 2

Leading term —4.9¢2
Leading coefficient —4.9
Constant term s,

Ast — —o0, s(t) — —o0
Ast — o0, s(t) —» —o0

8. p(t) = —t2(3 — 5t)(t? +t + 4)

Degree 5

Leading term 5t°
Leading coefficient 5
Constant term 0

Ast — —o0, p(t) = —o0
As t — oo, p(t) — o0
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9. f(x) = —223(z + 1)(z + 2)?
Degree 6
Leading term —22°
Leading coefficient —2
Constant term 0
As x — —o0, f(x) = —o0
As x — o0, f(x) = —o0

11. a(x) = z(x + 2)?
x = 0 multiplicity 1
x = —2 multiplicity 2

Y

/5 i o

13. f(z) = —2(z — 2)%(x + 1)
x = 2 multiplicity 2
r = —1 multiplicity 1

Y

10.

12.

251

G(t) =4(t —2)? (t+ 3)
Degree 3

Leading term 4¢3
Leading coefficient 4
Constant term 8

Ast — —o0, G(t) = —o0
Ast — oo, G(t) > ©

g(x) = z(z +2)°
x = 0 multiplicity 1
x = —2 multiplicity 3

Y

[SR 3

14. g(x) = (2z + 1)%(x — 3)

x = —% multiplicity 2
x = 3 multiplicity 1

Y
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15. F(x) = 23(z + 2)? 16. P(x) = (x — 1)(x — 2)(x — 3)(z — 4)
x = 0 multiplicity 3 x = 1 multiplicity 1
r = —2 multiplicity 2 x = 2 multiplicity 1
x = 3 multiplicity 1
Y x = 4 multiplicity 1

17. Q(z) = (z + 5)2(z — 3)* 18. f(z) = 22(x — 2)%(x 4 2)?
x = —b multiplicity 2 x = —2 multiplicity 2
x = 3 multiplicity 4 x = 0 multiplicity 2
x = 2 multiplicity 2
y
y
—5—-4—-3-2-1 1 2 3 4 5 T ¥ +
2 1 1 2 T
19. Ht)=(3—1) (t*+1) 20. Z(b) = b(42 — b?)
x = 3 multiplicity 1 b = —+/42 multiplicity 1
b = 0 multiplicity 1
v b = /42 multiplicity 1

\/\ ,
:1:23\(t

12 3 45 6\b
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21. g(z) = (z+2)3+1
domain: (—o0,00)
range: (—00,00)

22. g(z) = (z+2)* +1
domain: (—o0,00)

range: [1,00)

=N W R O N 0

24. g(z) = —2° -3
domain: (—o0, 00)

range: (—o0,00)

N WER OO N 0o o
P A A S R S
1+

Y

253
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25.

27.

28.

29.

30.

31.

32.

PoryNoMIAL FUNCTIONS

g(z) = (x+1)>+10 26. g(v) =8 —2°
domain: (—o0,00) domain: (—o0,00)
range: (—00,00) range: (—oo, 8]

9
8
7
6
5
4
3
2
1

t t t t
—4 73l72 -1 x

We have f(—4) = =23, f(=3) =5, f(0) =5, f(1) = -3, f(2) = =5 and f(3) = 5 so the
Intermediate Value Theorem tells us that f(z) = 3 — 92 + 5 has real zeros in the intervals
[—4,—3],]0,1] and [2, 3].

V(z) = x(8.5 —2z)(11 — 22) = 423 — 3922 + 93.52, 0 < = < 4.25. Volume is maximized when
x =~ 1.58, so the dimensions of the box with maximum volume are: height ~ 1.58 inches,
width ~ 5.34 inches, and depth ~ 7.84 inches. The maximum volume is &~ 66.15 cubic inches.

The calculator gives the location of the absolute maximum (rounded to three decimal places)
as ¢ =~ 6.305 and y =~ 1115.417. Since x represents the number of TVs sold in hundreds,
x = 6.305 corresponds to 630.5 TVs. Since we can’t sell half of a TV, we compare R(6.30) ~
1115.415 and R(6.31) ~ 1115.416, so selling 631 TVs results in a (slightly) higher revenue.
Since y represents the revenue in thousands of dollars, the maximum revenue is $1,115,416.

P(z) = R(z) — C(x) = =523 + 3522 — 452 — 25, 0 < 2 < 10.07.

The calculator gives the location of the absolute maximum (rounded to three decimal places)
as x ~ 3.897 and y =~ 35.255. Since x represents the number of TVs sold in hundreds,
x = 3.897 corresponds to 389.7 TVs. Since we can’t sell 0.7 of a TV, we compare P(3.89) ~
35.254 and P(3.90) ~ 35.255, so selling 390 TVs results in a (slightly) higher revenue. Since
y represents the revenue in thousands of dollars, the maximum revenue is $35,255.

Making and selling 71 PortaBoys yields a maximized profit of $5910.67.
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33.

34.

(a) Our ultimate goal is to maximize the volume, so we’ll start with the maximum Length
+ Girth of 130. This means the length is 130 — 4z. The volume of a rectangular box is
always length x width x height so we get V(z) = 22(130 — 42) = —423 + 13022,

(b) Graphing y = V(x) on [0,33] x [0,21000] shows a maximum at (21.67,20342.59) so the
dimensions of the box with maximum volume are 21.67in. x 21.67in. x 43.32in. for a
volume of 20342.59in.3.

(c) If we start with Length + Girth = 108 then the length is 108 — 4z and the volume
is V(r) = —42® + 10822. Graphing y = V(x) on [0,27] x [0,11700] shows a max-
imum at (18.00,11664.00) so the dimensions of the box with maximum volume are
18.00in. x 18.00in. x 36in. for a volume of 11664.00in.?. (Calculus will confirm that the
measurements which maximize the volume are exactly 18in. by 18in. by 36in., however,
as I'm sure you are aware by now, we treat all calculator results as approximations and
list them as such.)

The cubic regression model is ps(z) = 0.022623 — 0.950872 + 8.615x — 3.446. It has R? =
0.93765 which isn’t bad. The graph of y = ps(z) in the viewing window [—1,13] x [0, 24]
along with the scatter plot is shown below on the left. Notice that p; hits the z-axis at about
x = 12.45 making this a bad model for future predictions. To use the model to approximate
the number of hours of sunlight on your birthday, you’ll have to figure out what decimal value
of x is close enough to your birthday and then plug it into the model. My (Jeff’s) birthday
is July 31 which is 10 days after July 21 (z = 7). Assuming 30 days in a month, I think
x = 7.33 should work for my birthday and p5(7.33) ~ 17.5. The website says there will be
about 18.25 hours of daylight that day. To have 14 hours of darkness we need 10 hours of
daylight. We see that p;(1.96) ~ 10 and p;(10.05) ~ 10 so it seems reasonable to say that
we’ll have at least 14 hours of darkness from December 21, 2008 (z = 0) to February 21, 2009
(x = 2) and then again from October 21,2009 (z = 10) to December 21, 2009 (z = 12).

The quartic regression model is p,(z) = 0.0144z* —0.350723 +2.25922 — 15712+ 5.513. It has
R? = 0.98594 which is good. The graph of y = p,() in the viewing window [—1,15] x [0, 35]
along with the scatter plot is shown below on the right. Notice that p,(15) is above 24 making
this a bad model as well for future predictions. However, p,(7.33) ~ 18.71 making it much
better at predicting the hours of daylight on July 31 (my birthday). This model says we’ll
have at least 14 hours of darkness from December 21, 2008 (x = 0) to about March 1, 2009
(z = 2.30) and then again from October 10, 2009 (z = 9.667) to December 21, 2009 (z = 12).

y = ps(x) Y = pa(x)
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35. (a) The scatter plot is shown below with each of the three regression models.
(b) The quadratic model is P,(z) = —0.0222 + 0.241z + 0.956 with R? = 0.77708.
The cubic model is Ps(x) = 0.00523 — 0.10322 + 0.602z + 0.573 with R? = 0.98153.
The quartic model is P,(z) = —0.0009692% + 0.02532% — 0.24022 + 0.944x + 0.330 with
R? = 0.99929.

(¢) The maximums predicted by the three models are P,(5.737) ~ 1.648, P5(4.232) ~ 1.657
and P,(3.784) ~ 1.630, respectively.

Pl

y = P(x) y = Py(x) y = Py(z)
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3.2 THE FACTOR THEOREM AND THE REMAINDER THEOREM

Suppose we wish to find the zeros of f(x) = 2 + 422 — 5z — 14. Setting f(x) = 0 results in the
polynomial equation 2% 4 422 — 5z — 14 = 0. Despite all of the factoring techniques we learned!
in Intermediate Algebra, this equation foils? us at every turn. If we graph f using the graphing
calculator, we get

yavul
Y

The graph suggests that the function has three zeros, one of which is x = 2. It’s easy to show
that f(2) = 0, but the other two zeros seem to be less friendly. Even though we could use the
‘Zero’ command to find decimal approximations for these, we seek a method to find the remaining
zeros exactly. Based on our experience, if x = 2 is a zero, it seems that there should be a factor
of (x — 2) lurking around in the factorization of f(z). In other words, we should expect that
23 4+ 42% — 5r — 14 = (2 — 2) ¢(z), where g(z) is some other polynomial. How could we find such
a q(x), if it even exists? The answer comes from our old friend, polynomial division. Dividing
22 + 422 — 52 — 14 by x — 2 gives

x> + 6z + 7
x—2‘ 23 + 4% — br — 14
—(w3—2x2)

62> — 5z
—(62% —12x)

Tx — 14

— (T —14)

0

As you may recall, this means 2 + 422 — 50 — 14 = (z — 2) (x2 + 6z + 7), so to find the zeros of f,
we now solve (z — 2) (22 + 62+ 7) = 0. We get  — 2 = 0 (which gives us our known zero, z = 2)
as well as 22 4 62 + 7 = 0. The latter doesn’t factor nicely, so we apply the Quadratic Formula to
get = —3 4+ /2. The point of this section is to generalize the technique applied here. First up is
a friendly reminder of what we can expect when we divide polynomials.

'and probably forgot
Zpun intended
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Theorem 3.4. Polynomial Division: Suppose d(z) and p(x) are nonzero polynomials where
the degree of p is greater than or equal to the degree of d. There exist two unique polynomials,
q(z) and r(z), such that p(x) = d(z)q(x) + r(z), where either r(z) = 0 or the degree of r is
strictly less than the degree of d.

As you may recall, all of the polynomials in Theorem 3.4 have special names. The polynomial p
is called the dividend; d is the divisor; ¢ is the quotient; r is the remainder. If r(xz) = 0 then
d is called a factor of p. The proof of Theorem 3.4 is usually relegated to a course in Abstract
Algebra,? but we can still use the result to establish two important facts which are the basis of the
rest of the chapter.

Theorem 3.5. The Remainder Theorem: Suppose p is a polynomial of degree at least 1
and c is a real number. When p(z) is divided by = — ¢ the remainder is p(c).

The proof of Theorem 3.5 is a direct consequence of Theorem 3.4. When a polynomial is divided
by x — ¢, the remainder is either 0 or has degree less than the degree of x — ¢. Since z — ¢ is degree
1, the degree of the remainder must be 0, which means the remainder is a constant. Hence, in
either case, p(z) = (z — ¢) g(x) + r, where r, the remainder, is a real number, possibly 0. It follows
that p(c) = (c—¢) q(c) + 7 =0-q(c) +r =r, so we get r = p(c) as required. There is one last ‘low
hanging fruit™ to collect which we present below.

Theorem 3.6. The Factor Theorem: Suppose p is a nonzero polynomial. The real number
c is a zero of p if and only if (x — ¢) is a factor of p(z).

The proof of The Factor Theorem is a consequence of what we already know. If (z — ¢) is a factor
of p(x), this means p(x) = (x — ¢) g(x) for some polynomial q. Hence, p(c) = (¢ —¢) q(c) =0, so ¢
is a zero of p. Conversely, if ¢ is a zero of p, then p(c) = 0. In this case, The Remainder Theorem
tells us the remainder when p(z) is divided by (x — ¢), namely p(c), is 0, which means (z — ¢) is a
factor of p. What we have established is the fundamental connection between zeros of polynomials
and factors of polynomials.

Of the things The Factor Theorem tells us, the most pragmatic is that we had better find a more
efficient way to divide polynomials by quantities of the form = — c¢. Fortunately, people like Ruffini
and Horner have already blazed this trail. Let’s take a closer look at the long division we performed
at the beginning of the section and try to streamline it. First off, let’s change all of the subtractions
into additions by distributing through the —1s.

3Yes, Virginia, there are Algebra courses more abstract than this one.
4 Jeff hates this expression and Carl included it just to annoy him.


http://en.wikipedia.org/wiki/Synthetic_division
http://en.wikipedia.org/wiki/Horner_scheme
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2?2 + 6x +7
z—2| 2% + 42% — 5z —14
—x34 222
62> — 5z
—62%+ 122
Tx —14
—Tx+14
0

Next, observe that the terms —x3, —622 and —7x are the exact opposite of the terms above them.
The algorithm we use ensures this is always the case, so we can omit them without losing any
information. Also note that the terms we ‘bring down’ (namely the —5x and —14) aren’t really
necessary to recopy, so we omit them, too.

2%+ 6z 47
r—2| z3+42%— 5x —14
222
622
12z
Tz
14
0

Now, let’s move things up a bit and, for reasons which will become clear in a moment, copy the 3
into the last row.

24+ 6x+7
x—2| r3+422— bx —14
222 12z 14

> 622 Tz 0
Note that by arranging things in this manner, each term in the last row is obtained by adding the
two terms above it. Notice also that the quotient polynomial can be obtained by dividing each of
the first three terms in the last row by x and adding the results. If you take the time to work back
through the original division problem, you will find that this is exactly the way we determined the
quotient polynomial. This means that we no longer need to write the quotient polynomial down,
nor the x in the divisor, to determine our answer.

—2| a3+42?— 5x —14
222 122 14
3 622 Tx 0
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We'’ve streamlined things quite a bit so far, but we can still do more. Let’s take a moment to
remind ourselves where the 222, 12z and 14 came from in the second row. Each of these terms was
obtained by multiplying the terms in the quotient, 2, 6z and 7, respectively, by the —2 in z — 2,
then by —1 when we changed the subtraction to addition. Multiplying by —2 then by —1 is the
same as multiplying by 2, so we replace the —2 in the divisor by 2. Furthermore, the coefficients of
the quotient polynomial match the coefficients of the first three terms in the last row, so we now
take the plunge and write only the coefficients of the terms to get

211 4 -5 -14
2 12 14
1 6 7 0

We have constructed a synthetic division tableau for this polynomial division problem. Let’s re-
work our division problem using this tableau to see how it greatly streamlines the division process.
To divide 22 + 422 — 5z — 14 by x — 2, we write 2 in the place of the divisor and the coefficients of
23 + 42?2 — 5z — 14 in for the dividend. Then ‘bring down’ the first coefficient of the dividend.

2] 1 4 -5 —14 2] 1 4 -5 -4
J
1

Next, take the 2 from the divisor and multiply by the 1 that was ‘brought down’ to get 2. Write
this underneath the 4, then add to get 6.

2] 1 4 -5 -4 2/ 1 4 =5 -4
l 2 L 2
1 16

Now take the 2 from the divisor times the 6 to get 12, and add it to the —5 to get 7.

2] 1 4 -5 —14 2] 1 4 -5 -4
L2 12 L2 12
16 16 7

Finally, take the 2 in the divisor times the 7 to get 14, and add it to the —14 to get 0.

2] 1 4 -5 —14 2] 1 4 -5 -4
L2 12 U4 2 12 14
16 7 16 7 o]
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The first three numbers in the last row of our tableau are the coefficients of the quotient polynomial.
Remember, we started with a third degree polynomial and divided by a first degree polynomial, so
the quotient is a second degree polynomial. Hence the quotient is 22 + 6z + 7. The number in the
box is the remainder. Synthetic division is our tool of choice for dividing polynomials by divisors
of the form z — ¢. It is important to note that it works only for these kinds of divisors.® Also
take note that when a polynomial (of degree at least 1) is divided by x — ¢, the result will be a
polynomial of exactly one less degree. Finally, it is worth the time to trace each step in synthetic
division back to its corresponding step in long division. While the authors have done their best to
indicate where the algorithm comes from, there is no substitute for working through it yourself.

Example 3.2.1. Use synthetic division to perform the following polynomial divisions. Find the
quotient and the remainder polynomials, then write the dividend, quotient and remainder in the
form given in Theorem 3.4.
4 —8x — 1222
1 (523 — 2024+ 1)+(x—3) 2. (¢ +8)+(2+2) —
x —
Solution.

1. When setting up the synthetic division tableau, we need to enter 0 for the coefficient of x in
the dividend. Doing so gives

3/ 5 =2 0 1
15 39 117
5 13 39 [118

Since the dividend was a third degree polynomial, the quotient is a quadratic polynomial
with coefficients 5, 13 and 39. Our quotient is ¢(x) = 522 + 132 + 39 and the remainder is
r(z) = 118. According to Theorem 3.4, we have 52° —22%+1 = (z—3) (5z? 4 13z + 39) +118.

2. For this division, we rewrite z + 2 as x — (—2) and proceed as before

We get the quotient ¢(z) = 2 — 27 + 4 and the remainder 7(z) = 0. Relating the dividend,
quotient and remainder gives 2® + 8 = (z + 2) (2% — 2z + 4).

3. To divide 4 — 8¢ — 1222 by 2z — 3, two things must be done. First, we write the dividend
in descending powers of x as —12x? — 8z + 4. Second, since synthetic division works only
for factors of the form x — ¢, we factor 2z — 3 as 2 (ac — %) Our strategy is to first divide

—122% — 82 +4 by 2, to get —6x2 — 4z + 2. Next, we divide by (m — %) The tableau becomes

5You'll need to use good old-fashioned polynomial long division for divisors of degree larger than 1.
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3 ‘ -6 -4
-9 =3
-6 —-13 |-%

From this, we get —6z2 — 4z + 2 = (m — %) (—6z — 13) — % Multiplying both sides by 2 and
distributing gives —122% — 8¢ + 4 = (22 — 3) (=62 — 13) — 35. At this stage, we have written
—1222 — 82 +4 in the form (2z — 3)g(x) + r(z), but how can we be sure the quotient polynomial is
—6z — 13 and the remainder is —357 The answer is the word ‘unique’ in Theorem 3.4. The theorem
states that there is only one way to decompose —12x? — 8z + 4 into a multiple of (2z — 3) plus a
constant term. Since we have found such a way, we can be sure it is the only way. O

The next example pulls together all of the concepts discussed in this section.

Example 3.2.2. Let p(z) = 22° — 5z + 3.

1. Find p(—2) using The Remainder Theorem. Check your answer by substitution.

2. Use the fact that x = 1 is a zero of p to factor p(x) and then find all of the real zeros of p.
Solution.

1. The Remainder Theorem states p(—2) is the remainder when p(x) is divided by =z — (—2).
We set up our synthetic division tableau below. We are careful to record the coefficient of z2
as 0, and proceed as above.

-2/ 2 0 -5 3
l -4 8 —6

2 -4 3 |-3]

According to the Remainder Theorem, p(—2) = —3. We can check this by direct substitution
into the formula for p(z): p(—2) = 2(-2)3 —5(-2) +3=—-16+ 10+ 3 = —3.

2. The Factor Theorem tells us that since x = 1 is a zero of p, z — 1 is a factor of p(x). To factor
p(x), we divide

120 -5 3
} 2 2 -3

2 2 -3

We get a remainder of 0 which verifies that, indeed, p(1) = 0. Our quotient polynomial is a
second degree polynomial with coefficients 2, 2, and —3. So ¢(x) = 222 + 22 — 3. Theorem
3.4 tells us p(z) = (z — 1) (22® + 22 — 3). To find the remaining real zeros of p, we need to
solve 222 4+ 22 — 3 = 0 for x. Since this doesn’t factor nicely, we use the quadratic formula to
find that the remaining zeros are z = %ﬁ O
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In Section 3.1, we discussed the notion of the multiplicity of a zero. Roughly speaking, a zero with
multiplicity 2 can be divided twice into a polynomial; multiplicity 3, three times and so on. This
is illustrated in the next example.

Example 3.2.3. Let p(z) = 42 — 42% — 1122 + 122 — 3. Given that 2 = % is a zero of multiplicity
2, find all of the real zeros of p.

Solution. We set up for synthetic division. Since we are told the multiplicity of % is two, we
continue our tableau and divide % into the quotient polynomial

i 4 -4 -11 12 -3
] 2 -1 -6 3

4 -2 -12 6 [0
I 2 0 -6

4 0 -12 [0]

From the first division, we get 4z? — 423 — 1122 + 120 — 3 = (x — %) (41‘3 — 222 — 122 + 6). The
second division tells us 423 — 222 — 122 + 6 = (:1: — %) (4x2 — 12). Combining these results, we
have 4z* — 423 — 1122 + 122 — 3 = (:c — %)2 (4:U2 — 12). To find the remaining zeros of p, we set
422 — 12 = 0 and get = = +/3. O

A couple of things about the last example are worth mentioning. First, the extension of the
synthetic division tableau for repeated divisions will be a common site in the sections to come.
Typically, we will start with a higher order polynomial and peel off one zero at a time until we are
left with a quadratic, whose roots can always be found using the Quadratic Formula. Secondly, we
found r = ++/3 are zeros of p. The Factor Theorem guarantees (x — \/§) and (ac — (—\/3)) are
both factors of p. We can certainly put the Factor Theorem to the test and continue the synthetic
division tableau from above to see what happens.

3] 4 -4 -11 12 -3
J 2 -1 -6 3

4 -2 -12 6 [0]
! 2 0 -6

VI 0 —12 [0]
I 43 12
-v3[ 4 4v3 [0
L —4V3
4

This gives us 4a* — 42® — 112% + 120 — 3 = (z — %)2 (z = V3) (z— (=V3)) (4), or, when written
with the constant in front
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We have shown that p is a product of its leading coefficient times linear factors of the form (z — ¢)
where ¢ are zeros of p. It may surprise and delight the reader that, in theory, all polynomials can
be reduced to this kind of factorization. We leave that discussion to Section 3.4, because the zeros
may not be real numbers. Our final theorem in the section gives us an upper bound on the number
of real zeros.

Theorem 3.7. Suppose f is a polynomial of degree n > 1. Then f has at most n real zeros,
counting multiplicities.

Theorem 3.7 is a consequence of the Factor Theorem and polynomial multiplication. Every zero ¢
of f gives us a factor of the form (x — ¢) for f(x). Since f has degree n, there can be at most n of
these factors. The next section provides us some tools which not only help us determine where the
real zeros are to be found, but which real numbers they may be.

We close this section with a summary of several concepts previously presented. You should take
the time to look back through the text to see where each concept was first introduced and where
each connection to the other concepts was made.

Connections Between Zeros, Factors and Graphs of Polynomial Functions

Suppose p is a polynomial function of degree n > 1. The following statements are equivalent:

e The real number c is a zero of p
e p(c) =0
e 1 = cis a solution to the polynomial equation p(z) = 0

e (z —¢) is a factor of p(z)

The point (¢, 0) is an z-intercept of the graph of y = p(z)
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3.2.1 EXERCISES

In Exercises 1 - 6, use polynomial long division to perform the indicated division. Write the
polynomial in the form p(x) = d(z)q(x) + r(x).

1. (42?4 3z —1) + (z —3) 2. (22° —z+1)+ (2 +2+1)
3. (bzt —32% + 222 — 1) + (2% +4) 4. (=a® + 723 —2) + (2% —2? + 1)
5. (92° +5) + (22— 3) 6. (42% — 2 —23) = (22 — 1)

In Exercises 7 - 20 use synthetic division to perform the indicated division. Write the polynomial
in the form p(x) = d(z)q(x) + r(x).

7. (32 —2041) = (z — 1) 8. (22 =5) + (x—5)

9. (3—4x—22%) =+ (z+1) 10. (42? — 52+ 3) + (v +3)

11 (2® +8) + (z+2) 12. (42® + 22— 3) + (z — 3)

13. (1822 — 152 — 25) = (z — 3) 14. (422 —1) = (z — 1)

15. (223 + 22 +20+1) + (z + 1) 16. (323 —z+4) = (- 3)

17. (223 =3z 4+1) + (z - 3) 18. (4a' —122% + 1322 — 1224 9) + (z — 2)
19. (z* — 622 +9) = (2 — V3) 20. (2% — 62 4+ 1222 — 8) + (z + V2)

In Exercises 21 - 30, determine p(c) using the Remainder Theorem for the given polynomial func-
tions and value of c. If p(c) = 0, factor p(z) = (z — ¢)q(x).

21. p(z) =222 —x+1,c=4 22. p(z) = 42? — 332 — 180, ¢ = 12

23. p(z) =222 —2+6,c=—3 24. p(z) =2 +222 +3z +4,c=—1
25. p(x) = 323 — 622 + 42 — 8, c =2 26. p(z) =82+ 122 + 62+ 1, c=—1
27. p(z) =2t — 222 +4,¢c=3 28. p(z) = 62" — 22 +2, c=—2

29. p(r)=a2* +2% - 622 —Tx — 7, c= /T 30. p(x) =22 —4x+1,c=2—-+3
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In Exercises 31 - 40, you are given a polynomial and one of its zeros. Use the techniques in this
section to find the rest of the real zeros and factor the polynomial.

31. 22 — 622+ 11z —6, c=1 32. 2% — 2422 + 1922 — 512, ¢=8
33. 303 +4a? —2 -2, c=2 34. 223 — 322 — 11z 46, c=3
35. 22 +222 32 -6, c= -2 36. 223 — 2% — 102 +5, c=1

37. 4z — 2823 + 612% — 422 + 9, ¢ = 3 is a zero of multiplicity 2

38.
39.

40.

2 + 224 — 1223 — 3822 — 372 — 12, ¢ = —1 is a zero of multiplicity 3

1252° — 2752* — 22652 — 321322 — 1728z — 324, ¢ = —2 is a zero of multiplicity 3

5

% —2x — 2, c=1-+3

In Exercises 41 - 45, create a polynomial p which has the desired characteristics. You may leave
the polynomial in factored form.

41.

42.

43.

44.

45.

The zeros of p are c = +2 and ¢ = £1
The leading term of p(z) is 117z

The zeros of pare c=1 and ¢ =3
¢ = 3 is a zero of multiplicity 2.

The leading term of p(z) is —5z3

The solutions to p(z) =0 are z = £3 and x =6

The leading term of p(z) is 7z*

The point (—3,0) is a local minimum on the graph of y = p(x).
The solutions to p(x) = 0 are x = £3, r = —2, and = = 4.

The leading term of p(x) is —a°.

The point (—2,0) is a local maximum on the graph of y = p(x).
p is degree 4.

as ¢ — 00, p(x) - —oo

p has exactly three z-intercepts: (—6,0), (1,0) and (117,0)
The graph of y = p(z) crosses through the z-axis at (1,0).

3

29
46. Find a quadratic polynomial with integer coefficients which has z = — £ = as its real zeros.

5
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3.2.2 ANSWERS

1. 422 + 32— 1 = (v — 3)(4x + 15) + 44

2.2 —x+1=(2"+2+1) (22 —2) + (—z +3)

3. bat —32® + 222 — 1 = (2? +4) (52? — 3z — 18) + (12z + 71)

4. =2+ 728 —x = (2% — 22+ 1) (—2* — 2+ 6) + (72> — 6)

5. 92% +5= (20 — 3) (322 + Lo + &) 4 28

6. 4x2—1‘—23:(;1:2—1)(4)+(—x—19)

3x2—2x+1) r—1)(Bz+1)+

2?2 —5) = (z —5) (v +5) + 20
r+1)(—2z-2)+5

10. x+3)(4dx — 17) + 54

11.

(
)
= (
4x2—5x+3) (
2?4+ 8) = (x+2)(z* -2z +4) +0
(

12. (423 —|—2x—) x —3) (422 + 12z + 38) + 111

(
(
(3~
(
(
(
13. (1822 — 15z — 25) = (z — 3) (18z + 15) + 0
(
(
(
(
(
(
(

14. (422 -1) = (z— 1) 4z +2)+0

15. (228 + 2% +20+1) = (z+3) (222 4+2) +0

16. (32° —x+4) = (v — 2) (322 + 22+ 1) + 3

17. (223 -3z +1) = (z— 1) (222 +2—3) — 1

18. (4z* — 1223 4+ 1327 — 122+ 9) = (z — 3) (42® — 62% + 42— 6) + 0

19. (21 =622+ 9) = (z — V3) (2> + V322 =32 —3V3) + 0

20. (2% —62® + 1222 — 8) = (v + V2) (2° — V22 — 423 + 4V22? + 42 — 4/2) + 0

21. p(4) =29 22. p(12) = 0, p(z) = (z — 12)(4x + 15)
23. p(—3) = —45 24. p(—1) =2

267

25. p(2) =0, p(z) = (z — 2) (32 + 4) 26. p(—3) =0, p(z) = (z+ 3) (82° + 8z + 2)



27.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

PoryNoMIAL FUNCTIONS

p(3) =1 28.p(-3) =%
p(—VT) =0, p(z) = (& +V7) (2° + (1 = VT)a? + (1 = VT)z — V7)
p(2=+3) =0, p(z) = (z - (2= V3))(x - (2+V3))

23— 62+ 11z — 6= (z — 1)(z — 2)(x — 3)

23 — 2422 + 1922 — 512 = (z — 8)3

303 +4a? —x—2=3(z— 2) (w+1)?

203 — 322 —1lz+6 =2 (2 — 3) (z + 2)(z — 3)

23+ 222 — 32— 6 = (z+2)(x + V3)(z — V3)

20° — 22 — 102 +5=2(z — 1) (v + V5)(z — V/5)

4zt — 282 + 6122 — 420 +9 = 4 (v — 1) (¢ — 3)?

25 4224 — 1223 — 3822 — 372 — 12 = (2 + 1)3(x + 3)(z — 4)

1252° — 2752* — 226523 — 321322 — 1728z — 324 = 125 (a:+§)3(a:+2)(x—6)
2?22 —2=(z—(1-V3))(z— (1+V3))

p(z) =117(x + 2)(z — 2)(x + 1)(x — 1)
p(z) = =5(x — 1)(z - 3)°
p(z) = T(z +3)*(z — 3)(z - 6)
p(z) = —(z +2)*(z = 3)(z + 3)(z — 4)
p(z) = a(x + 6)*(z — 1)(z — 117) or p(x) = a(z + 6)(z — 1)(z — 117)? where a can be any
negative real number
p(x) =522 — 62 — 4
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3.3 REAL ZEROS OF POLYNOMIALS

In Section 3.2, we found that we can use synthetic division to determine if a given real number is
a zero of a polynomial function. This section presents results which will help us determine good
candidates to test using synthetic division. There are two approaches to the topic of finding the
real zeros of a polynomial. The first approach (which is gaining popularity) is to use a little bit of
Mathematics followed by a good use of technology like graphing calculators. The second approach
(for purists) makes good use of mathematical machinery (theorems) only. For completeness, we
include the two approaches but in separate subsections.! Both approaches benefit from the following
two theorems, the first of which is due to the famous mathematician Augustin Cauchy. It gives us
an interval on which all of the real zeros of a polynomial can be found.

Lo+ axr+ais a

lao| |a1] lan—1]

polynomial of degree n with n > 1. Let M be the largest of the numbers: Tanl? Tan]? "0 TJan] -
Then all the real zeros of f lie in in the interval [—(M + 1), M + 1].

Theorem 3.8. Cauchy’s Bound: Suppose f(z) = apz” + ap_ 2"~

The proof of this fact is not easily explained within the confines of this text. This paper contains
the result and gives references to its proof. Like many of the results in this section, Cauchy’s Bound
is best understood with an example.

Example 3.3.1. Let f(z) = 22 + 423 — 22 — 62 — 3. Determine an interval which contains all of
the real zeros of f.

Solution. To find the M stated in Cauchy’s Bound, we take the absolute value of the leading
coefficient, in this case |2| = 2 and divide it into the largest (in absolute value) of the remaining
coefficients, in this case | — 6] = 6. This yields M = 3 so it is guaranteed that all of the real zeros
of f lie in the interval [—4,4]. O

Whereas the previous result tells us where we can find the real zeros of a polynomial, the next
theorem gives us a list of possible real zeros.

Theorem 3.9. Rational Zeros Theorem: Suppose f(z) = ap2" + ap—12" '+ ... + @12 + a,
is a polynomial of degree n with n > 1, and ay, a4, ...a, are integers. If r is a rational zero of
f, then r is of the form :l:g, where p is a factor of the constant term a,, and ¢ is a factor of the
leading coefficient a,,.

The Rational Zeros Theorem gives us a list of numbers to try in our synthetic division and that
is a lot nicer than simply guessing. If none of the numbers in the list are zeros, then either the
polynomial has no real zeros at all, or all of the real zeros are irrational numbers. To see why the
Rational Zeros Theorem works, suppose ¢ is a zero of f and ¢ = % in lowest terms. This means p
and ¢ have no common factors. Since f(c) = 0, we have

P\" p\" p
an <) + a,_ (> +...4+a (>+a0:0.
q q q

!Carl is the purist and is responsible for all of the theorems in this section. Jeff, on the other hand, has spent too
much time in school politics and has been polluted with notions of ‘compromise.” You can blame the slow decline of
civilization on him and those like him who mingle Mathematics with technology.
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Multiplying both sides of this equation by ¢", we clear the denominators to get
app" + ap—1p" g+ ...+ apg" T+ a0g" =0

Rearranging this equation, we get

1 1

n
— Qoq

app" = —Qp_p" g — ... —a;pq"”

Now, the left hand side is an integer multiple of p, and the right hand side is an integer multiple of
q. (Can you see why?) This means a,p"™ is both a multiple of p and a multiple of g. Since p and ¢
have no common factors, a, must be a multiple of ¢q. If we rearrange the equation

anp" + anp" g+ .+ apg" T H+agg” =0

as

aq" = —app" — ap_ip" g — ... —apg"""

we can play the same game and conclude qa, is a multiple of p, and we have the result.

Example 3.3.2. Let f(r) = 22* + 42® — 22 — 62 — 3. Use the Rational Zeros Theorem to list all
of the possible rational zeros of f.

Solution. To generate a complete list of rational zeros, we need to take each of the factors of
constant term, a, = —3, and divide them by each of the factors of the leading coefficient a, = 2.
The factors of —3 are &1 and +3. Since the Rational Zeros Theorem tacks on a + anyway, for
the moment, we consider only the positive factors 1 and 3. The factors of 2 are 1 and 2, so the
Rational Zeros Theorem gives the list {+ 1, +2 +2 +31 or {£1 £1,£3 £3}. O

Our discussion now diverges between those who wish to use technology and those who do not.

3.3.1 FoRr THOSE WISHING TO USE A GRAPHING CALCULATOR

At this stage, we know not only the interval in which all of the zeros of f(z) = 2z*+423 — 22— 623
are located, but we also know some potential candidates. We can now use our calculator to help
us determine all of the real zeros of f, as illustrated in the next example.

Example 3.3.3. Let f(x) = 22% + 423 — 22 — 62 — 3.
1. Graph y = f(x) on the calculator using the interval obtained in Example 3.3.1 as a guide.
2. Use the graph to shorten the list of possible rational zeros obtained in Example 3.3.2.
3. Use synthetic division to find the real zeros of f, and state their multiplicities.

Solution.

1. In Example 3.3.1, we determined all of the real zeros of f lie in the interval [—4,4]. We set
our window accordingly and get
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W IHOOL
amin= g
amax=d
secl=1
Ymin= -4
“Ymax=d
Y=cl=1
ares=10

2. In Example 3.3.2, we learned that any rational zero of f must be in the list {j: %, +1,+ %, + 3}.
From the graph, it looks as if we can rule out any of the positive rational zeros, since the
graph seems to cross the xz-axis at a value just a little greater than 1. On the negative side,
—1 looks good, so we try that for our synthetic division.

-1/ 2 4 -1 -6 -3
] -2 -2 3 3

2 2 -3 -3 [0]

We have a winner! Remembering that f was a fourth degree polynomial, we know that our
quotient is a third degree polynomial. If we can do one more successful division, we will have
knocked the quotient down to a quadratic, and, if all else fails, we can use the quadratic
formula to find the last two zeros. Since there seems to be no other rational zeros to try, we
continue with —1. Also, the shape of the crossing at x = —1 leads us to wonder if the zero
x = —1 has multiplicity 3.

-1/ 2 4 -1 -6 -3
] -2 -2 3 3

-1] 2 2 -3 -3 [0]

J -2 0 3

2 0 -3
Success! Our quotient polynomial is now 222 — 3. Setting this to zero gives 222 — 3 = 0, or
z? = %, which gives us x = £+ @. Concerning multiplicities, based on our division, we have

that —1 has a multiplicity of at least 2. The Factor Theorem tells us our remaining zeros,

+ @, each have multiplicity at least 1. However, Theorem 3.7 tells us f can have at most 4
real zeros, counting multiplicity, and so we conclude that —1 is of multiplicity exactly 2 and
+ @ each has multiplicity 1. (Thus, we were wrong to think that —1 had multiplicity 3.) O
It is interesting to note that we could greatly improve on the graph of y = f(x) in the previous
example given to us by the calculator. For instance, from our determination of the zeros of f and
their multiplicities, we know the graph crosses at x = —@ ~ —1.22 then turns back upwards to
touch the z—axis at x = —1. This tells us that, despite what the calculator showed us the first time,

there is a relative maximum occurring at x = —1 and not a ‘flattened crossing’ as we originally
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believed. After resizing the window, we see not only the relative maximum but also a relative
minimum? just to the left of # = —1 which shows us, once again, that Mathematics enhances the
technology, instead of vice-versa.

W I OO0

amin=-1.3

amax=-.5

necl=1 .
Ymin=-.@1

Ymax=.Hd1

Y= l=1

ares=10

Our next example shows how even a mild-mannered polynomial can cause problems.

Example 3.3.4. Let f(z) = z* + 2% — 12.

1. Use Cauchy’s Bound to determine an interval in which all of the real zeros of f lie.
2. Use the Rational Zeros Theorem to determine a list of possible rational zeros of f.
3. Graph y = f(z) using your graphing calculator.

4. Find all of the real zeros of f and their multiplicities.
Solution.

1. Applying Cauchy’s Bound, we find M = 12, so all of the real zeros lie in the interval [—13,13].

2. Applying the Rational Zeros Theorem with constant term a, = —12 and leading coefficient
as =1, we get the list {£1, £2, +3, +4, £6, £12}.

3. Graphing y = f(z) on the interval [—13,13] produces the graph below on the left. Zooming
in a bit gives the graph below on the right. Based on the graph, none of our rational zeros
will work. (Do you see why not?)

2This is an example of what is called ‘hidden behavior.’
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4. From the graph, we know f has two real zeros, one positive, and one negative. Our only hope
at this point is to try and find the zeros of f by setting f(z) = 2* + 22 — 12 = 0 and solving.
If we stare at this equation long enough, we may recognize it as a ‘quadratic in disguise’ or
‘quadratic in form’. In other words, we have three terms: z?, 22 and 12, and the exponent
on the first term, z*, is exactly twice that of the second term, z2. We may rewrite this as
(:z2)2 + (a:2) — 12 = 0. To better see the forest for the trees, we momentarily replace 2% with
the variable w. In terms of u, our equation becomes u? + u — 12 = 0, which we can readily
factor as (u + 4)(u — 3) = 0. In terms of x, this means 2* + z? — 12 = (2 — 3) (2 +4) = 0.
We get 2 = 3, which gives us z = ++/3, or 22 = —4, which admits no real solutions. Since
V/3 ~ 1.73, the two zeros match what we expected from the graph. In terms of multiplicity,
the Factor Theorem guarantees (z — v/3) and (z + V/3) are factors of f(z). Since f(z) can
be factored as f(x) = (:U2 - 3) (:1:2 + 4), and 22 44 has no real zeros, the quantities (x — \/3)
and (x + \/g) must both be factors of #? — 3. According to Theorem 3.7, 22 — 3 can have at
most 2 zeros, counting multiplicity, hence each of +1/3 is a zero of f of multiplicity 1. O

The technique used to factor f(x) in Example 3.3.4 is called u-substitution. We shall see more of
this technique in Section 5.3. In general, substitution can help us identify a ‘quadratic in disguise’
provided that there are exactly three terms and the exponent of the first term is exactly twice that
of the second. It is entirely possible that a polynomial has no real roots at all, or worse, it has
real roots but none of the techniques discussed in this section can help us find them exactly. In
the latter case, we are forced to approximate, which in this subsection means we use the ‘Zero’
command on the graphing calculator.

3.3.2 FoR THOSE WISHING NOT TO USE A GRAPHING CALCULATOR

Suppose we wish to find the zeros of f(x) = 2z* + 423 — 22 — 62 — 3 without using the calculator.
In this subsection, we present some more advanced mathematical tools (theorems) to help us. Our
first result is due to René Descartes.

Theorem 3.10. Descartes’ Rule of Signs: Suppose f(z) is the formula for a polynomial
function written with descending powers of x.

e If P denotes the number of variations of sign in the formula for f(x), then the number of
positive real zeros (counting multiplicity) is one of the numbers {P, P —2, P —4, ... }.

e If N denotes the number of variations of sign in the formula for f(—z), then the number
of negative real zeros (counting multiplicity) is one of the numbers {N, N —2, N —4,...}.

A few remarks are in order. First, to use Descartes’ Rule of Signs, we need to understand what is
meant by a ‘variation in sign’ of a polynomial function. Consider f(z) = 2z* +42° — 2% — 62 — 3.
If we focus on only the signs of the coefficients, we start with a (+), followed by another (+), then
switch to (—), and stay (—) for the remaining two coefficients. Since the signs of the coefficients
switched once as we read from left to right, we say that f(x) has one variation in sign. When


http://en.wikipedia.org/wiki/Descartes
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we speak of the variations in sign of a polynomial function f we assume the formula for f(z) is
written with descending powers of z, as in Definition 3.1, and concern ourselves only with the
nonzero coefficients. Second, unlike the Rational Zeros Theorem, Descartes’ Rule of Signs gives us
an estimate to the number of positive and negative real zeros, not the actual value of the zeros.
Lastly, Descartes’ Rule of Signs counts multiplicities. This means that, for example, if one of the
zeros has multiplicity 2, Descsartes’ Rule of Signs would count this as two zeros. Lastly, note that
the number of positive or negative real zeros always starts with the number of sign changes and
decreases by an even number. For example, if f(z) has 7 sign changes, then, counting multplicities,
f has either 7, 5, 3 or 1 positive real zero. This implies that the graph of y = f(z) crosses the
positive x-axis at least once. If f(—x) results in 4 sign changes, then, counting multiplicities, f has
4, 2 or 0 negative real zeros; hence, the graph of y = f(z) may not cross the negative z-axis at all.
The proof of Descartes’ Rule of Signs is a bit technical, and can be found here.

Example 3.3.5. Let f(z) = 22* + 42® — 22 — 62 — 3. Use Descartes’ Rule of Signs to determine
the possible number and location of the real zeros of f.

Solution. As noted above, the variations of sign of f(x) is 1. This means, counting multiplicities,
f has exactly 1 positive real zero. Since f(—z) = 2(—2)* + 4(—2)® — (—2)? — 6(—2) — 3 =
20* — 423 — 22 + 62 — 3 has 3 variations in sign, f has either 3 negative real zeros or 1 negative real
zero, counting multiplicities. O

Cauchy’s Bound gives us a general bound on the zeros of a polynomial function. Our next result
helps us determine bounds on the real zeros of a polynomial as we synthetically divide which are
often sharper® bounds than Cauchy’s Bound.

Theorem 3.11. Upper and Lower Bounds: Suppose f is a polynomial of degree n > 1.

e If ¢ > 0 is synthetically divided into f and all of the numbers in the final line of the division
tableau have the same signs, then c is an upper bound for the real zeros of f. That is,
there are no real zeros greater than c.

e If ¢ < 0 is synthetically divided into f and the numbers in the final line of the division
tableau alternate signs, then c is a lower bound for the real zeros of f. That is, there are
no real zeros less than c.

NOTE: If the number 0 occurs in the final line of the division tableau in either of the
above cases, it can be treated as (4) or (—) as needed.

The Upper and Lower Bounds Theorem works because of Theorem 3.4. For the upper bound part of
the theorem, suppose ¢ > 0 is divided into f and the resulting line in the division tableau contains,
for example, all nonnegative numbers. This means f(z) = (z — ¢)q(z) + r, where the coefficients
of the quotient polynomial and the remainder are nonnegative. (Note that the leading coefficient
of ¢ is the same as f so ¢(x) is not the zero polynomial.) If b > ¢, then f(b) = (b — ¢)q(b) + r,
where (b — ¢) and ¢(b) are both positive and r > 0. Hence f(b) > 0 which shows b cannot be a
zero of f. Thus no real number b > ¢ can be a zero of f, as required. A similar argument proves

3That is, better, or more accurate.


http://www.cut-the-knot.org/fta/ROS2.shtml

3.3 REAL ZEROS OF POLYNOMIALS 275

f(b) < 0if all of the numbers in the final line of the synthetic division tableau are non-positive. To
prove the lower bound part of the theorem, we note that a lower bound for the negative real zeros
of f(x) is an upper bound for the positive real zeros of f(—x). Applying the upper bound portion
to f(—x) gives the result. (Do you see where the alternating signs come in?) With the additional
mathematical machinery of Descartes’ Rule of Signs and the Upper and Lower Bounds Theorem,
we can find the real zeros of f(x) = 2z* +423 — 22 — 62 — 3 without the use of a graphing calculator.

Example 3.3.6. Let f(z) = 22* + 42% — 22 — 62 — 3.

1. Find all of the real zeros of f and their multiplicities.

2. Sketch the graph of y = f(x).

Solution.

1. We know from Cauchy’s Bound that all of the real zeros lie in the interval [—4,4] and that
our possible rational zeros are + %, +1, i% and + 3. Descartes’ Rule of Signs guarantees us
at least one negative real zero and exactly one positive real zero, counting multiplicity. We
try our positive rational zeros, starting with the smallest, % Since the remainder isn’t zero,

we know 2 isn’t a zero. Sadly, the final line in the division tableau has both positive and

2
negative numbers, so % is not an upper bound. The only information we get from this division
is courtesy of the Remainder Theorem which tells us f (%) = —% so the point (%, —4—5’) is

on the graph of f. We continue to our next possible zero, 1. As before, the only information
we can glean from this is that (1, —4) is on the graph of f. When we try our next possible
Z€ero, %, we get that it is not a zero, and we also see that it is an upper bound on the zeros of
f, since all of the numbers in the final line of the division tableau are positive. This means
there is no point trying our last possible rational zero, 3. Descartes’ Rule of Signs guaranteed
us a positive real zero, and at this point we have shown this zero is irrational. Furthermore,
the Intermediate Value Theorem, Theorem 3.1, tells us the zero lies between 1 and %, since

f(1)<0and f(3) >0.

L S I W R S Bt e s
LR R ] L2 6 5 -1 3T 7%
2 5 3 -2 [ & 26 5 —1 |4 27 ¥ 2 [B

We now turn our attention to negative real zeros. We try the largest possible zero, —%.

Synthetic division shows us it is not a zero, nor is it a lower bound (since the numbers in
the final line of the division tableau do not alternate), so we proceed to —1. This division
shows —1 is a zero. Descartes’ Rule of Signs told us that we may have up to three negative
real zeros, counting multiplicity, so we try —1 again, and it works once more. At this point,
we have taken f, a fourth degree polynomial, and performed two successful divisions. Our
quotient polynomial is quadratic, so we look at it to find the remaining zeros.
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-1/ 2 4 -1 -6 -3

—1r 9 4 1 -6 -3
A S | -2 -2 3 3
2 1 8 —1‘2 2—3—3@
A e b2 0 3
2 0 -3

Setting the quotient polynomial equal to zero yields 222 —3 = 0, so that 22 = %, orr ==+ @.

Descartes’ Rule of Signs tells us that the positive real zero we found, @, has multiplicity 1.
Descartes also tells us the total multiplicity of negative real zeros is 3, which forces —1 to be

a zero of multiplicity 2 and —@ to have multiplicity 1.

2. We know the end behavior of y = f(x) resembles that of its leading term y = 2z*. This
means that the graph enters the scene in Quadrant II and exits in Quadrant I. Since + @
are zeros of odd multiplicity, we have that the graph crosses through the z-axis at the points

(—?,0) and (?,0). Since —1 is a zero of multiplicity 2, the graph of y = f(x) touches
and rebounds off the z-axis at (—1,0). Putting this together, we get

Y

O

You can see why the ‘no calculator’ approach is not very popular these days. It requires more
computation and more theorems than the alternative.* In general, no matter how many theorems
you throw at a polynomial, it may well be impossible® to find their zeros exactly. The polynomial
f(x) = 2° — 2 — 1 is one such beast.® According to Descartes’ Rule of Signs, f has exactly one
positive real zero, and it could have two negative real zeros, or none at all. The Rational Zeros

4This is apparently a bad thing.

5We don’t use this word lightly; it can be proven that the zeros of some polynomials cannot be expressed using
the usual algebraic symbols.

5See this page.


http://en.wikipedia.org/wiki/Galois_theory
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Test gives us +1 as rational zeros to try but neither of these work since f(1) = f(—1) = —1. If
we try the substitution technique we used in Example 3.3.4, we find f(z) has three terms, but the
exponent on the z° isn’t exactly twice the exponent on z. How could we go about approximating
the positive zero without resorting to the ‘Zero’ command of a graphing calculator? We use the
Bisection Method. The first step in the Bisection Method is to find an interval on which f
changes sign. We know f(1) = —1 and we find f(2) = 29. By the Intermediate Value Theorem,
we know that the zero of f lies in the interval [1,2]. Next, we ‘bisect’ this interval and find the
midpoint is 1.5. We have that f(1.5) ~ 5.09. This means that our zero is between 1 and 1.5, since
f changes sign on this interval. Now, we ‘bisect’ the interval [1, 1.5] and find f(1.25) =~ 0.80, so now
we have the zero between 1 and 1.25. Bisecting [1,1.25], we find f(1.125) ~ —0.32, which means
the zero of f is between 1.125 and 1.25. We continue in this fashion until we have ‘sandwiched’ the
zero between two numbers which differ by no more than a desired accuracy. You can think of the
Bisection Method as reversing the sign diagram process: instead of finding the zeros and checking
the sign of f using test values, we are using test values to determine where the signs switch to find
the zeros. It is a slow and tedious, yet fool-proof, method for approximating a real zero.

Our next example reminds us of the role finding zeros plays in solving equations and inequalities.
Example 3.3.7.

1. Find all of the real solutions to the equation 2z® + 623 + 3 = 32% + 822.

2. Solve the inequality 22° 4+ 622 + 3 < 3z* + 822.

3. Interpret your answer to part 2 graphically, and verify using a graphing calculator.
Solution.

1. Finding the real solutions to 2z° + 623 + 3 = 3% + 822 is the same as finding the real
solutions to 22° — 3z% 4 623 — 822 + 3 = 0. In other words, we are looking for the real zeros
of p(x) = 22° — 3x* + 623 — 822 + 3. Using the techniques developed in this section, we get

12 -3 6 -8 0 3
J 2 -1 5 -3 -3
1/ 2 -1 5 -3 -3 [0]
by 2 1 6 3
~il2 1 6 3 [0
) -1 0 =3
2 0 6 i
The quotient polynomial is 222 + 6 which has no real zeros so we get = = —% and x = 1.

2. To solve this nonlinear inequality, we follow the same guidelines set forth in Section 2.4: we get
0 on one side of the inequality and construct a sign diagram. Our original inequality can be
rewritten as 22° —32% +623 —822+3 < 0. We found the zeros of p(z) = 22° —32* +623 82243

in part 1 to be x = —% and x = 1. We construct our sign diagram as before.
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The solution to p(x) < 0 is (—oo, —%), and we know p(z) =0 at z = —% and z = 1. Hence,

the solution to p(z) < 0 is (—oo, —3] U {1}.

3. To interpret this solution graphically, we set f(z) = 22° + 623 + 3 and g(z) = 32* + 8z2.
We recall that the solution to f(z) < g(z) is the set of = values for which the graph of f
is below the graph of g (where f(x) < g(z)) along with the = values where the two graphs
intersect (f(z) = g(x)). Graphing f and g on the calculator produces the picture on the
lower left. (The end behavior should tell you which is which.) We see that the graph of f
is below the graph of g on (—oo, —%) However, it is difficult to see what is happening near
x = 1. Zooming in (and making the graph of g thicker), we see that the graphs of f and g do
intersect at © = 1, but the graph of g remains below the graph of f on either side of z = 1.

Our last example revisits an application from page 247 in the Exercises of Section 3.1.

Example 3.3.8. Suppose the profit P, in thousands of dollars, from producing and selling =
hundred LCD TVs is given by P(x) = —523 + 3522 — 450 — 25, 0 < z < 10.07. How many TVs
should be produced to make a profit? Check your answer using a graphing utility.

Solution. To ‘make a profit’ means to solve P(z) = —5x3 + 3522 — 452 — 25 > 0, which we
do analytically using a sign diagram. To simplify things, we first factor out the —5 common
to all the coefficients to get —5 (:1:3 — T2 4+ 9z — 5) > 0, so we can just focus on finding the
zeros of f(x) = 2% — 72? + 92 + 5. The possible rational zeros of f are +1 and +5, and going
through the usual computations, we find £ = 5 is the only rational zero. Using this, we factor
flx) =23 - 72> + 92+ 5 = (x — ) (:U2 —2r — 1), and we find the remaining zeros by applying
the Quadratic Formula to 22 — 2z — 1 = 0. We find three real zeros, + = 1 — /2 = —0.414. .,
=142 =2414..., and =z = 5, of which only the last two fall in the applied domain of
[0,10.07]. We choose x = 0, x = 3 and = = 10.07 as our test values and plug them into the function
P(z) = =523 + 3522 — 452 — 25 (not f(x) = 2° — 722 + 92 — 5) to get the sign diagram below.
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Fievzy 5
0 3 10.07

We see immediately that P(z) > 0 on (1++/2,5). Since  measures the number of TVs in hundreds,
x = 1+1/2 corresponds to 241.4 ... TVs. Since we can’t produce a fractional part of a TV, we need
to choose between producing 241 and 242 TVs. From the sign diagram, we see that P(2.41) < 0 but
P(2.42) > 0 so, in this case we take the next larger integer value and set the minimum production
to 242 TVs. At the other end of the interval, we have x = 5 which corresponds to 500 TVs. Here,
we take the next smaller integer value, 499 TVs to ensure that we make a profit. Hence, in order
to make a profit, at least 242, but no more than 499 TVs need to be produced. To check our
answer using a calculator, we graph y = P(x) and make use of the ‘Zero’ command. We see that
the calculator approximations bear out our analysis.”

xhh;rfﬁ};fgfﬁd_fﬁxh . xhh;rfﬁ}rﬁ”fﬁd_fﬁxﬁf
2k 2Lk
W=z.Mivzize Y=1E-1i W=t VY=3E-11

"Note that the y-coordinates of the points here aren’t registered as 0. They are expressed in Scientific Notation.
For instance, 1E — 11 corresponds to 0.00000000001, which is pretty close in the calculator’s eyes®to 0.
8but not a Mathematician’s
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3.3.3 EXERCISES

In Exercises 1 - 10, for the given polynomial:

PoryNoMIAL FUNCTIONS

e Use Cauchy’s Bound to find an interval containing all of the real zeros.

e Use the Rational Zeros Theorem to make a list of possible rational zeros.

e Use Descartes’ Rule of Signs to list the possible number of positive and negative real zeros,

counting multiplicities.

. flx) =23 —22%2 — 5246 2.
f(@) =2t — 922 — 4z + 12 4.
Cf@) =2 =TT 6.

f(z) = —172% + 522 + 34z — 10 8.
. f(x) =323 + 322 — 112 — 10 10.

f(z) = 2% + 223 — 1202 — 40z — 32
f(z) =23+ 422 — 112 +6

f(x) = —223 + 1922 — 49 + 20
f(z) =362 — 1223 — 1122 + 22 + 1

flz)=20* + 23— 722 -~ 32+ 3

In Exercises 11 - 30, find the real zeros of the polynomial using the techniques specified by your
instructor. State the multiplicity of each real zero.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

flx) =23 —222 —52+6 12.
f(z) = 2% — 922 — 4z + 12 14.
fl@)=a3 -T2 +2 -7 16.
f(z) = —172% + 522 + 34z — 10 18.
f(z) =323 + 322 — 11z — 10 20.
f(x) =92% — 522 —x 22.
f(z) =2*+ 222 - 15 24.
f(z) = 3z* — 1422 — 5 26.
f(z) =28 —-323-10 28.

f(z) =2° —22% — 4z +8 30.

f(x) = 2* + 223 — 1222 — 40z — 32
flz) =23 +422 — 112 +6

f(z) = =223 + 1922 — 492 + 20
f(z) =36x* —122% — 1122 + 22 + 1
flz) =22+ 23— T2%2 — 3z +3
f(z) = 62* — 523 — 922

f(z) =2* — 922 + 14

flz) =22 — 722 +6

f(z) =225 - 923 + 10

f(z) =225 + 32" — 18z — 27
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In Exercises 31 - 33, use your calculator,’ to help you find the real zeros of the polynomial. State
the multiplicity of each real zero.

31.
32.
33.

34.

f(x) = 2% — 6023 — 8022 + 960z + 2304
f(z) = 252° — 1052* + 1742% — 14222 + 572 — 9
f(z) = 90z* — 39923 + 62222 — 3992 + 90

Find the real zeros of f(z) = 23 — 22 — Lz + & by first finding a polynomial ¢(z) with
12 72 72

integer coefficients such that g(x) = N - f(x) for some integer N. (Recall that the Rational
Zeros Theorem required the polynomial in question to have integer coefficients.) Show that
f and ¢ have the same real zeros.

In Exercises 35 - 44, find the real solutions of the polynomial equation. (See Example 3.3.7.)

35.

37.

39.

41.

43.

923 =522 + 36. 922 + 523 = 62*
23+ 6 =222+ 5z 38. 2t 4+ 223 = 1222 + 40z + 32
=Tt =T7—=x 40. 223 = 1922 — 492 + 20
o4 g2 = e+ 10 42. 2% + 222 =15

3
1422 + 5 = 324 44. 22° + 32* = 182 + 27

In Exercises 45 - 54, solve the polynomial inequality and state your answer using interval notation.

45.

47.

49.

o1.

93.

55.

—223 + 1922 — 492 + 20 > 0 46. x* — 922 < 4x —12

(x—1)2>4 48. 423 > 3x + 1

24 <16 + 4z — 23 50. 322 + 2z < 24

3 22 3 20

u<x+2 52.u2952+2
2 8

224 > 522 + 3 54. 25+ 23> 6

In Example 3.1.3 in Section 3.1, a box with no top is constructed from a 10 inch x 12 inch
piece of cardboard by cutting out congruent squares from each corner of the cardboard and
then folding the resulting tabs. We determined the volume of that box (in cubic inches) is
given by V(z) = 423 — 4422 4 120z, where 2 denotes the length of the side of the square
which is removed from each corner (in inches), 0 < x < 5. Solve the inequality V(z) > 80
analytically and interpret your answer in the context of that example.

9You can do these without your calculator, but it may test your mettle!
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56.

o7.

58.

PoryNoMIAL FUNCTIONS

From Exercise 32 in Section 3.1, C(z) = .0323 — 4.52% + 2252 + 250, for # > 0 models the
cost, in dollars, to produce x PortaBoy game systems. If the production budget is $5000, find
the number of game systems which can be produced and still remain under budget.

Let f(z) = 527 — 3325 + 325 — 7T1a* — 59723 4 209722 — 19712 + 567. With the help of your
classmates, find the z- and y- intercepts of the graph of f. Find the intervals on which the
function is increasing, the intervals on which it is decreasing and the local extrema. Sketch
the graph of f, using more than one picture if necessary to show all of the important features
of the graph.

With the help of your classmates, create a list of five polynomials with different degrees whose
real zeros cannot be found using any of the techniques in this section.
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3.3.4 ANSWERS
1. For f(z) =% — 222 — 52+ 6
e All of the real zeros lie in the interval [—7,7]
e Possible rational zeros are +£1, £2, +£3, +6
e There are 2 or 0 positive real zeros; there is 1 negative real zero
2. For f(x) = 2* + 223 — 1222 — 402 — 32

e All of the real zeros lie in the interval [—41, 41]
e Possible rational zeros are £1, £2, +£4, £8, £16, +32

e There is 1 positive real zero; there are 3 or 1 negative real zeros
3. For f(x) = 2* — 922 — 42 4 12
e All of the real zeros lie in the interval [—13, 13]

e Possible rational zeros are £1, £2, £3, £4, £6, £12

e There are 2 or 0 positive real zeros; there are 2 or 0 negative real zeros
4. For f(z) =23 +42® — 11z + 6

e All of the real zeros lie in the interval [—12, 12]
e Possible rational zeros are 1, +2, £3, +6

e There are 2 or 0 positive real zeros; there is 1 negative real zero
5. For f(z) =23 -~ 72> +2 -7

e All of the real zeros lie in the interval [—8, §]
e Possible rational zeros are £1, £7

e There are 3 or 1 positive real zeros; there are no negative real zeros

6. For f(z) = —22° + 1922 — 492 + 20

e All of the real zeros lie in the interval [—%, %]

e Possible rational zeros are +1, +1, £2, £32, +4, &5, £10, £20

e There are 3 or 1 positive real zeros; there are no negative real zeros
7. For f(x) = =172 + 522 + 342 — 10

e All of the real zeros lie in the interval [—3, 3]

o Possible rational zeros are -, £, £, £19, +1, +2, +5, +10

170 =170 17
e There are 2 or 0 positive real zeros; there is 1 negative real zero
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8. For f(x) = 36x* — 1223 — 1122 + 22 + 1

e All of the real zeros lie in the interval [—%, %]

. . 1 1 1 1 41 41 41 41
e Possible rational zeros are +55, +55, *15, *5, t§, T3, T3, T3, +1

e There are 2 or 0 positive real zeros; there are 2 or 0 negative real zeros
9. For f(x) =323 + 322 — 11z — 10

e All of the real zeros lie in the interval [—13—4, 1—;]
e Possible rational zeros are £3, +2, 5, +4), 41, £2, £5, £10

e There is 1 positive real zero; there are 2 or 0 negative real zeros

10. For f(z) =22* + 2% — 72®> — 32+ 3

e All of the real zeros lie in the interval [
e Possible rational zeros are :l:%, +1, j:%, +3
e There are 2 or 0 positive real zeros; there are 2 or 0 negative real zeros
1. f(z) =23 —22% — 52+ 6
x = -2,z =1,z =3 (each has mult. 1)

12. f(z) = 2* + 223 — 1222 — 402 — 32
x = —2 (mult. 3), z =4 (mult. 1)

13. f(x) = 2* — 922 — 4z + 12
r = —2 (mult. 2), x =1 (mult. 1), z =3 (mult. 1)

14. f(z) =2®+ 42 — 11z + 6
x=—6 (mult. 1), z =1 (mult. 2)

15. f(z)=a3 — T2+ 0 -7
x =7 (mult. 1)

16. f(x) = —223 + 1922 — 49z + 20
x =3,z =4, z=05 (each has mult. 1)

17. f(z) = =172 4 522 + 34z — 10
x = £, = +v/2 (each has mult. 1)

18. f(x) = 362* — 1223 — 1122 + 22 + 1
z =3 (mult. 2), z = —% (mult. 2)

19. f(z) =323 +32% — 11z — 10
r=-2x= % (each has mult. 1)
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20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

flz) =22+ 23— 722 — 32 +3

x=-1,2=3 z==+3 (each mult. 1)

f(z) =923 - 522 — 2

5461 (
18

r=0,z= each has mult. 1)

f(z) = 62* — 523 — 922
=0 (mult. 2), z = ‘:’ili\/zm (each has mult. 1)

f(z) =2+ 222 — 15
r = ++/3 (each has mult. 1)

f(x) =2* — 922 + 14
r = +v/2, = /7 (each has mult. 1)

f(z) = 3z* — 1422 — 5
x = 4+/5 (each has mult. 1)

f(x) =22 — 722 + 6
x = :I:@, x = 4+/2 (each has mult. 1)

f(z) =28 —-323-10
r=Y—2=—v2, =5 (each has mult. 1)

f(x) =22% — 923 410
3
x=Y20 7= /2 (each has mult. 1)

f(z) =2° —22% — 4z +8
r =2, x = £+v/2 (each has mult. 1)

f(z) =225 + 32 — 182 — 27
x = -3, z=+3 (each has mult. 1)

f(z) = 25 — 6023 — 8022 + 960x + 2304
r = —4 (mult. 3), z =6 (mult. 2)

f(z) = 252° — 1052* + 17423 — 14222 + 572 — 9
=2 (mult. 2), z =1 (mult. 3)

f(z) = 902 — 39923 + 62222 — 399z + 90

2 . _ 3 .. _5 . _3
r=3%,2x=45,o=3,x=: (each has mult. 1)

We choose q(z) = 7223 — 622 — 7o +1 = 72 f(z). Clearly f(x) =
so they have the same real zeros. In this case, z = —

of both f and gq.

aln

0
T

285

if and only if g(x) =0

1

4

are the real zeros
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35.

37.

39.

41.

43.

45.

47.

49.

o1.

53.

55.

56.

PoryNoMIAL FUNCTIONS

x =0, FEY0L 36. o =0, =24

r=-21,3 38. v =24

r="7 40. z = $,4,5

z = —2, 3569 42. 1= +/3

z =45 4. z=-3,£V3
(—00,3) U (4,5) 46. {—2} U1, 3]

(=00, ~1]U [3, 00) 48, {—;} UL, 00)

[-2,2] 50. (=00, —1) U (—1,0) U (2, 00)
(~00, ~2)U (~v2,v2) 52. {2} U4, )

(=00, =V3) U (V3,00) 54. (—o00, —V/3) U (V2,00)

V(z) >80 on [1,5—+/5]U[5++/5,00). Only the portion [1,5—+/5] lies in the applied domain,
however. In the context of the problem, this says for the volume of the box to be at least 80
cubic inches, the square removed from each corner needs to have a side length of at least 1
inch, but no more than 5 — V5 &~ 2.76 inches.

C'(z) < 5000 on (approximately) (—oo,82.18]. The portion of this which lies in the applied
domain is (0,82.18]. Since z represents the number of game systems, we check C(82) =
4983.04 and C'(83) = 5078.11, so to remain within the production budget, anywhere between
1 and 82 game systems can be produced.
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3.4 COMPLEX ZEROS AND THE FUNDAMENTAL THEOREM OF ALGEBRA

In Section 3.3, we were focused on finding the real zeros of a polynomial function. In this section, we
expand our horizons and look for the non-real zeros as well. Consider the polynomial p(z) = 22+ 1.
The zeros of p are the solutions to 22 +1 = 0, or 2 = —1. This equation has no real solutions, but
you may recall from Intermediate Algebra that we can formally extract the square roots of both
sides to get x = £+1/—1. The quantity v/—1 is usually re-labeled 4, the so-called imaginary unit.!
The number ¢, while not a real number, plays along well with real numbers, and acts very much
like any other radical expression. For instance, 3(2i) = 64, 7i — 3i = 44, (2 —7i) + (3 +44) = 5 — 31,
and so forth. The key properties which distinguish ¢ from the real numbers are listed below.

Definition 3.4. The imaginary unit 7 satisfies the two following properties

1. i2=-1

2. If ¢ is a real number with ¢ > 0 then /—c = i\/c

Property 1 in Definition 3.4 establishes that i does act as a square root? of —1, and property 2
establishes what we mean by the ‘principal square root’ of a negative real number. In property
2, it is important to remember the restriction on c. For example, it is perfectly acceptable to say

V—4 = i/4 =i(2) = 2i. However, \/—(—4) # iv/—4, otherwise, we’d get

2 =V4=/—(-4) = iv—4=i(2) = 2> = 2(—1) = -2,

which is unacceptable.®> We are now in the position to define the complex numbers.

Definition 3.5. A complex number is a number of the form a -+ bi, where a and b are real
numbers and ¢ is the imaginary unit.

Complex numbers include things you’d normally expect, like 3 4+ 2i and % — iv/3. However, don’t
forget that a or b could be zero, which means numbers like 37 and 6 are also complex numbers. In
other words, don’t forget that the complex numbers include the real numbers, so 0 and 7 — /21 are
both considered complex numbers.* The arithmetic of complex numbers is as you would expect.
The only things you need to remember are the two properties in Definition 3.4. The next example
should help recall how these animals behave.

!Some Technical Mathematics textbooks label it j’.

2Note the use of the indefinite article ‘a’. Whatever beast is chosen to be i, —i is the other square root of —1.

3We want to enlarge the number system so we can solve things like 2 = —1, but not at the cost of the established
rules already set in place. For that reason, the general properties of radicals simply do not apply for even roots of
negative quantities.

4See the remarks in Section 1.1.1.
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Example 3.4.1. Perform the indicated operations. Write your answer in the form® a + bi.

1—-2

3— 41

4. /=312 5. v/ (—3)(—12) 6. (z—[1+2i])(x —[1—2i])

1. (1—26) — (34 44) 2. (1 —2i)(3 + 4i) 3.

Solution.

1. As mentioned earlier, we treat expressions involving i as we would any other radical. We
combine like terms to get (1 —2i) — (3+4i) =1—2i —3 — 4i = —2 — 6i.

2. Using the distributive property, we get (1 —2i)(3+44) = (1)(3) + (1)(44) — (24)(3
1

34 4i — 6i — 8i%. Since i? = —1, we get 3 +4i —6i — 8> =3 -2 — (—8) =1
3. How in the world are we supposed to simplify é:ié? Well, we deal with the denominator

3 — 47 as we would any other denominator containing a radical, and multiply both numerator
and denominator by 3 + 44 (the conjugate of 3 — 4i).° Doing so produces

1-2 3+4i (1-2)(3+4) 11-2 11 2

3-4 3+4 (3-4i)(3+4) 25 25 25

4. We use property 2 of Definition 3.4 first, then apply the rules of radicals applicable to real

radicals to get /—3v/—12 = (iv3) (iv12) =*V3-12 = —/36 = —6.

5. We adhere to the order of operations here and perform the multiplication before the radical

to get 1/(—3)(—12) = /36 = 6.

6. We can brute force multiply using the distributive property and see that

(x—[14+2])(z—[1—-2i]) = 2%—2[1—2]—z[l+2i] +[1 — 2i][1 + 2i]
= 22 —ax+42ix—x—2ir+1—2i+ 2 — 442
= 22-22+5

O

A couple of remarks about the last example are in order. First, the conjugate of a complex number
a+ bi is the number a — bi. The notation commonly used for conjugation is a ‘bar’: a 4+ bi = a — bi.
For example, 3+ 2i = 3—2i, 3 — 20 = 34+2i, 6 = 6, 46 = —44, and 3 + /5 = 3+ /5. The properties
of the conjugate are summarized in the following theorem.

POK, we’ll accept things like 3 — 2 even though it can be written as 3 + (—2)i.
5We will talk more about this in a moment.
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Theorem 3.12. Properties of the Complex Conjugate: Let z and w be complex numbers.

[ ]
|
I
N

zZ+w

[ ]
R
_|_
gl
Il

Il
gl
Il

N

e (z)" =27, for any natural number n

e 2 is a real number if and only if Z = z.

Essentially, Theorem 3.12 says that complex conjugation works well with addition, multiplication
and powers. The proof of these properties can best be achieved by writing out z = a + b and
w = ¢+ di for real numbers a, b, ¢ and d. Next, we compute the left and right hand sides
of each equation and check to see that they are the same. The proof of the first property is
a very quick exercise.” To prove the second property, we compare Z + @ and z + w. We have
Z+w=a+bi+c+di=a—>bi+c—di. Tofindz-+ w, we first compute

z4+w=(a+bi)+ (c+di)=(a+c)+ (b+d)i

SO

ztw=(a+c)+(b+di=(a+c)—(b+di=a—-bi+c—di

As such, we have established Z+w = z + w. The proof for multiplication works similarly. The proof
that the conjugate works well with powers can be viewed as a repeated application of the product
rule, and is best proved using a technique called Mathematical Induction.® The last property is a
characterization of real numbers. If z is real, then z = a + 0i, so Z = a — 0i = a = z. On the other
hand, if z = Z, then a + bt = a — bi which means b = —b so b = 0. Hence, z = a4+ 0¢ = a and is real.

We now return to the business of zeros. Suppose we wish to find the zeros of f(z) = 22 — 2z + 5.
To solve the equation 2 — 2z +5 = 0, we note that the quadratic doesn’t factor nicely, so we resort
to the Quadratic Formula, Equation 2.5 and obtain

(= V(22 AM)(B) 2+ V=16 2+4i
v 2(1) - 2 T

=1+£2i.

Two things are important to note. First, the zeros 1 4 2¢ and 1 — 2¢ are complex conjugates. If
ever we obtain non-real zeros to a quadratic function with real coefficients, the zeros will be a
complex conjugate pair. (Do you see why?) Next, we note that in Example 3.4.1, part 6, we found
(x — [1 +2i])(z — [1 — 2i]) = 2% — 22 + 5. This demonstrates that the factor theorem holds even
for non-real zeros, i.e, x = 1 + 2¢ is a zero of f, and, sure enough, (x — [1 + 2i]) is a factor of
f(x). Tt turns out that polynomial division works the same way for all complex numbers, real and
non-real alike, so the Factor and Remainder Theorems hold as well. But how do we know if a

"Trust us on this.
8See Section 9.3.
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general polynomial has any complex zeros at all? We have many examples of polynomials with no
real zeros. Can there be polynomials with no zeros whatsoever? The answer to that last question
is “No.” and the theorem which provides that answer is The Fundamental Theorem of Algebra.

Theorem 3.13. The Fundamental Theorem of Algebra: Suppose f is a polynomial func-
tion with complex number coefficients of degree n > 1, then f has at least one complex zero.

The Fundamental Theorem of Algebra is an example of an ‘existence’ theorem in Mathematics. Like
the Intermediate Value Theorem, Theorem 3.1, the Fundamental Theorem of Algebra guarantees
the existence of at least one zero, but gives us no algorithm to use in finding it. In fact, as we
mentioned in Section 3.3, there are polynomials whose real zeros, though they exist, cannot be
expressed using the ‘usual’ combinations of arithmetic symbols, and must be approximated. The
authors are fully aware that the full impact and profound nature of the Fundamental Theorem of
Algebra is lost on most students studying College Algebra, and that’s fine. It took mathematicians
literally hundreds of years to prove the theorem in its full generality, and some of that history is
recorded here. Note that the Fundamental Theorem of Algebra applies to not only polynomial
functions with real coefficients, but to those with complex number coefficients as well.

Suppose f is a polynomial of degree n > 1. The Fundamental Theorem of Algebra guarantees us
at least one complex zero, z,, and as such, the Factor Theorem guarantees that f(z) factors as
f(z) = (x — z,) . (z) for a polynomial function ¢,, of degree exactly n — 1. If n —1 > 1, then
the Fundamental Theorem of Algebra guarantees a complex zero of ¢, as well, say z,, so then the
Factor Theorem gives us ¢,(z) = (x — z,) ¢2(z), and hence f(z) = (z — 2z1) (x — 25) g2(x). We can
continue this process exactly n times, at which point our quotient polynomial ¢, has degree 0 so
it’s a constant. This argument gives us the following factorization theorem.

Theorem 3.14. Complex Factorization Theorem: Suppose f is a polynomial function with
complex number coefficients. If the degree of f is n and n > 1, then f has exactly n complex
zeros, counting multiplicity. If z;, 25, ..., 2, are the distinct zeros of f, with multiplicities m,,
My, ..., My, Tespectively, then f(x) =a(z — 2z,)™ (x — 25)"% -+ (& — 2,)™*.

Note that the value a in Theorem 3.14 is the leading coefficient of f(z) (Can you see why?) and as
such, we see that a polynomial is completely determined by its zeros, their multiplicities, and its
leading coefficient. We put this theorem to good use in the next example.

Example 3.4.2. Let f(z) = 122° — 20z* + 192 — 62% — 22 + 1.
1. Find all of the complex zeros of f and state their multiplicities.
2. Factor f(x) using Theorem 3.14

Solution.

1. Since f is a fifth degree polynomial, we know that we need to perform at least three successful
divisions to get the quotient down to a quadratic function. At that point, we can find the
remaining zeros using the Quadratic Formula, if necessary. Using the techniques developed
in Section 3.3, we get
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| 12 —20 19 -6 -2 1
I 6 -7 6 0 -1
12 14 12 0 -2 [0]

I 6 -4 4 2

-3l 12 -8 8 4 [0
L -4 4 -4

12 —12 12 [0]

Our quotient is 1222 — 12z + 12, whose zeros we find to be # From Theorem 3.14, we

know f has exactly 5 zeros, counting multiplicities, and as such we have the zero % with

1 1+iV3 1-iv/3
2

multiplicity 2, and the zeros —3

3, —5 , each of multiplicity 1.

and

2. Applying Theorem 3.14, we are guaranteed that f factors as

pomreo-2) (o) (- [F29) (- [2])

A true test of Theorem 3.14 (and a student’s mettle!) would be to take the factored form of f(z) in
the previous example and multiply it out? to see that it really does reduce to the original formula
f(z) = 122° —202* 41923 — 622 — 22+ 1. When factoring a polynomial using Theorem 3.14, we say
that it is factored completely over the complex numbers, meaning that it is impossible to fac-
tor the polynomial any further using complex numbers. If we wanted to completely factor f(z) over
the real numbers then we would have stopped short of finding the nonreal zeros of f and factored
f using our work from the synthetic division to write f(x) = (:r — %)2 (l‘ + %) (12:U2 — 12z + 12),

or f(z) = 12(z — %)2 (z+3%) (2 —2+1). Since the zeros of 2 — x + 1 are nonreal, we call
22 — x + 1 an irreducible quadratic meaning it is impossible to break it down any further using
real numbers.

1+iv3
9

The last two results of the section show us that, at least in theory, if we have a polynomial function
with real coefficients, we can always factor it down enough so that any nonreal zeros come from
irreducible quadratics.

Theorem 3.15. Conjugate Pairs Theorem: If f is a polynomial function with real number
coefficients and z is a zero of f, then so is Z.

To prove the theorem, suppose f is a polynomial with real number coefficients. Specifically, let
flx) = apnz™ + ap—r2™ "+ ...+ axx® + ayx + ay. If 2 is a zero of f, then f(z) = 0, which means
anz" +an—1 2" ' +.. . +ay2+a,z2+a, = 0. Next, we consider f (Z) and apply Theorem 3.12 below.

9You really should do this once in your life to convince yourself that all of the theory actually does work!
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@ = @) " +an )" '+ +ay(2)° +aZ + ag

A2+ Ay 2"+
2™ + Ay 2V 4L

= 2"+ Qp_2" 4.

+ ay2?> + a,zZ + ag
+ a2+ a,z+ag

+ axz? +a,z + ao

2™+ Q12" 4.

+ ay2?> 4+ a,z + aq

PoryNoMIAL FUNCTIONS

since (z)" = 2"
since the coefficients are real
since Zw = Zw

since z+w =z +w

This shows that Z is a zero of f. So, if f is a polynomial function with real number coefficients,
Theorem 3.15 tells us that if a 4 bi is a nonreal zero of f, then so is a — bi. In other words, nonreal
zeros of f come in conjugate pairs. The Factor Theorem kicks in to give us both (z — [a + bi]) and
(z — [a — bi]) as factors of f(x) which means (z — [a + bi])(z — [a — bi]) = 2% + 2az + (a® + b?) is
an irreducible quadratic factor of f. As a result, we have our last theorem of the section.

Theorem 3.16. Real Factorization Theorem: Suppose f is a polynomial function with real
number coefficients. Then f(z) can be factored into a product of linear factors corresponding to
the real zeros of f and irreducible quadratic factors which give the nonreal zeros of f.

We now present an example which pulls together all of the major ideas of this section.

Example 3.4.3. Let f(z) = 2* + 64.

1. Use synthetic division to show that z = 2 4 2 is a zero of f.

2. Find the remaining complex zeros of f.

3. Completely factor f(x) over the complex numbers.

4. Completely factor f(x) over the real numbers.

Solution.

1. Remembering to insert the 0’s in the synthetic division tableau we have

242 1 0 0 0
L 242 8 -16+16i —64
1 2+2 8 —16+16i [0]

64

2. Since f is a fourth degree polynomial, we need to make two successful divisions to get a
quadratic quotient. Since 2 + 27 is a zero, we know from Theorem 3.15 that 2 — 2i is also a
zero. We continue our synthetic division tableau.
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242 1 0 0 0 64
L 2+2 8  —16+16i —64

2-2i| 1 2+2i 8 —16+16i |[0]
L 2-2 8-8i 16— 16i

1 4 8 0]

Our quotient polynomial is 22 +4x +8. Using the quadratic formula, we obtain the remaining
zeros —2 + 2 and —2 — 24.

3. Using Theorem 3.14, we get f(z) = (z — [2 — 2i])(x — [2 4+ 2i])(z — [-2 + 2i])(z — [-2 — 2i]).

4. We multiply the linear factors of f(x) which correspond to complex conjugate pairs. We find
(x —[2—2i))(x — [2+2i]) = 2% — 42 + 8, and (x — [-2 4 2i])(z — [-2 — 2i]) = 2% + 4z + 8.
Our final answer is f(z) = (2? — 4z + 8) (22 + 42 + 8). O

Our last example turns the tables and asks us to manufacture a polynomial with certain properties
of its graph and zeros.

Example 3.4.4. Find a polynomial p of lowest degree that has integer coefficients and satisfies all
of the following criteria:

the graph of y = p(z) touches (but doesn’t cross) the z-axis at (3,0)
e x = 3i is a zero of p.

e as x — —o0, p(r) - —oo

e as r — 00, p(x) - —o0

Solution. To solve this problem, we will need a good understanding of the relationship between
the z-intercepts of the graph of a function and the zeros of a function, the Factor Theorem, the
role of multiplicity, complex conjugates, the Complex Factorization Theorem, and end behavior of
polynomial functions. (In short, you’ll need most of the major concepts of this chapter.) Since the
graph of p touches the z-axis at (%,0), we know x = % is a zero of even multiplicity. Since we

are after a polynomial of lowest degree, we need = = % to have multiplicity exactly 2. The Factor

Theorem now tells us (z — é)Q is a factor of p(z). Since x = 3i is a zero and our final answer is to

have integer (real) coefficients, z = —3i is also a zero. The Factor Theorem kicks in again to give us

(x—3i) and (x+3i) as factors of p(z). We are given no further information about zeros or intercepts

so we conclude, by the Complex Factorization Theorem that p(z) = a (z — %)2 (x — 3i)(x + 3i) for

some real number a. Expanding this, we get p(z) = az* — 27“:103 + 827‘13:2 —6ax+a. In order to obtain
integer coefficients, we know a must be an integer multiple of 9. Our last concern is end behavior.
Since the leading term of p(z) is ax?, we need a < 0 to get p(z) — —oo as x — +oo. Hence, if we
choose = = —9, we get p(z) = —92* + 62% — 8222 + 54z — 9. We can verify our handiwork using

the techniques developed in this chapter. ]
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This example concludes our study of polynomial functions.'® The last few sections have contained
what is considered by many to be ‘heavy’ Mathematics. Like a heavy meal, heavy Mathematics
takes time to digest. Don’t be overly concerned if it doesn’t seem to sink in all at once, and pace
yourself in the Exercises or you’re liable to get mental cramps. But before we get to the Exercises,
we’d like to offer a bit of an epilogue.

Our main goal in presenting the material on the complex zeros of a polynomial was to give the
chapter a sense of completeness. Given that it can be shown that some polynomials have real zeros
which cannot be expressed using the usual algebraic operations, and still others have no real zeros
at all, it was nice to discover that every polynomial of degree n > 1 has n complex zeros. So like
we said, it gives us a sense of closure. But the observant reader will note that we did not give any
examples of applications which involve complex numbers. Students often wonder when complex
numbers will be used in ‘real-world’ applications. After all, didn’t we call ¢ the imaginary unit?
How can imaginary things be used in reality? It turns out that complex numbers are very useful in
many applied fields such as fluid dynamics, electromagnetism and quantum mechanics, but most
of the applications require Mathematics well beyond College Algebra to fully understand them.
That does not mean you’ll never be be able to understand them; in fact, it is the authors’ sincere
hope that all of you will reach a point in your studies when the glory, awe and splendor of complex
numbers are revealed to you. For now, however, the really good stuff is beyond the scope of this
text. We invite you and your classmates to find a few examples of complex number applications
and see what you can make of them. A simple Internet search with the phrase ‘complex numbers in
real life’ should get you started. Basic electronics classes are another place to look, but remember,
they might use the letter j where we have used 1.

For the remainder of the text, with the exception of Section 11.7 and a few exploratory exercises
scattered about, we will restrict our attention to real numbers. We do this primarily because
the first Calculus sequence you will take, ostensibly the one that this text is preparing you for,
studies only functions of real variables. Also, lots of really cool scientific things don’t require any
deep understanding of complex numbers to study them, but they do need more Mathematics like
exponential, logarithmic and trigonometric functions. We believe it makes more sense pedagogically
for you to learn about those functions now then take a course in Complex Function Theory in your
junior or senior year once you've completed the Calculus sequence. It is in that course that the
true power of the complex numbers is released. But for now, in order to fully prepare you for life
immediately after College Algebra, we will say that functions like f(z) = x%ﬂ have a domain of all
real numbers, even though we know 2%+ 1 = 0 has two complex solutions, namely « = +i. Because

22 +1 > 0 for all real numbers z, the fraction x%ﬂ is never undefined in the real variable setting.

10With the exception of the Exercises on the next page, of course.
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3.4.1 EXERCISES

In Exercises 1 - 10, use the given complex numbers z and w to find and simplify the following.
Write your answers in the form a + bi.

o 2+ w ® 2w *
1 z w
o — * — o —
e w z
°Z ° 2Z o (2)?
l. 2=24+3t, w=4 2. z=14+14, w=—1
3. 2=, w=—-14+2 4. z=4, w=2—2
5. z2=3-5,w=24+T1 6. z2=-b+4+i,w=4+4+2
7. 2=V2—ivV2, w=v2+iV2 8 z=1—iV3, w=—-1—1iV3
1 V3 1 V3 V2 V2 V2 V2
9. z 2+2z,w 2+2z 0. 2z 2+2z,w 5 5

In Exercises 11 - 18, simplify the quantity.

11. /=49 12. /=9 13. v/—25y/—4 14. /(—25)(—4)
15. /=0y/—16 16. /(—9)(—16) 17. \/=(=9) 18. —/(=9)
We know that i = —1 which means i3 =42 .7 = (—1)-i = —i and i* =i?-i? = (=1)(=1) = 1. In

Exercises 19 - 26, use this information to simplify the given power of 7.
19. 4° 20. 8 21. i’ 22. 8

23. 415 24. 26 25. 117 26. 304

In Exercises 27 - 48, find all of the zeros of the polynomial then completely factor it over the real
numbers and completely factor it over the complex numbers.

27. f(z) = 2% —4x +13 28. f(z)=2%—-2x+5
29. f(z) =322+ 2z + 10 30. f(z) =23 — 222 + 92— 18

31. f(z) =23 +62%>+62+5 32. f(z) = 32® — 1322 + 432 — 13
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33.

35.

37.

39.

41.

43.

45.

47.
48.

f(x) =23 + 322 + 4o + 12 34.
flz)=2%+ 722 + 92 — 2 36.
f(z) = 4z* — 423 + 1322 — 122+ 3 38.
f(z) =2* + 23 + 722 + 92 — 18 40.
f(r) = -3z — 823 — 1222 — 120 -5 42.
f(z) =2+ 922 + 20 44.
flz) =25 —2* + 723 — 72? + 120 — 12 46.

PoryNoMIAL FUNCTIONS

f(z) = 42® — 622 — 8z + 15

flz) =923+ 2z +1

f(z) =22* — 723 + 142% — 152 + 6
f(z) = 6z* +172% — 5522 + 162 4 12
f(z) = 8z + 5023 + 4322 + 22 — 4
f(z) =2t + 522 — 24

f(z) =25 —64

f(x) = 2* — 223 + 2722 — 22 + 26 (Hint: = = i is one of the zeros.)

f(z) =22* + 523 + 1322 + 7o + 5 (Hint: 2 = —1 + 2i is a zero.)

In Exercises 49 - 53, create a polynomial f with real number coefficients which has all of the desired
characteristics. You may leave the polynomial in factored form.

49.

50.

o1.

52.

93.

54. Let z and w be arbitrary complex numbers. Show that Z

e The zeros of f are c = +1 and ¢ = +i¢
e The leading term of f(x) is 422*

e c — 27 1is a zero.

e the point (—1,0) is a local minimum on the graph of y = f(x)

e the leading term of f(z) is 117z*

e The solutions to f(x) =0 are v = £2 and z = £7¢

e The leading term of f(z) is —32°

e The point (2,0) is a local maximum on the graph of y = f(x).

e f is degree 5.
e vt =06, x =17 and x =1 — 3¢ are zeros of f

e as r — —0o0, f(x) = 00

e The leading term of f(x) is —2z3
e c=2iis a zero

e f(0)=—16

g|
I
N
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3.4.2 ANSWERS

1. For z =2+ 3¢ and w = 44

e tw=24+T1

°
N =
Il

[ ]
x|
I
)
\
o
iy

4. For z =47 and w =2 — 2¢

o 2 t+w=2+2;

W =

=—1i
e Z=—4j

5. For z=3—-5biand w=2+T7i
e 2 +tw=5+2
o L3 4 5y

e Z2=3+5t

zw = —12 4+ &

S
(o
|
D=
.

zw =41+ 11¢

z _ _ 29 31

w . 53 53¢

zz = 34

297

(z)2=—-5—12i
22 =2
__1 1.
T =2l
(z)? = —2i
22 =—1
L =24
() =1
22 =16
_ 1 1,
T =23l
()2 = —16
2?2 = —16 — 30i
_ 29 31 -
T = 31t

(z)2 = —16 + 30i
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10.

11.

.Forz=-5+7randw=4+22

e 2 +w=-1+3¢

1_ 5 1 _ 9 7

.= "% 2! * o= 15T 10¢

e 7 ——5_—i e 2z =206
For z = v/2 — iv/2 and w = V2 + iv/2

o 2 +w=2V2 e zw=4

o C i

e Z2=12+iV2 e 2Z2—=4
.Forz=1-—iy/3and w=—-1—1iV/3

o 2 +w=—2iV/3 o zw=—4

R s i=aty

e z=1+1iV/3 e zz2—=4
.Forz:%—k@iandw:—%—k%i

e z+w=1i/3 e zw=—1

1 _ 1 _ V3, _ 1 V3.

e =391 * s=2- 91

o?:%—?i e 2z2=1
Forz:—g—kgiandw:—@—gi

o« —\2 o zw=1

R T * 5=

OE:—Q—gi e zz=1

7i 12. 3¢ 13. —10

PoryNoMIAL FUNCTIONS

22 = —4

v

(2)? = 4i

22 =-2-2i/3
1 3

T2 gl

14. 10
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15. —12 16. 12 17. 3 18. —3i
19. =it i=1-i=i 20. 8 =42 =1-(-1)= -1
21, " =it P =1 (—i) = —i 22. =it it = () =(1)2 =1
23. 15 = ()3 = 1. (=i) = —i 24, 26 = (1)°. 2 =1.(-1) = -1
25. {17 = ()* i=1-i=1i 26. 304 = () =176 =1

27. f(x) =2 — 4z +13 = (z — (2+ 3i))(x — (2 — 3i))
Zeros: x =2+ 31

28. f(x) =22 20 +5= (v — (1+2i)(z — (1 —2i))
Zeros: x =1+ 2:

20. f() =302 +20+10 =3 (2 — (=3 + ¥2i)) (2 - (-} - %))
e 14 429
Zeros: x——giTz

30. f(z) =23 222+ 9z — 18 = (z — 2) (22 + 9) = (z — 2)(z — 3i)(z + 3i)
Zeros: x = 2,+31

31. f(z) = 23+622+62+5 = (x+5) (22 +x+1) = (z+5) <m — (—% + @z)) (a: — (—% — @z))

Zeros: x = —5, x = —% + @z

32. f(z) =323 — 1322 +432 - 13 = 3z — 1)(2® — 42 +13) = 3z — 1)(z — (2 + 3i))(z — (2 — 31))

Zeros: x:%, r=2+3

33. flz) =23 +32% + 42 +12 = (2 +3) (22 +4) = (z + 3)(z + 2i)(z — 20)
Zeros: x = —3, £2¢

34. f(z) =42® — 622 — 8z + 15 = (z + 3) (42? — 12z + 10)
=4(z+3) (@ (5+39) (@ (3 - 37))
Zeros: x = —%, x:%:l:%i

35. f(x) =2+ 722+ 92— 2= (2 +2) (:U—(—

Zeros: x = —2, x = —% + —V229

oot
+
w‘w
S
~
N
—
8
|
|
Nt
|
<
S
N
N

36. f(z) =92 +22+1=(z

37. f(z) =4zt — 423 + 1322 — 120+ 3= (v — 1)° (422 +12) =4 (2 — 1)’ (2 + iV3)(z — iV/3)
Zeros: T = %, r = +V3i
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38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
51. f
52. f
53. f

PoryNoMIAL FUNCTIONS

f(@) =22* — 723 4+ 1422 — 152+ 6 = (z — 1) (222 — 32+ 6)
<ot (o (1058)) (o (1 4)

Zeros: x =1, x:%:lz—vfgi

fl@)=a*4+ 23+ 722+ 92 - 18 = (z+2)(z — 1) (22 +9) = (z + 2)(x — 1)(z + 3i)(z — 3i)
Zeros: x = —2, 1, 31

f(z) =62t +1723 = 5522+ 163412 =6 (z + §) (z — 3) (v — (-2 + 2v2)) (z — (-2 — 2V2))
Zeros: x:—%, :c:%, r=—-24+2/2

f(z) = =3z — 823 —122% — 122 — 5 = (x + 1)? (—32% — 22 — 5)

= —3(z +1)? (w — (—% + @z)) (x — (—% - \/Tﬁz»
Zeros: x = —1, ¢ = —% + @i
f(z) =82 +502% + 4322 + 22 —4=8(z+ 1) (z - 1) (z = (-3 +V5))(z — (-3 - V5))
Zeros: x = —%, i, r=-3+5
f(@) =24+ 922 +20 = (22 +4) (22 +5) = (z — 20)(z + 2i) (z — iV5) (z +iV5)
Zeros: x = :|:2i,j:i\/5
f(z) =a2* +52% —24 = (:Jc2 — 3) (x2 +8) = (r— \/§)(m+ V3) (:): — 22\/5) ($+2iﬂ)
Zeros: T = i\/g, +2iv/2
fl@)=2°—at+72% - T2? + 1220 — 12 = (z — 1) (2® + 3) (2 + 4)
= (z — 1)(z — iV3)(z + iV3)(x — 2i)(z + 2i)
Zeros: © =1, £/3i, £2i
f(@)=2%—64=(z—2)(z+2) (2?4 2z +4) (2% — 2z +4)
— (2= +2) (r— (1 +1V5)) (2 = (-1 = iV3)) (2 = (1+V3)) (2 - (1 - iV3))
Zeros: x = +£2, = —1+iV/3, 2 =1+iV/3

f(z) = 24 =223 42722 — 22426 = (22 —22+26) (22 +1) = (z—(1+5%))(x—(1—54)) (x+i)(x—1)
Zeros: x =1+ 5i, x = 42
flx) =22% +52% + 1322 + 7o + 5 = (22 + 20+ 5) (22° + 2 + 1)

— 20z — (=1 4 20))(zx — (=1 — 20)) (x - (—i + @)) (3: . (—i _ 277))
Zeros: @ = —1 + 26, —+ +i¥T
f(x)=42(z — 1)(z + 1)(x — i) (z +1) 50. f(z) =117(z + 1)*(z — 2i)(z + 2i)

T

f(z) = =3(z —2)%(z + 2)(z — 7i)(z + Ti)
f(z) =a(x —6)(x —i)(z+1i)(x — (1 —37))(z — (1 + 3i)) where a is any real number, a < 0
f(z) =

x)=—2(x —2i)(x + 2i)(x +2)



CHAPTER 4

RATIONAL FUNCTIONS

4.1 INTRODUCTION TO RATIONAL FUNCTIONS

If we add, subtract or multiply polynomial functions according to the function arithmetic rules
defined in Section 1.5, we will produce another polynomial function. If, on the other hand, we
divide two polynomial functions, the result may not be a polynomial. In this chapter we study
rational functions - functions which are ratios of polynomials.

Definition 4.1. A rational function is a function which is the ratio of polynomial functions.
Said differently, r is a rational function if it is of the form

where p and ¢ are polynomial functions.®

?According to this definition, all polynomial functions are also rational functions. (Take g(z) = 1).

As we recall from Section 1.4, we have domain issues anytime the denominator of a fraction is
zero. In the example below, we review this concept as well as some of the arithmetic of rational
expressions.

Example 4.1.1. Find the domain of the following rational functions. Write them in the form %

for polynomial functions p and ¢ and simplify.

L)

20 — 1 3
1. = 2. =92
f(x) 1 g(x) P
202 —1 3x—2 202 —1 3x—2
3. h(z) = — 4. = +
() 2 —1 2 —1 r(z) 2 —1 2 —1
Solution.

1. To find the domain of f, we proceed as we did in Section 1.4: we find the zeros of the
denominator and exclude them from the domain. Setting  +1 = 0 results in x = —1. Hence,
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our domain is (—oo, —1)U(—1,00). The expression f(x) is already in the form requested and
when we check for common factors among the numerator and denominator we find none, so
we are done.

. Proceeding as before, we determine the domain of g by solving z 4+ 1 = 0. As before, we find

the domain of g is (—oo0, —1) U (—1,00). To write g(x) in the form requested, we need to get
a common denominator

3 2 3 2)(x+1 3
o o 2 3 @+
r+1 1 z+1 (D(x+1) =z+1
(2242 -3 2w—1
B z+1 x4

This formula is now completely simplified.

. The denominators in the formula for h(x) are both 22 — 1 whose zeros are * = +1. As a

result, the domain of h is (—oo,—1) U (—1,1) U (1,00). We now proceed to simplify h(z).
Since we have the same denominator in both terms, we subtract the numerators. We then
factor the resulting numerator and denominator, and cancel out the common factor.

hz) = 202 -1 3z-2 _ (22°-1)-(32-2)

2—-1 22-1 x?2—1

202 -1-3x4+2  22?—-3w+41

N x? -1 N x?—1

_ (@-De-1) Qe-1l)e—1)
@+Dz-1)  (@+)e—1)

_ 2z-1

oz +1

. To find the domain of r, it may help to temporarily rewrite r(x) as

222 — 1
21
rz) = §x—2
2 —1

We need to set all of the denominators equal to zero which means we need to solve not only
22 —1 =0, but also 39”_1 = 0. We find x = +£1 for the former and z = % for the latter. Our

22—
domain is (—oo, —1) U (-1, %) U (%, 1) U(1,00). We simplify r(z) by rewriting the division as
multiplication by the reciprocal and then by canceling the common factor
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@) = 20 =1 3z-2 221 2°-1 _ (22°-1)(a*-1)
o22—-1 T 22-1 22-1 32-2  (22-1)(3z-2)

(2m271)/(;2//1’)/ 222 — 1
- (22—=1)Bz—-2) 3z -2 O

A few remarks about Example 4.1.1 are in order. Note that the expressions for f(x), g(x) and
h(z) work out to be the same. However, only two of these functions are actually equal. Recall that
functions are ultimately sets of ordered pairs,' so for two functions to be equal, they need, among
other things, to have the same domain. Since f(z) = g(z) and f and g have the same domain, they
are equal functions. Even though the formula h(z) is the same as f(z), the domain of h is different
than the domain of f, and thus they are different functions.

2z—1
x+1

We now turn our attention to the graphs of rational functions. Consider the function f(z) =
from Example 4.1.1. Using a graphing calculator, we obtain

_J

Two behaviors of the graph are worthy of further discussion. First, note that the graph appears
to ‘break’ at x = —1. We know from our last example that * = —1 is not in the domain of f
which means f(—1) is undefined. When we make a table of values to study the behavior of f near
x = —1 we see that we can get ‘near’ x = —1 from two directions. We can choose values a little
less than —1, for example x = —1.1, z = —1.01, x = —1.001, and so on. These values are said to
‘approach —1 from the left.’” Similarly, the values x = —0.9, z = —0.99, z = —0.999, etc., are said
to ‘approach —1 from the right.” If we make two tables, we find that the numerical results confirm
what we see graphically.

z || f(z) (2, f(z)) x| flx) (z, f(z))
—11 32 (—1.1,32) 0.9 —28 (—0.9, —28)
—1.01 || 302 | (—1.01,302) —0.99 || —298 (—0.99, —298)
—1.001 || 3002 | (—1.001,3002) —0.999 || —2998 | (—0.999, —2998)
—1.0001 || 30002 | (—1.001, 30002) —0.9999 || —29998 | (—0.9999, —29998)

As the x values approach —1 from the left, the function values become larger and larger positive
numbers.? We express this symbolically by stating as # — —17, f(z) — oco. Similarly, using
analogous notation, we conclude from the table that as z — —1%, f(z) — —oco. For this type of

You should review Sections 1.2 and 1.3 if this statement caught you off guard.
2We would need Calculus to confirm this analytically.
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unbounded behavior, we say the graph of y = f(z) has a vertical asymptote of x = —1. Roughly
speaking, this means that near x = —1, the graph looks very much like the vertical line x = —1.

The other feature worthy of note about the graph of y = f(z) is that it seems to ‘level off” on the
left and right hand sides of the screen. This is a statement about the end behavior of the function.
As we discussed in Section 3.1, the end behavior of a function is its behavior as x attains larger® and
larger negative values without bound,  — —o0, and as x becomes large without bound, x — oo.
Making tables of values, we find

x| fz) (z, f(2)) x| fx) (z, f(x))
—10 ||~ 2.3333 | ~ (-10,2.3333) 10 ||~ 1.7273 | ~ (10, 1.7273)
—100 || ~ 2.0303 | ~ (=100, 2.0303) 100 || ~ 1.9703 | ~ (100, 1.9703)
—1000 || ~ 2.0030 | ~ (—1000, 2.0030) 1000 || ~ 1.9970 | ~ (1000, 1.9970)
—10000 || ~ 2.0003 | ~ (—10000, 2.0003) 10000 || ~ 1.9997 | ~ (10000, 1.9997)

From the tables, we see that as * — —oo, f(z) — 2% and as © — oo, f(x) — 27. Here the ‘+’
means ‘from above’ and the ‘—’ means ‘from below’. In this case, we say the graph of y = f(z) has
a horizontal asymptote of y = 2. This means that the end behavior of f resembles the horizontal
line y = 2, which explains the ‘leveling off” behavior we see in the calculator’s graph. We formalize
the concepts of vertical and horizontal asymptotes in the following definitions.

Definition 4.2. The line z = c¢ is called a vertical asymptote of the graph of a function
y= f(z) ifas x — ¢~ or as x — c¢*, either f(x) — oo or f(x) — —oo.

Definition 4.3. The line y = c is called a horizontal asymptote of the graph of a function
y=f(z)if as z - —oco or as x — o0, f(z) — c.

Note that in Definition 4.3, we write f(z) — ¢ (not f(z) — ¢ or f(z) — ¢~) because we are
unconcerned from which direction the values f(z) approach the value ¢, just as long as they do so.*
In our discussion following Example 4.1.1, we determined that, despite the fact that the formula for
h(z) reduced to the same formula as f(x), the functions f and h are different, since x = 1 is in the
domain of f, but z = 1 is not in the domain of h. If we graph h(z) = 2;;__11 — iﬁ:% using a graphing
calculator, we are surprised to find that the graph looks identical to the graph of y = f(z). There
is a vertical asymptote at x = —1, but near x = 1, everything seem fine. Tables of values provide
numerical evidence which supports the graphical observation.

3Here, the word ‘larger’ means larger in absolute value.

4As we shall see in the next section, the graphs of rational functions may, in fact, cross their horizontal asymptotes.
If this happens, however, it does so only a finite number of times, and so for each choice of x — —oco0 and x — oo,
f(x) will approach c from either below (in the case f(x) — ¢~) or above (in the case f(z) — c'.) We leave f(z) — ¢
generic in our definition, however, to allow this concept to apply to less tame specimens in the Precalculus zoo, such
as Exercise 50 in Section 10.5.
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x| h(z) (2, h(z)) x| h(z) (@, h(z))
0.9 |[~0.4210 | ~ (0.9,0.4210) 1.1 ||~ 05714 | =~ (L.1,0.5714)
0.99 || ~ 0.4925 | ~ (0.99,0.4925) 1.01 || ~ 0.5075 | ~ (1.01,0.5075)
0.999 || ~ 0.4992 | ~ (0.999,0.4992) 1.001 || ~ 0.5007 | ~ (1.001,0.5007)
0.9999 || ~ 0.4999 | ~ (0.9999, 0.4999) 1.0001 || ~ 0.5001 | ~ (1.0001, 0.5001)

We see that as * — 17, h(z) — 0.5~ and as z — 17, h(z) — 0.5". In other words, the points on
the graph of y = h(x) are approaching (1,0.5), but since z = 1 is not in the domain of h, it would
be inaccurate to fill in a point at (1,0.5). As we’ve done in past sections when something like this
occurs,” we put an open circle (also called a hole in this case®) at (1,0.5). Below is a detailed

graph of y = h(x), with the vertical and horizontal asymptotes as dashed lines.

Neither z = —1 nor z = 1 are in the domain of h, yet the behavior of the graph of y = h(z) is
drastically different near these x-values. The reason for this lies in the second to last step when

we simplified the formula for hA(z) in Example 4.1.1, where we had h(z) = % The reason

x = —1 is not in the domain of h is because the factor (x + 1) appears in the denominator of
h(z); similarly, z = 1 is not in the domain of h because of the factor (x — 1) in the denominator
of h(z). The major difference between these two factors is that (x — 1) cancels with a factor in
the numerator whereas (z + 1) does not. Loosely speaking, the trouble caused by (z — 1) in the
denominator is canceled away while the factor (z + 1) remains to cause mischief. This is why the
graph of y = h(x) has a vertical asymptote at z = —1 but only a hole at x = 1. These observations
are generalized and summarized in the theorem below, whose proof is found in Calculus.

SFor instance, graphing piecewise defined functions in Section 1.6.
5In Calculus, we will see how these ‘holes’ can be ‘plugged’ when embarking on a more advanced study of continuity.
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Theorem 4.1. Location of Vertical Asymptotes and Holes:* Suppose r is a rational
function which can be written as r(x) = % where p and ¢ have no common zeros.” Let ¢ be a

real number which is not in the domain of r.

e If g(c) # 0, then the graph of y = r(x) has a hole at (c, %).

e If g(c) = 0, then the line z = ¢ is a vertical asymptote of the graph of y = r(x).

“Or, ‘How to tell your asymptote from a hole in the graph.’
*In other words, r(x) is in lowest terms.

In English, Theorem 4.1 says that if 2 = ¢ is not in the domain of  but, when we simplify r(x), it
no longer makes the denominator 0, then we have a hole at x = ¢. Otherwise, the line x = ¢ is a
vertical asymptote of the graph of y = r(x).

Example 4.1.2. Find the vertical asymptotes of, and/or holes in, the graphs of the following
rational functions. Verify your answers using a graphing calculator, and describe the behavior of
the graph near them using proper notation.

_ 2z 22 —2 -6

2 —x—6 2 —x—6

B0 =" L) =
Solution.

1. To use Theorem 4.1, we first find all of the real numbers which aren’t in the domain of f. To
do so, we solve 22 — 3 = 0 and get x = ++/3. Since the expression f(z) is in lowest terms,
there is no cancellation possible, and we conclude that the lines x = —v/3 and z = /3 are
vertical asymptotes to the graph of y = f(x). The calculator verifies this claim, and from the
graph, we see that as x — —/3 | f(z) = —o0, as x — —\/§+, f(z) = o0, as x — /3,
f(x) = —o0, and finally as © — \/§+, f(x) = oc.

2. Solving 22 — 9 = 0 gives x = 43. In lowest terms g(z) = wigfgfs = Eﬁ:g;gig; = i—ig Since

x = —3 continues to make trouble in the denominator, we know the line x = —3 is a vertical
asymptote of the graph of y = g(z). Since z = 3 no longer produces a 0 in the denominator,
we have a hole at = 3. To find the y-coordinate of the hole, we substitute 2 = 3 into £+2

z+3
and find the hole is at (3, %) When we graph y = g(z) using a calculator, we clearly see the
vertical asymptote at x = —3, but everything seems calm near x = 3. Hence, as x — —37,

g(z) = 00, as x — —3T, g(z) = —o0, as ¢ — 37, g(z) = 27, and as z — 3T, g(z) — %+.
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3.

AN
RN

The graph of y = The graph of y = g(x)

The domain of & is all real numbers, since 22 + 9 = 0 has no real solutions. Accordingly, the
graph of y = h(x) is devoid of both vertical asymptotes and holes.

Setting 22 4+ 4x + 4 = 0 gives us £ = —2 as the only real number of concern. Simplifying,
2 _ .

we see r(x) = 52;4“;164 = (m(jl%;rz) = i—;‘; Since x = —2 continues to produce a 0 in the

denominator of the reduced function, we know z = —2 is a vertical asymptote to the graph.

The calculator bears this out, and, moreover, we see that as z — —27, r(xz) — oo and as

x — =27, r(zr) - —oo.

~1=

The graph of y = h(x) The graph of y = r(x)

O

Our next example gives us a physical interpretation of a vertical asymptote. This type of model

arises from a family of equations cheerily named ‘doomsday’ equations.

7

Example 4.1.3. A mathematical model for the population P, in thousands, of a certain species
of bacteria, ¢ days after it is introduced to an environment is given by P(t) = (1& 0<t<bh.

1.
2.
3.

5—1)27
Find and interpret P(0).
When will the population reach 100,0007

Determine the behavior of P as t — 57. Interpret this result graphically and within the
context of the problem.

"These functions arise in Differential Equations. The unfortunate name will make sense shortly.
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Solution.

1. Substituting ¢ = 0 gives P(0) = % = 4, which means 4000 bacteria are initially introduced

into the environment.

2. To find when the population reaches 100,000, we first need to remember that P(t) is measured

in thousands. In other words, 100,000 bacteria corresponds to P(t) = 100. Substituting for

P(t) gives the equation (51_0?)2 = 100. Clearing denominators and dividing by 100 gives

(5 — t)2 = 1, which, after extracting square roots, produces t = 4 or t = 6. Of these two
solutions, only ¢ = 4 in our domain, so this is the solution we keep. Hence, it takes 4 days for
the population of bacteria to reach 100,000.

3. To determine the behavior of P as t — 5, we can make a table

t Pt)
4.9 10000
4.99 1000000
4.999 100000000
4.9999 (| 10000000000

In other words, as t — 5, P(t) — oo. Graphically, the line t = 5 is a vertical asymptote of
the graph of y = P(t). Physically, this means that the population of bacteria is increasing
without bound as we near 5 days, which cannot actually happen. For this reason, ¢t = 5 is
called the ‘doomsday’ for this population. There is no way any environment can support
infinitely many bacteria, so shortly before t = 5 the environment would collapse. O

Now that we have thoroughly investigated vertical asymptotes, we can turn our attention to hori-
zontal asymptotes. The next theorem tells us when to expect horizontal asymptotes.

Theorem 4.2. Location of Horizontal Asymptotes: Suppose 7 is a rational function and

r(z) = %, where p and q are polynomial functions with leading coefficients a and b, respectively.

a

e If the degree of p(z) is the same as the degree of ¢(x), then y = ¢ is the® horizontal
asymptote of the graph of y = r(z).

e If the degree of p(x) is less than the degree of ¢(z), then y = 0 is the horizontal asymptote
of the graph of y = r(z).

e If the degree of p(x) is greater than the degree of ¢(z), then the graph of y = r(x) has no
horizontal asymptotes.

“The use of the definite article will be justified momentarily.

Like Theorem 4.1, Theorem 4.2 is proved using Calculus. Nevertheless, we can understand the idea

behind it using our example f(z) = 2;“:11 . If we interpret f(x) as a division problem, (2z—1)+(z+1),
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we find that the quotient is 2 with a remainder of —3. Using what we know about polynomial
division, specifically Theorem 3.4, we get 2z — 1 = 2(x + 1) — 3. Dividing both sides by (z + 1)

gives 2;:—11 =2 — 3_ (You may remember this as the formula for g(z) in Example 4.1.1.) As x

41"
becomes unbounded in either direction, the quantity %H gets closer and closer to 0 so that the

values of f(z) become closer and closer® to 2. In symbols, as  — 400, f(x) — 2, and we have the
result.” Notice that the graph gets close to the same y value as  — —oo or  — oco. This means
that the graph can have only one horizontal asymptote if it is going to have one at all. Thus we
were justified in using ‘the’ in the previous theorem.

Alternatively, we can use what we know about end behavior of polynomials to help us understand
this theorem. From Theorem 3.2, we know the end behavior of a polynomial is determined by its
leading term. Applying this to the numerator and denominator of f(z), we get that as x — +o0,

flx) = 2;+_11 R 2?“"‘ = 2. This last approach is useful in Calculus, and, indeed, is made rigorous there.
(Keep this in mind for the remainder of this paragraph.) Applying this reasoning to the general

case, suppose r(x) = % where a is the leading coefficient of p(z) and b is the leading coefficient
azx™

of q(x). As x — Fo0, r(x) = {5, where n and m are the degrees of p(z) and g(z), respectively.

If the degree of p(z) and the degree of g(z) are the same, then n = m so that r(z) ~ ¢, which

means y = ¢ is the horizontal asymptote in this case. If the degree of p(z) is less than the degree

of g(z), then n < m, so m — n is a positive number, and hence, r(r) ~ ;= — 0 as ¥ — +oo. If

the degree of p(z) is greater than the degree of ¢(z), then n > m, and hence n — m is a positive

number and r(z) ~ axz;m, which becomes unbounded as z — +o0o. As we said before, if a rational

function has a horizontal asymptote, then it will have only one. (This is not true for other types
of functions we shall see in later chapters.)

Example 4.1.4. List the horizontal asymptotes, if any, of the graphs of the following functions.
Verify your answers using a graphing calculator, and describe the behavior of the graph near them
using proper notation.

51 z?—4 623 — 3z +1

Solution.

1. The numerator of f(x) is 5z, which has degree 1. The denominator of f(z) is #2 + 1, which
has degree 2. Applying Theorem 4.2, y = 0 is the horizontal asymptote. Sure enough, we see
from the graph that as  — —oo, f(z) — 0~ and as  — oo, f(z) — 0.

2. The numerator of g(x), #? — 4, has degree 2, but the degree of the denominator, x + 1, has
degree 1. By Theorem 4.2, there is no horizontal asymptote. From the graph, we see that
the graph of y = g(x) doesn’t appear to level off to a constant value, so there is no horizontal
asymptote. 10

8 As seen in the tables immediately preceding Definition 4.2.
9More specifically, as & — —oo, f(z) — 27, and as = — oo, f(z) — 2.
108t tight! We’ll revisit this function and its end behavior shortly.
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3. The degrees of the numerator and denominator of h(x) are both three, so Theorem 4.2 tells

us y = % —3 is the horizontal asymptote. We see from the calculator’s graph that as

x — —o0, h(z) = —3T, and as x — oo, h(z) — —3.

f/ _/J
I 7

The graph of y = f(z) The graph of y = g(z) The graph of y = h(x)

O]

Our next example of the section gives us a real-world application of a horizontal asymptote.'!

Example 4.1.5. The number of students N at local college who have had the flu ¢t months after
the semester begins can be modeled by the formula N(¢) = 500 — % for ¢t > 0.

1. Find and interpret N(0).

2. How long will it take until 300 students will have had the flu?

3. Determine the behavior of N as ¢ — co. Interpret this result graphically and within the
context of the problem.

Solution.

1. N(0) = 500 — 1f§?0) = 50. This means that at the beginning of the semester, 50 students

have had the flu.

2. We set N (t) = 300 to get 500 — % = 300 and solve. Isolating the fraction gives % = 200.
5

Clearing denominators gives 450 = 200(1 + 3t). Finally, we get ¢t = 15. This means it will
take % months, or about 13 days, for 300 students to have had the flu.

3. To determine the behavior of N as t — 0o, we can use a table.

t] N
10 || ~ 485.48
100 || ~ 498.50
1000 || ~ 499.85
10000 || ~ 499.98

The table suggests that as ¢ — oo, N(t) — 500. (More specifically, 500~.) This means as
time goes by, only a total of 500 students will have ever had the flu. 0

" Though the population below is more accurately modeled with the functions in Chapter 6, we approximate it
(using Calculus, of course!) using a rational function.
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We close this section with a discussion of the third (and final!) kind of asymptote which can be
associated with the graphs of rational functions. Let us return to the function g(z) = 5‘; ;14 in
Example 4.1.4. Performing long division,'? we get g(x) = :‘f _;14 %—&-1
%H — 0 as * — =+oo, it stands to reason that as x becomes unbounded, the function values

glz)=x—1— x% ~ = — 1. Geometrically, this means that the graph of y = g(x) should resemble

the line y = x — 1 as * — +00. We see this play out both numerically and graphically below.

=z—-1-— Since the term

x g(x) x—1 x g(x) x—1
—10 ~ —10.6667 —11 10 ~ 8.7273 9
—100 ~ —100.9697 —101 100 ~ 98.9703 99
—1000 || = —1000.9970 | —1001 1000 || =~ 998.9970 999
—10000 || ~ —10000.9997 | —10001 10000 || =~ 9998.9997 | 9999
y=g(z)andy=x—1 y=g(r)andy=x—1
as T — —00 as T — 00

The way we symbolize the relationship between the end behavior of y = g(x) with that of the line
y = x — 1 1is to write ‘as * — +oo, g(z) — x — 1.” In this case, we say the line y = x — 1 is a
slant asymptote'® to the graph of y = g(z). Informally, the graph of a rational function has a
slant asymptote if, as x — oo or as x — —oo, the graph resembles a non-horizontal, or ‘slanted’
line. Formally, we define a slant asymptote as follows.

Definition 4.4. The line y = mx + b where m # 0 is called a slant asymptote of the graph
of a function y = f(x) if as  — —oo or as © — oo, f(x) — mz + b.

A few remarks are in order. First, note that the stipulation m # 0 in Definition 4.4 is what
makes the ‘slant’ asymptote ‘slanted’ as opposed to the case when m = 0 in which case we’d have a
horizontal asymptote. Secondly, while we have motivated what me mean intuitively by the notation
‘f(z) — max+0b, like so many ideas in this section, the formal definition requires Calculus. Another
way to express this sentiment, however, is to rephrase ‘f(z) — mx 4+ b’ as ‘f(x) — (mx +b) — 0.
In other words, the graph of y = f(x) has the slant asymptote y = ma + b if and only if the graph
of y = f(x) — (mz + b) has a horizontal asymptote y = 0.

2See the remarks following Theorem 4.2.
13 Also called an ‘oblique’ asymptote in some, ostensibly higher class (and more expensive), texts.
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Our next task is to determine the conditions under which the graph of a rational function has

a slant asymptote, and if it does, how to find it. In the case of g(z) = ””; ;14, the degree of the

numerator z2 — 4 is 2, which is ezactly one more than the degree if its denominator = + 1 which
is 1. This results in a linear quotient polynomial, and it is this quotient polynomial which is the
slant asymptote. Generalizing this situation gives us the following theorem.!*

Theorem 4.3. Determination of Slant Asymptotes: Suppose r is a rational function and
r(z) = 2%, where the degree of p is exactly one more than the degree of q. Then the graph of
y = r(z) has the slant asymptote y = L(x) where L(x) is the quotient obtained by dividing

p(z) by q(z).

In the same way that Theorem 4.2 gives us an easy way to see if the graph of a rational function
r(x) = I;Li) has a horizontal asymptote by comparing the degrees of the numerator and denominator,
Theorem 4.3 gives us an easy way to check for slant asymptotes. Unlike Theorem 4.2, which gives
us a quick way to find the horizontal asymptotes (if any exist), Theorem 4.3 gives us no such
‘short-cut’. If a slant asymptote exists, we have no recourse but to use long division to find it.!"

Example 4.1.6. Find the slant asymptotes of the graphs of the following functions if they exist.
Verify your answers using a graphing calculator and describe the behavior of the graph near them
using proper notation.

22 —4x +2 22 —4 41
1—zx '

L f(z) =

Solution.

1. The degree of the numerator is 2 and the degree of the denominator is 1, so Theorem 4.3
guarantees us a slant asymptote. To find it, we divide 1 — 2 = —x + 1 into 22 — 4z + 2 and
get a quotient of —x + 3, so our slant asymptote is y = —x + 3. We confirm this graphically,
and we see that as * — —oo, the graph of y = f(z) approaches the asymptote from below,

and as  — oo, the graph of y = f(x) approaches the asymptote from above.'6
2. As with the previous example, the degree of the numerator g(x) = ”f :24 is 2 and the degree

of the denominator is 1, so Theorem 4.3 applies. In this case,

LUQ— T xr — xT
gy= LA @@= @ L,y

x—2 (x —2) (z2—2)"

Once again, this theorem is brought to you courtesy of Theorem 3.4 and Calculus.

5That’s OK, though. In the next section, we’ll use long division to analyze end behavior and it’s worth the effort!

Note that we are purposefully avoiding notation like ‘as 2 — oo, f(z) — (—2 +3)T. While it is possible to define
these notions formally with Calculus, it is not standard to do so. Besides, with the introduction of the symbol ‘?’ in
the next section, the authors feel we are in enough trouble already.
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so we have that the slant asymptote y = x + 2 is identical to the graph of y = g(z) except at
x = 2 (where the latter has a ‘hole’ at (2,4).) The calculator supports this claim.!”

3. For h(z) = izf}l, the degree of the numerator is 3 and the degree of the denominator is 2 so
again, we are guaranteed the existence of a slant asymptote. The long division (a:3 + 1) =
(ac2 — 4) gives a quotient of just x, so our slant asymptote is the line y = z. The calculator
confirms this, and we find that as * — —oo, the graph of y = h(z) approaches the asymptote

from below, and as x — oo, the graph of y = h(x) approaches the asymptote from above.

“\

The graph of y = f(x) The graph of y = g(z) The graph of y = h(x)

O

The reader may be a bit disappointed with the authors at this point owing to the fact that in Exam-
ples 4.1.2, 4.1.4, and 4.1.6, we used the calculator to determine function behavior near asymptotes.
We rectify that in the next section where we, in excruciating detail, demonstrate the usefulness of
‘number sense’ to reveal this behavior analytically.

1"While the word ‘asymptote’ has the connotation of ‘approaching but not equaling,” Definitions 4.3 and 4.4 invite
the same kind of pathologies we saw with Definitions 1.11 in Section 1.6.
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4.1.1 EXERCISES
In Exercises 1 - 18, for the given rational function f:
e Find the domain of f.
e Identify any vertical asymptotes of the graph of y = f(x).
e Identify any holes in the graph.
¢ Find the horizontal asymptote, if it exists.
e Find the slant asymptote, if it exists.

e Graph the function using a graphing utility and describe the behavior near the asymptotes.

L fle) = 5 2 o) = 3. 10) = 7

4 fla) = 5. fz) = (;5137)2 6. f(x)— g i

7. f(z) = xfil 8. f(z) = % 9. flz) = m

10. f(z) = 3952;59”9_2 11. f(x) = W 12. f(x) = w

13. f(z) = 2962;;?:62_3 14. f(z) = m 15. f(z) = _5;4:33;32:3:322:110
6. 101 = 2 17 s = B2 1) =

19. The cost C in dollars to remove p% of the invasive species of Ippizuti fish from Sasquatch
Pond is given by

1
Cp) = % 5 <p <100

100 —p’
(a) Find and interpret C'(25) and C(95).

(b) What does the vertical asymptote at x = 100 mean within the context of the problem?
(c) What percentage of the Ippizuti fish can you remove for $400007

20. In Exercise 71 in Section 1.4, the population of Sasquatch in Portage County was modeled
by the function
Pt) = 150t ’
t+15
where t = 0 represents the year 1803. Find the horizontal asymptote of the graph of y = P(t)
and explain what it means.
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21.

22.

23.

Recall from Example 1.5.3 that the cost C' (in dollars) to make z dOpi media players is
C(x) = 100x 4 2000, = > 0.

Find a formula for the average cost C(x). Recall: C(x) = @

Find and interpret C'(1) and C(100).

How many dOpis need to be produced so that the average cost per dOpi is $2007
Interpret the behavior of C(x) as z — 07. (HINT: You may want to find the fixed cost
C(0) to help in your interpretation.)

(e) Interpret the behavior of C(z) as x — oco. (HINT: You may want to find the variable
cost (defined in Example 2.1.5 in Section 2.1) to help in your interpretation.)

In Exercise 35 in Section 3.1, we fit a few polynomial models to the following electric circuit
data. (The circuit was built with a variable resistor. For each of the following resistance values
(measured in kilo-ohms, kf2), the corresponding power to the load (measured in milliwatts,
mW) is given in the table below.)'®

Resistance: (k) | 1.012 | 2.199 | 3.275 | 4.676 | 6.805 | 9.975
Power: (mW) 1.063 | 1.496 | 1.610 | 1.613 | 1.505 | 1.314

Using some fundamental laws of circuit analysis mixed with a healthy dose of algebra, we can

derive the actual formula relating power to resistance. For this circuit, it is P(x) = (JC_E%)Q,

where x is the resistance value, x > 0.

(a) Graph the data along with the function y = P(z) on your calculator.

(b) Use your calculator to approximate the maximum power that can be delivered to the
load. What is the corresponding resistance value?

(c) Find and interpret the end behavior of P(x) as x — oc.

In his now famous 1919 dissertation The Learning Curve Equation, Louis Leon Thurstone
presents a rational function which models the number of words a person can type in four
minutes as a function of the number of pages of practice one has completed. (This paper,
which is now in the public domain and can be found here, is from a bygone era when students
at business schools took typing classes on manual typewriters.) Using his original notation
and original language, we have Y = % where L is the predicted practice limit in terms
of speed units, X is pages written, Y is writing speed in terms of words in four minutes, P is
equivalent previous practice in terms of pages and R is the rate of learning. In Figure 5 of the
paper, he graphs a scatter plot and the curve Y = %. Discuss this equation with your
classmates. How would you update the notation? Explain what the horizontal asymptote of
the graph means. You should take some time to look at the original paper. Skip over the
computations you don’t understand yet and try to get a sense of the time and place in which

the study was conducted.

'8 The authors wish to thank Don Anthan and Ken White of Lakeland Community College for devising this problem
and generating the accompanying data set.


http://books.google.com/books?id=pb5BAAAAIAAJ&dq=Louis+Leon+Thurstone&printsec=frontcover&source=an&hl=en&ei=Ev_bSaeKGInEMbmM9OQN&sa=X&oi=book_result&ct=result&resnum=6#PPP1,M1
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4.1.2 ANSWERS

x
L fla) = 5
Domain: (—o00,2) U (2,00)
Vertical asymptote: z = 2
Asxz— 27, f(z) > —0
Asz — 27 f(z) -
No holes in the graph
Horizontal asymptote: y = %
As z — —oo, f(z) = 3~

AS$—>OO,f(J})—>%+

x x

3 ) = 24+r—12 (z+4

Domain: (—oo,—4) U (—4,3)

Vertical asymptotes: x = —4,x =

Asxz — —47, f(z) » —

As z — —4% f(z) —

Asz — 37, f(z) - —o0

As x — 3%, f(x) — o0

No holes in the graph

Horizontal asymptote: y =0

As x — —o0, f(x) = 0~

As x — oo, f(z) = 0

x+7

5 fl@) = (x +3)2
Domain: (—oo, —3) U (—3,00)
Vertical asymptote: o = —3
Asxz— =37, f(z) = o©
Asz — =31, f(z) >
No holes in the graph
Horizontal asymptote: y =0
YAs z — —o0, f(x) — 0~
As z — oo, f(z) — 0T

2. flx) =

- [f(x)

. f(x>:x2

RATIONAL FUNCTIONS

3+ Tz
5 —2x
Domain: (—o0,3) U (3, 00)
Vertical asymptote: z = %
Asz— 57, f(z) > o0

Asx — %+,f(x) — —00

No holes in the graph
Horizontal asymptote: y = —%
As x — —o0, f(x) — —%Jr

As x — oo, f(x) = —

7=
2

T
o241

Domain: (—o0, 00)

No vertical asymptotes

No holes in the graph
Horizontal asymptote: y =0
As x — —o0, f(x) = 0~

As z — oo, f(z) — 0"

?+1 2t -z+1

-1 z-1

Domain: (—oo,—1) U (—1,1) U (1, 00)
Vertical asymptote: z =1

Asz — 17, f(z) 5 —o0

Asz — 17, f(x) —»

Hole at (—1,—3)
Slant asymptote: y = x

As x — —o0, the graph is below y =z
As x — oo, the graph is above y =

19This is hard to see on the calculator, but trust me, the graph is below the z-axis to the left of z = —7.



4.1 INTRODUCTION TO RATIONAL FUNCTIONS

7.

11.

f) = -

4
f@) = oy

Domain: (—o0,00)

No vertical asymptotes

No holes in the graph
Horizontal asymptote: y =0
As x — —o0, f(x) = 0~

As x — oo, f(x) — 0

z—4
24+r—-6 -2

Domain: (—o0,—3) U (—3,2) U (2, 0)

Vertical asymptote: © = 2

Asxz — 27, f(z) » o0

Asz — 27, f(z) - —0

Hole at (—37 %)

Horizontal asymptote: y =1

As x — —oo, f(z) — 1T

As x — oo, f(x) = 17

2 —x—12

f(m):x3+2m2+a: _ z(r+1)

22 —x—2 T — 2
Domain: (—o0,—1) U (—1,2) U (2, 00)
Vertical asymptote: z = 2
Asxz — 27, f(z) - —o0
Asz — 27 f(z) =
Hole at (—1,0)
Slant asymptote: y =z + 3
As ¥ — —o0, the graph is below y = 2 + 3
As x — o0, the graph is above y = 2 + 3

8.

10.

12.
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4z 4z
@) = i~ o=
Domain: (—oo,—2) U (—2,2) U (2, c0)
Vertical asymptotes: © = —2,2 = 2
Asz — —27, f(z) - —0
Asz — =21 f(z) = o
Asz — 27, f(z) 5 —o0
Asz — 27 f(x) —»
No holes in the graph
Horizontal asymptote: y =0
Asx — —o0, f(x) = 0~
As x — oo, f(z) = 0

2
fla) == p E569_ - - ((3; :-r 31))((5—_ 32))
Domain: (—o0,—3) U (—3,3) U (3, 00)
Vertical asymptotes: z = —3,x =3

Asx — =37, f(z) = o©
Asz — =31, f(z) > —o0
Asx — 37, f(x)

As x — 3T, f(x)
No holes in the graph
Horizontal asymptote: y = 3
As x — —oo, f(z) — 3

As z — oo, f(x) — 3~

— —00
— 00

23— 3+ 1

0 ==537

Domain: (—o0,00)

No vertical asymptotes

No holes in the graph

Slant asymptote: y = x

As x — —o0, the graph is above y =z
As x — oo, the graph is below y = x



318

13.

15.

17.

19.

222 + 5z — 3
r=—
f(@) 3z + 2 ) )
Domain: (—oo, —3) U (—g,
Vertical asymptote: x = —
Asz — —%Jr,f(a:) — 00
Asx—>—% ,flz) = —o0
No holes in the graph
Slant asymptote: y = %x + 1@1
As x — —o0, the graph is above y = Zz+ 1}
As x — o0, the graph is below y = 2z + 1

o)

win

—5z* — 33 + 22— 10

3 — 322 +3zx —1

—5xt — 323 + 22 — 10
(z — 1)

Domain: (—o0,1) U (1,00)
Vertical asymptotes: = =1
Asz— 17, f(z) > o0
Asz — 17, f(z) = —0
No holes in the graph
Slant asymptote: y = —5x — 18
As x — —o0, the graph is above y = =5z — 18

fx) =

As x — oo, the graph is below y = —5z — 18

18 — 22
f@) =" g =72
Domain: (—o0,—3) U (—=3,3) U (3, 00)
No vertical asymptotes
Holes in the graph at (—3,—2) and (3, —2)
Horizontal asymptote y = —2
As x — to0, f(z) = -2

14.

16.

18.

RATIONAL FUNCTIONS

—2% + 4x —2® + 4x

f(.%') = 2 _ = —
x2 -9 (x —3)(z +3)

Domain: (—oo, —3) U (—=3,3) U (3,0)
Vertical asymptotes: x = —3, x = 3
Asz — =37, f(x) = o0
Asz — =31, f(z) = —o0
Asxz — 37, f(z) > o0
Asz — 3T, f(z) - —0

No holes in the graph

Slant asymptote: y = —x

As x — —o0, the graph is above y = —x
As x — o0, the graph is below y = —z

Domain: (—o0,1) U (1,00)
Vertical asymptote: x =1
Asz— 17, f(z) 5 o0

Asz — 17, f(z) — —o0

No holes in the graph

No horizontal or slant asymptote
As x — —o0, f(z) = —0

As x — o0, f(x) = —oc0

3 2
x 4 —4x — 5

_ —z—5
/(@) 2o+l v
Domain: (—o0,00)

No vertical asymptotes

No holes in the graph
Slant asymptote: y =x — 5
f(x) =z — 5 everywhere.

(a) C(25) = 590 means it costs $590 to remove 25% of the fish and and C(95) = 33630
means it would cost $33630 to remove 95% of the fish from the pond.

(b) The vertical asymptote at z = 100 means that as we try to remove 100% of the fish from
the pond, the cost increases without bound; i.e., it’s impossible to remove all of the fish.

(c¢) For $40000 you could remove about 95.76% of the fish.
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20. The horizontal asymptote of the graph of P(t) = tlj:’—(l)g is y = 150 and it means that the model

predicts the population of Sasquatch in Portage County will never exceed 150.

21. (a) C(z) = 10022000 5 >
(1

(b) ) = 2100 and C(100) = 120. When just 1 dOpi is produced, the cost per dOpi is
$2100, but when 100 dOpis are produced, the cost per dOpi is $120.

(c) C(x) = 200 when = = 20. So to get the cost per dOpi to $200, 20 dOpis need to be
produced.

(d) As 2 — 07, C(z) — oo. This means that as fewer and fewer dOpis are produced,
the cost per dOpi becomes unbounded. In this situation, there is a fixed cost of $2000
(C(0) =2000), we are trying to spread that $2000 over fewer and fewer dOpis.

(e) As z — oo, C(x) — 100", This means that as more and more dOpis are produced, the
cost per dOpi approaches $100, but is always a little more than $100. Since $100 is the
variable cost per dOpi (C'(z) = 100z + 2000), it means that no matter how many dOpis
are produced, the average cost per dOpi will always be a bit higher than the variable
cost to produce a dOpi. As before, we can attribute this to the $2000 fixed cost, which
factors into the average cost per dOpi no matter how many dOpis are produced.

22. (a)

(b) The maximum power is approximately 1.603 mW which corresponds to 3.9 k.

(c) As z — oo, P(z) — 0% which means as the resistance increases without bound, the
power diminishes to zero.
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4.2 GRAPHS OF RATIONAL FUNCTIONS

In this section, we take a closer look at graphing rational functions. In Section 4.1, we learned that
the graphs of rational functions may have holes in them and could have vertical, horizontal and
slant asymptotes. Theorems 4.1, 4.2 and 4.3 tell us exactly when and where these behaviors will
occur, and if we combine these results with what we already know about graphing functions, we
will quickly be able to generate reasonable graphs of rational functions.

One of the standard tools we will use is the sign diagram which was first introduced in Section 2.4,
and then revisited in Section 3.1. In those sections, we operated under the belief that a function
couldn’t change its sign without its graph crossing through the z-axis. The major theorem we
used to justify this belief was the Intermediate Value Theorem, Theorem 3.1. It turns out the
Intermediate Value Theorem applies to all continuous functions,' not just polynomials. Although
rational functions are continuous on their domains,> Theorem 4.1 tells us that vertical asymptotes
and holes occur at the values excluded from their domains. In other words, rational functions
aren’t continuous at these excluded values which leaves open the possibility that the function could
change sign without crossing through the z-axis. Consider the graph of y = h(x) from Example
4.1.1, recorded below for convenience. We have added its z-intercept at (%,O) for the discussion
that follows. Suppose we wish to construct a sign diagram for h(z). Recall that the intervals where
h(z) > 0, or (4), correspond to the xz-values where the graph of y = h(x) is above the z-axis; the
intervals on which h(x) < 0, or (—) correspond to where the graph is below the z-axis.

Y

NI~ T

As we examine the graph of y = h(x), reading from left to right, we note that from (—oo,—1),
the graph is above the z-axis, so h(x) is (4) there. At x = —1, we have a vertical asymptote, at
which point the graph ‘jumps’ across the z-axis. On the interval (—1, %), the graph is below the

'Recall that, for our purposes, this means the graphs are devoid of any breaks, jumps or holes
2 Another result from Calculus.
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z-axis, so h(z) is (—) there. The graph crosses through the z-axis at (1,0) and remains above
the x-axis until z = 1, where we have a ‘hole’ in the graph. Since h(1) is undefined, there is no
sign here. So we have h(z) as (+) on the interval (3,1). Continuing, we see that on (1,00), the
graph of y = h(z) is above the x-axis, so we mark (4) there. To construct a sign diagram from
this information, we not only need to denote the zero of h, but also the places not in the domain of
h. As is our custom, we write ‘0’ above % on the sign diagram to remind us that it is a zero of h.
We need a different notation for —1 and 1, and we have chosen to use ‘?’ - a nonstandard symbol
called the interrobang. We use this symbol to convey a sense of surprise, caution and wonderment
- an appropriate attitude to take when approaching these points. The moral of the story is that
when constructing sign diagrams for rational functions, we include the zeros as well as the values
excluded from the domain.

Steps for Constructing a Sign Diagram for a Rational Function
Suppose 7 is a rational function.
1. Place any values excluded from the domain of  on the number line with an ‘?” above them.
2. Find the zeros of r and place them on the number line with the number 0 above them.
3. Choose a test value in each of the intervals determined in steps 1 and 2.

4. Determine the sign of r(x) for each test value in step 3, and write that sign above the
corresponding interval.

We now present our procedure for graphing rational functions and apply it to a few exhaustive
examples. Please note that we decrease the amount of detail given in the explanations as we move
through the examples. The reader should be able to fill in any details in those steps which we have
abbreviated.

Steps for Graphing Rational Functions
Suppose 7 is a rational function.
1. Find the domain of r.
2. Reduce r(x) to lowest terms, if applicable.
3. Find the z- and y-intercepts of the graph of y = r(z), if they exist.

4. Determine the location of any vertical asymptotes or holes in the graph, if they exist.
Analyze the behavior of r on either side of the vertical asymptotes, if applicable.

5. Analyze the end behavior of r. Find the horizontal or slant asymptote, if one exists.

6. Use a sign diagram and plot additional points, as needed, to sketch the graph of y = r(z).



http://en.wikipedia.org/wiki/Interrobang
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3x
x2 -4
Solution. We follow the six step procedure outlined above.

Example 4.2.1. Sketch a detailed graph of f(z) =

1. As usual, we set the denominator equal to zero to get 22 —4 = 0. We find = £2, so our
domain is (—o0, —2) U (—2,2) U (2, 00).

2. To reduce f(z) to lowest terms, we factor the numerator and denominator which yields

) = —2 . There are no common factors which means f(z) is already in lowest
(z—2)(z+2)
terms.
3. To find the z-intercepts of the graph of y = f(x), we set y = f(x) = 0. Solving M);% =0

results in x = 0. Since x = 0 is in our domain, (0, 0) is the z-intercept. To find the y-intercept,
we set z = 0 and find y = f(0) = 0, so that (0,0) is our y-intercept as well.?

4. The two numbers excluded from the domain of f are z = —2 and = = 2. Since f(x) didn’t
reduce at all, both of these values of z still cause trouble in the denominator. Thus by
Theorem 4.1, x = —2 and = 2 are vertical asymptotes of the graph. We can actually go
a step further at this point and determine exactly how the graph approaches the asymptote
near each of these values. Though not absolutely necessary,? it is good practice for those
heading off to Calculus. For the discussion that follows, it is best to use the factored form of

_ 3z
1@) = e

e The behavior of y = f(x) as © — —2: Suppose z — —2~. If we were to build a table of
values, we’d use z-values a little less than —2, say —2.1, —2.01 and —2.001. While there
is no harm in actually building a table like we did in Section 4.1, we want to develop a
‘number sense’ here. Let’s think about each factor in the formula of f(z) as we imagine
substituting a number like x = —2.000001 into f(x). The quantity 3z would be very
close to —6, the quantity (z —2) would be very close to —4, and the factor (z + 2) would
be very close to 0. More specifically, (z 4+ 2) would be a little less than 0, in this case,
—0.000001. We will call such a number a ‘very small (—)’, ‘very small’ meaning close to
zero in absolute value. So, mentally, as x — —27, we estimate

3z —6 3

T8 = @92 ™ () (very small (4)) 2 (very small ()

Now, the closer = gets to —2, the smaller (x + 2) will become, so even though we are

multiplying our ‘very small (—)’ by 2, the denominator will continue to get smaller and

smaller, and remain negative. The result is a fraction whose numerator is positive, but

whose denominator is very small and negative. Mentally,
3 N 3

2 (very small (—)) ~ very small (—)

flz) ~ ~ very big (—)

3As we mentioned at least once earlier, since functions can have at most one y-intercept, once we find that (0, 0)
is on the graph, we know it is the y-intercept.
4The sign diagram in step 6 will also determine the behavior near the vertical asymptotes.
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The term ‘very big (—)’ means a number with a large absolute value which is negative.’
What all of this means is that as © — —27, f(z) — —oo. Now suppose we wanted to
determine the behavior of f(r) as x — —2%. If we imagine substituting something a
little larger than —2 in for z, say —1.999999, we mentally estimate

—6 3 3

fla)~ (—4) (very small (+)) T2 (very small (+)) ~ very small (+) ~ very big (+)

We conclude that as x — =271, f(x) — oo.

The behavior of y = f(x) as x — 2: Consider z — 2~. We imagine substituting
x = 1.999999. Approximating f(z) as we did above, we get

6 3 3

Ja)~ (very small (—)) (4) T2 (very small (—)) ~ very small (—) ~ very big (=)

We conclude that as x — 27, f(z) — —oo. Similarly, as z — 27, we imagine substituting

x = 2.000001 to get f(z) ~ Wﬂll(ﬂ ~ very big (+). So as z — 27, f(z) — oo.

Graphically, we have that near 2 = —2 and x = 2 the graph of y = f(x) looks like’

5. Next, we determine the end behavior of the graph of y = f(x). Since the degree of the
numerator is 1, and the degree of the denominator is 2, Theorem 4.2 tells us that y = 0
is the horizontal asymptote. As with the vertical asymptotes, we can glean more detailed

information using ‘number sense’. For the discussion below, we use the formula f(z) =

3
24"

e The behavior of y = f(x) as © — —oo: If we were to make a table of values to discuss
the behavior of f as x — —o0, we would substitute very ‘large’ negative numbers in for
x, say for example, x = —1 billion. The numerator 3z would then be —3 billion, whereas

®The actual retail value of f(—2.000001) is approximately —1,500,000.
SWe have deliberately left off the labels on the y-axis because we know only the behavior near = 42, not the
actual function values.
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the denominator x? — 4 would be (—1 billion)? — 4, which is pretty much the same as
1(billion)2. Hence,

—3 billion 3

—1 billi ~ ~ —
J (=1 billion) ~ 7357 ~ ~hillion

~ very small (—)

Notice that if we substituted in x = —1 trillion, essentially the same kind of cancellation
would happen, and we would be left with an even ‘smaller’ negative number. This not
only confirms the fact that as  — —oo, f(x) — 0, it tells us that f(z) — 07. In other
words, the graph of y = f(z) is a little bit below the z-axis as we move to the far left.

e The behavior of y = f(z) as x — oo: On the flip side, we can imagine substituting very
large positive numbers in for z and looking at the behavior of f(z). For example, let
x = 1 billion. Proceeding as before, we get

3billion 3
1(billion)2 ~ billion

f (1 billion) ~ ~ very small (+)

The larger the number we put in, the smaller the positive number we would get out. In
other words, as * — oo, f(x) — 0T, so the graph of y = f(z) is a little bit above the
zr-axis as we look toward the far right.

Graphically, we have’

6. Lastly, we construct a sign diagram for f(z). The z-values excluded from the domain of f
are z = +2, and the only zero of f is x = 0. Displaying these appropriately on the number
line gives us four test intervals, and we choose the test values® z = —3, = —1, x = 1 and
x =3. We find f(-3)is (=), f(—=1)is (+), f(1) is (=) and f(3) is (+). Combining this with
our previous work, we get the graph of y = f(z) below.

"As with the vertical asymptotes in the previous step, we know only the behavior of the graph as x — +oco. For
that reason, we provide no x-axis labels.

8In this particular case, we can eschew test values, since our analysis of the behavior of f near the vertical
asymptotes and our end behavior analysis have given us the signs on each of the test intervals. In general, however,
this won’t always be the case, so for demonstration purposes, we continue with our usual construction.
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! Y !
()10 () () A
t =24 04 24 —5 —4 -3 | -1 1 3 4 5 g
3 -1 1 3 !

O]

A couple of notes are in order. First, the graph of y = f(z) certainly seems to possess symmetry
with respect to the origin. In fact, we can check f(—x) = —f(z) to see that f is an odd function.
In some textbooks, checking for symmetry is part of the standard procedure for graphing rational
functions; but since it happens comparatively rarely’ we’ll just point it out when we see it. Also
note that while y = 0 is the horizontal asymptote, the graph of f actually crosses the xz-axis at (0, 0).
The myth that graphs of rational functions can’t cross their horizontal asymptotes is completely
false,' as we shall see again in our next example.

202 —3x—5

Example 4.2.2. Sketch a detailed graph of g(z) = — =
2 —x—

Solution.

1. Setting 22 — 2 — 6 = 0 gives = —2 and = = 3. Our domain is (—oo0, —2) U (—2,3) U (3, c0).

(2z—5)(z+1)

=)t There is no cancellation, so g(x) is in lowest terms.

2. Factoring g(z) gives g(z) =

3. To find the z-intercept we set y = g(z) = 0. Using the factored form of g(z) above, we find

the zeros to be the solutions of (2z — 5)(z + 1) = 0. We obtain z = 5 and z = —1. Since

both of these numbers are in the domain of g, we have two z-intercepts, (%, 0) and (—1,0).
To find the y-intercept, we set = 0 and find y = ¢g(0) = %, So our y-intercept is (O, %)

4. Since g(z) was given to us in lowest terms, we have, once again by Theorem 4.1 vertical

asymptotes x = —2 and z = 3. Keeping in mind g(x) = %

analysis near each of these values.

, we proceed to our

e The behavior of y = g(x) as v — —2: As x — —27, we imagine substituting a number
a little bit less than —2. We have

Oy
(=5)(very small (—))  very small (+)

g(x) ~ ~ very big (+)

9And Jeff doesn’t think much of it to begin with...
OThat’s why we called it a MYTH!
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soas x — —27, g(x) — co. On the flip side, as z — —2, we get

9

= = big (—
9(z) very small (—) very big (=)

so g(z) — —o0.

e The behavior of y = g(x) as x — 3: As  — 37, we imagine plugging in a number just
shy of 3. We have

@ 4
( very small (—))(5)  very small (—)

g(z) ~ ~ very big (—)

Hence, as © — 37, g(z) — —oo. As z — 3T, we get

4
very small (+)

g(x) =~ ~ very big (+)
so g(x) — oc.

Graphically, we have (again, without labels on the y-axis)

5. Since the degrees of the numerator and denominator of g(z) are the same, we know from

Theorem 4.2 that we can find the horizontal asymptote of the graph of g by taking the
ratio of the leading terms coefficients, y = % = 2. However, if we take the time to do a
more detailed analysis, we will be able to reveal some ‘hidden’ behavior which would be lost
otherwise.!! As in the discussion following Theorem 4.2, we use the result of the long division

(22% — 3z — 5) + (2 — x — 6) to rewrite g(z) = % as g(x) =2— x;”:xzﬁ. We focus our
=7

z2—2—6"

attention on the term

HThat is, if you use a calculator to graph. Once again, Calculus is the ultimate graphing power tool.
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e The behavior of y = g(x) as © — —oo: If imagine substituting x = —1 billion into
9:23”_7;7_6, we estimate xrf_;?_‘s ~ Etiﬁgff ~ very small (—).'2 Hence,
(1) =2— —""7 X9 very small (—) = 2 + very small (+)
x)=2-— ~ 2 — very small (—) = very sm
g 22— -6 y y

In other words, as * — —oo, the graph of y = g(x) is a little bit above the line y = 2.

. o . o—7 . .
e The behavior of y = g(x) as + — oo. To consider "% as x — 00, we imagine

substituting = 1 billion and, going through the usual mental routine, find

z—17

m ~ Very Small (+)

Hence, g(z) ~ 2 — very small (4), in other words, the graph of y = g(z) is just below
the line y = 2 as x — oo.

On y = g(z), we have (again, without labels on the x-axis)

P
1 /—>

Al :

6. Finally we construct our sign diagram. We place an ‘?" above x = —2 and z = 3, and a ‘0’
above z = 2 and # = —1. Choosing test values in the test intervals gives us f(z) is (+) on
the intervals (—o0o, —2), (—1,3) and (3,00), and (—) on the intervals (—2, —1) and (3,3). As
we piece together all of the information, we note that the graph must cross the horizontal
asymptote at some point after z = 3 in order for it to approach y = 2 from underneath. This
is the subtlety that we would have missed had we skipped the long division and subsequent
end behavior analysis. We can, in fact, find exactly when the graph crosses y = 2. As a result
of the long division, we have g(x) = 2 — xz"’_j_(ﬁ. For g(x) = 2, we would need m;”_j_ﬁ =0.

This gives  — 7 = 0, or = 7. Note that z — 7 is the remainder when 22? — 3z — 5 is divided

by 22 — x — 6, so it makes sense that for g(z) to equal the quotient 2, the remainder from

the division must be 0. Sure enough, we find g(7) = 2. Moreover, it stands to reason that g

must attain a relative minimum at some point past x = 7. Calculus verifies that at z = 13,

we have such a minimum at exactly (13,1.96). The reader is challenged to find calculator

windows which show the graph crossing its horizontal asymptote on one window, and the
relative minimum in the other.

121 the denominator, we would have (lbillion)2 — 1billion — 6. It’s easy to see why the 6 is insignificant, but to
ignore the 1 billion seems criminal. However, compared to (1 billion)?, it’s on the insignificant side; it’s 10'® versus
10°. We are once again using the fact that for polynomials, end behavior is determined by the leading term, so in
the denominator, the 2 term wins out over the z term.
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Our next example gives us an opportunity to more thoroughly analyze a slant asymptote.

223 + 522 +4x + 1
E le 4.2.3. Sketch a detailed h of h(z) = )
xample etch a detailed graph of h(x) 2+ 3012

Solution.

1. For domain, you know the drill. Solving #? + 3z +2 = 0 gives * = —2 and 2 = —1. Our
answer is (—oo, —2) U (=2, —1) U (=1, 00).

2. To reduce h(z), we need to factor the numerator and denominator. To factor the numerator,
we use the techniques' set forth in Section 3.3 and we get

1

245’ tdrtl et D+ 1?2 et D@+ ) @et D+

h -_— —_— pu—
(z) 22+ 3z 1 2 @+2)(@+1)  (z+2)z+1) 72
We will use this reduced formula for h(z) as long as we’re not substituting x = —1. To make
this exclusion specific, we write h(z) = %, x # —1.

3. To find the z-intercepts, as usual, we set h(z) = 0 and solve. Solving (2354;171(2?0” = ( yields
1

r = —3 and z = —1. The latter isn’t in the domain of h, so we exclude it. Our only z-
intercept is (—%,0). To find the y-intercept, we set © = 0. Since 0 # —1, we can use the
reduced formula for h(z) and we get h(0) = % for a y-intercept of (0, 3).

4. From Theorem 4.1, we know that since x = —2 still poses a threat in the denominator of
the reduced function, we have a vertical asymptote there. As for x = —1, the factor (z + 1)
was canceled from the denominator when we reduced h(z), so it no longer causes trouble
there. This means that we get a hole when x = —1. To find the y-coordinate of the hole,

M, per Theorem 4.1 and get 0. Hence, we have a hole on

we substitute z = —1 into )

13Bet you never thought you’d never see that stuff again before the Final Exam!
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the x-axis at (—1,0). It should make you uncomfortable plugging x = —1 into the reduced
formula for h(x), especially since we’ve made such a big deal concerning the stipulation about
not letting x = —1 for that formula. What we are really doing is taking a Calculus short-cut
to the more detailed kind of analysis near x = —1 which we will show below. Speaking of

which, for the discussion that follows, we will use the formula h(x) = (212173}233‘"’1)7 x # —1.

e The behavior of y = h(x) as * — —2: As x — —27, we imagine substituting a number

a little bit less than —2. We have h(z) ~ (ver(y_ssgl(a_lllzf)) X ey i o7 ~ very big (—)

thus as # — —27, h(z) — —oo. On the other side of —2, as + — —27, we find that

h(z) ~ m ~ very big (+), so h(z) — oc.

e The behavior of y = h(z) as v — —1. As  — —1~, we imagine plugging in a number
a bit less than z = —1. We have h(z) ~ (71)(Verylsman ) — very small (+) Hence, as
x — —17, h(x) — 0. This means that as # — —1, the graph is a bit above the point
(—1,0). Asz — —17, we get h(x) = (_1)(Verylsmau () — very small (—). This gives us
that as x — —17, h(x) — 07, so the graph is a little bit lower than (—1,0) here.

Graphically, we have

5. For end behavior, we note that the degree of the numerator of h(z), 223 + 522 + 4z + 1,
is 3 and the degree of the denominator, x? + 3z + 2, is 2 so by Theorem 4.3, the graph of

y = h(x) has a slant asymptote. For z — 00, we are far enough away from x = —1 to use the
(22+1)(z+1)
z+2 ’

numerator and get h(z) = %, x # —1, and rewrite h(z) =2z — 1+ %H, x # —1. By

Theorem 4.3, the slant asymptote is y = 2x — 1, and to better see how the graph approaches
the asymptote, we focus our attention on the term generated from the remainder,

reduced formula, h(x) = x # —1. To perform long division, we multiply out the

3
42"
3
r+2)
estimate — 25— ~ very small (—). Hence, h(z) = 2:5—1—1—:%2 ~ 2x—1+very small (—).
This means the graph of y = h(z) is a little bit below the line y = 2z — 1 as x — —oc.

e The behavior of y = h(x) as © — —oo: Substituting z = —1 billion into we get the



330 RATIONAL FUNCTIONS

e The behavior of y = h(x) as x — oco: If © — oo, then z% ~ very small (+). This means
h(z) ~ 2z — 1 + very small (+), or that the graph of y = h(x) is a little bit above the

liney =2z —1 as z — oo.

Graphically we have

6. To make our sign diagram, we place an ‘*’ above r = —2 and x = —1 and a ‘0’ above x = —
On our four test intervals, we find h(z) is (+) on (=2, —1) and (—3,00) and h(z) is (—)
(—00,—2) and (—1, —%) Putting all of our work together yields the graph below.

1
5
n

N WR OO N 00O
P A T A R S
—t——t—t—t— 1+

We could ask whether the graph of y = h(x) crosses its slant asymptote. From the formula

h(z) =2zx—-1+ %H’ x # —1, we see that if h(z) = 22 — 1, we would have m% = 0. Since this will

never happen, we conclude the graph never crosses its slant asymptote.'* ]

14But rest assured, some graphs do!
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We end this section with an example that shows it’s not all pathological weirdness when it comes
to rational functions and technology still has a role to play in studying their graphs at this level.

zt+1
Example 4.2.4. Sketch the graph of r(z) = oy
x

Solution.

1. The denominator 22 + 1 is never zero so the domain is (—oco, 00).

2. With no real zeros in the denominator, 2 + 1 is an irreducible quadratic. Our only hope of
reducing r(z) is if 22 + 1 is a factor of 2% + 1. Performing long division gives us

4
- +1 9 2
L R
211 7 + 2 +1
The remainder is not zero so r(x) is already reduced.

il
ol 0, we

3. To find the z-intercept, we'd set r(x) = 0. Since there are no real solutions to
have no z-intercepts. Since r(0) = 1, we get (0, 1) as the y-intercept.

4. This step doesn’t apply to r, since its domain is all real numbers.

5. For end behavior, we note that since the degree of the numerator is exactly two more than
the degree of the denominator, neither Theorems 4.2 nor 4.3 apply.!> We know from our
attempt to reduce r(z) that we can rewrite r(z) = 22 — 1+ wQL—H’ so we focus our attention

xgiﬂ It should be clear that as * — =00,

~ very small (+), which means 7(z) ~ 22 — 1 + very small (4). So the graph y = r(z)

on the term corresponding to the remainder,

2
241
is a little bit above the graph of the parabola y = 2 — 1 as & — 4o00. Graphically,

6. There isn’t much work to do for a sign diagram for r(z), since its domain is all real numbers
and it has no zeros. Our sole test interval is (—oo,00), and since we know 7(0) = 1, we
conclude r(x) is (+) for all real numbers. At this point, we don’t have much to go on for

15This won’t stop us from giving it the old community college try, however!
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a graph.'® Below is a comparison of what we have determined analytically versus what the
calculator shows us. We have no way to detect the relative extrema analytically'” apart from
brute force plotting of points, which is done more efficiently by the calculator.

O]

As usual, the authors offer no apologies for what may be construed as ‘pedantry’ in this section.
We feel that the detail presented in this section is necessary to obtain a firm grasp of the concepts
presented here and it also serves as an introduction to the methods employed in Calculus. As we
have said many times in the past, your instructor will decide how much, if any, of the kinds of
details presented here are ‘mission critical’ to your understanding of Precalculus. Without further
delay, we present you with this section’s Exercises.

16350 even Jeff at this point may check for symmetry! We leave it to the reader to show r(—z) = r(z) so r is even,
and, hence, its graph is symmetric about the y-axis.
1"Without appealing to Calculus, of course.
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4.2.1 EXERCISES

In Exercises 1 - 16, use the six-step procedure to graph the rational function. Be sure to draw any
asymptotes as dashed lines.

LS = 2 fla) = 55

’ f(m)zé ! f(x):x2—|-313—12
5 f0) = e 6. ) =
L= 8. @)= g

9. flw) = m 10. f(x) w
11. f(z) = w 12 £(x) 9;2__;
1 s = 4. fa) = 0
15, fle) = D20 A3 1635 fz) - 2]

222 + 2 a4 a2 -2

1
In Exercises 17 - 20, graph the rational function by applying transformations to the graph of y = —.
x

1 3

17. f(gv):x_2 18. g(x)zl—;

19. h(z) = ‘TTJF (Hint: Divide) 20. j(z) = 3;_ " (Hint: Divide)
axr +b

21. Discuss with your classmates how you would graph f(z) = What restrictions must

cx+d

1
be placed on a, b, c and d so that the graph is indeed a transformation of y = —?
x

22. In Example 3.1.1 in Section 3.1 we showed that p(x) = # is not a polynomial even though

its formula reduced to 4 + 2 for z # 0. However, it is a rational function similar to those
studied in the section. With the help of your classmates, graph p(x).

'80nce you’ve done the six-step procedure, use your calculator to graph this function on the viewing window
[0,12] x [0,0.25]. What do you see?
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4 3 2
23. Let g(x) = L _jf_—i_gjfj_ 1_5;2_36; 135. With the help of your classmates, find the z- and
y- intercepts of the graph of g. Find the intervals on which the function is increasing, the
intervals on which it is decreasing and the local extrema. Find all of the asymptotes of the
graph of g and any holes in the graph, if they exist. Be sure to show all of your work including
any polynomial or synthetic division. Sketch the graph of g, using more than one picture if

necessary to show all of the important features of the graph.

Example 4.2.4 showed us that the six-step procedure cannot tell us everything of importance about
the graph of a rational function. Without Calculus, we need to use our graphing calculators to
reveal the hidden mysteries of rational function behavior. Working with your classmates, use a
graphing calculator to examine the graphs of the rational functions given in Exercises 24 - 27.
Compare and contrast their features. Which features can the six-step process reveal and which
features cannot be detected by it?

xT ‘TQ .T3
2. f(z) = %ﬂ 2. [(@) = " 2. () = 5 — 2. [(@) =
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4.2.2 ANSWERS

4

L f(z) = T2
Domain: (—o0,—2) U (—2,00)
No z-intercepts
y-intercept: (0,2)
Vertical asymptote: z = —2
Asxz— —27, f(z) > —©
Asz — =21 f(z) = o0
Horizontal asymptote: y =0
As x — —o0, f(z) = 0~
As x — o0, f(z) — 0"

N

|

-

—t

ot

ot

et

ot
8

5T
2. flz) = 6 — 2z Y ,
Domain: (—o0,3) U (3,00) 3l |
x-intercept: (0,0) j |
y-intercept: (0,0) N -
Vertical asymptote: x = 3 izl 2 f $5 6T s o
Asz — 37, f(z) = o -___:_;:____| _________
Asz — 37, f(z) = —o0 —al :
Horizontal asymptote: y = —% —Z-- |
As x — —o0, f(x) — —%Jr .l |

Asz — o0, f(z) = =3~

Domain: (—o0,0) U (0, 00)
No z-intercepts

No y-intercepts

Vertical asymptote: z = 0
Asz — 07, f(x) > o0

Asz =07, f(z) = o0
Horizontal asymptote: y =0
Asz — —oo, f(x) — 0t ——F——+ —t—F—+
As z — oo, f(z) =07 *
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1 1
- Jw) = 2+z-12 (z-3)(z+4)
Domain: (—oo,—4) U (—4,3) U (3, 00)
No z-intercepts
y-intercept: (0, —=)
Vertical asymptotes: © = —4 and x = 3
Asxz — —47, f(x) =5 0
Asz — 41 f(z) = —
Asx— 37, f(r) > —©
Asxz — 3%, f(z) =
Horizontal asymptote: y =0
Asx — —o0, f(z) =0t
As z — oo, f(z) = 07

2 —1 2 — 1

) = e R 3 T T D) :
Domain: (—o0, =3) U (=3, 3) U (3, 00) |
No z-intercepts : 14
y-intercept: (0,—%) !

~1
f(z) = 337_}‘37 T F# % :
Hole in the graph at (3, —2) B . i R - T 5
Vertical asymptote: x = —3
Asx — =37, f(x) > o0
Asz — —3", f(z) - —<
Horizontal asymptote: y =0
Asz — —o0, f(x) = 0t
As x — o0, f(z) =0~

— a:. R—
24+ —-12 (-3

8

6. f(x)

~—

(z +4) : .
Domain: (—oo,—4) U (—4,3) U (3, 0) : :
x-intercept: (0,0) | |
y-intercept: (0,0) | |
Vertical asymptotes: t = —4 and z = 3 : :
Asz— —47, f(x) = —0 | |
M B M I

Asz — 47, f(z) = 00 - I IR

| |

| |

| |

| |

| |

| |

| |

| |

Asxz— 37, f(z) = —o0

Asz — 3T, f(x) = o0
Horizontal asymptote: y =0
Asx — —o0, f(x) =0~

As z — oo, f(z) = 07
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4z
7. f($)—7x2+4 .
Domain: (—o0,00)

x-intercept: (0,0) 11
y-intercept: (0,0)
No vertical asymptotes ——
No holes in the graph z
Horizontal asymptote: y =0
As x — —o0, f(x) = 0~

As x — oo, f(x) — 07

4x 4x l !
8. = = [ [
/(@) 22—4  (z+42)(z—2) | |
Domain: (—o0, —2) U (—2,2) U (2,00) | |
x-intercept: (0,0) ! |
y-intercept: (0,0) : :
Vertical asymptotes: x = =2,z = 2 : :
Asw = =27, f(w) = —o0 N
Asz — =21 f(z) — oo —5 4 -3 —p 1 L7 3 4 57y
| |
| |
| |
| |
| |
| |
| |
| |

Asz — 27, f(z) = —o0
Asz — 21 f(z) = o0

No holes in the graph
Horizontal asymptote: y =0
As x — —o0, f(x) = 0~

As x — o0, f(z) = 0

2 —x—12 r—4 v

9. f($):x2+x—6:x—2x7é_3 51

x-intercept: (4,0) a3l
y-intercept: (0, 2)
Vertical asymptote: x = 2 M/ I L
Asxz — 27, f(z) » o o
Asz — 2%, f(z) = —0 —5 4 -8 -5 -1 .
Hole at (—3 7) 7 :
|
|
|
|
|
|
|

' 5
Horizontal asymptote: y =1
As x — —oo, f(z) — 1T -3
As x — oo, f(x) = 17 —4q
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10.

11.

12.

2
fla) == o E969_ - - <(3; j-r 31))((;;—_ 32))
Domain: (—oo, —3) U (—3,3) U (3,0)
z-intercepts: (—%, 0), (2,0)
y-intercept: (0, %)
Vertical asymptotes: © = —3,x = 3
Asxz — =37, f(x) = o0
Asz — =31, f(z) —» —o0
Asx — 37, f(x)
Asz — 37, f(x)
No holes in the graph
Horizontal asymptote: y = 3
As x — —oo, f(z) — 3T
As x — oo, f(x) = 37

— —00
— 00

?—z2-6 (z-3)(v+2)

fx) = r+1 - r+1

Domain: (—o0,—1)U (—1,00)
x-intercepts: (—2,0), (3,0)

y-intercept: (0, —6)

Vertical asymptote: x = —1

Asz — —17, f(z) = o©

Asz — —11, f(z) = —o0

Slant asymptote: y = x — 2

As x — —o0, the graph is above y =z — 2
As x — o0, the graph is below y = 2 — 2

>~z x(r—1)

fla) =50 =T

Domain: (—o0,3) U (3, 00)

x-intercepts: (0,0), (1,0)

y-intercept: (0,0)

Vertical asymptote: z = 3

Asxz — 37, f(z) > o0

Asx — 3T, f(x) - —0

Slant asymptote: y = —x — 2

As x — —o0, the graph is above y = —x — 2
As x — o0, the graph is below y = —z — 2

=N (LJ = O o ©
P N T S S R S
1+
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w3+ 222 +x
13. f(z) = s x#—1
Domain: (—oo,—1) U (—1,2) U (2,00)
x-intercept: (0,0)
y-intercept: (0,0)
Vertical asymptote: z = 2
Asxz — 27, f(z) 5 —o0
Asz — 27 f(z) —»
Hole at (—1,0)

z(x +1)
2

14.

15.

Slant asymptote: y =x + 3

As x — —o0, the graph is below y =z + 3
As x — o0, the graph is above y = 2 + 3

—x3 44
oy - Z e

Domain: (—o0,—3) U (—3,3) U (3, 00)
,0),(0,0),(2,0)

x-intercepts: (—2
y-intercept: (0,0)

Vertical asymptotes: x = -3,z =3

Asxz — =37, f(x) = o0
Asz — =31, f(z) - —0
Asz— 37, f(x) = o0
Asz — 37, f(x) = —o0
Slant asymptote: y = —x

As x — —o0, the graph is above y = —x
As x — o0, the graph is below y = —x

3 — 222 4 3z

J@) = =5

Domain: (—o0,00)
x-intercept: (0,0)
y-intercept: (0,0)

Slant asymptote: y = %x -1

As x — —o0, the graph is below y = %x -1 ~
As x — o0, the graph is above y =

—9-8-T-6-5_ 4~

s s s s
t t t t
-4 -3 =2 -1

1 _=
51'—1
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22— 2z +1

16. f(x) = P B s

Domain: (—oclJ, —2)U(-2,0) U (0,1) U (1,00)

T —

f(w) = z(x+2) z71
No z-intercepts
No y-intercepts
Vertical asymptotes: x = —2 and . =0
Asxz— -2, f(z) = —©
Asz — =21 f(z) = o0
Asxz =07, f(z) >
Asz — 0", f(z) = —o0
Hole in the graph at (1,0)
Horizontal asymptote: y =0
As x — —o0, f(x) =0~
As z — oo, f(z) =07

1 y
J}—2 34

17. f(x) =

1

Shift the graph of y = — 0l
x

to the right 2 units.

y
18. g(z) = 1—;

Vertically stretch the graph of y = 1 °T
by a factor of 3. v 2
Reflect the graph of y = s j___ ________
about the z-axis. 3$ ,g,g,g,g,;,{l_ t— },/Z:—Tx
Shift the graph of y = — —2]

up 1 unit.
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-2 1 1 Yy
19. h(aj):L:_Q_{_f \
X x |

1
Shift the graph of y = —
x

down 2 units.

3r—17 1

20. j(z) = -3

@) =—— x1_2
Shift the graph of y = —

x
to the right 2 units.

1

Reflect the graph of y = —
x pa—
about the z-axis. )

Shift the graph of y = S
x —
up 3 units.




342 RATIONAL FUNCTIONS

4.3 RATIONAL INEQUALITIES AND APPLICATIONS

In this section, we solve equations and inequalities involving rational functions and explore associ-
ated application problems. Our first example showcases the critical difference in procedure between
solving a rational equation and a rational inequality.

Example 4.3.1.

3 3
-2 1 1 -2 1_1
1. Solve ol =—x—1. 2. Solve ol > —x— 1.
z—1 2 rz—1 2
3. Use your calculator to graphically check your answers to 1 and 2.
Solution.
1. To solve the equation, we clear denominators
23— 2z +1 1
— = —x-1
z—1 2
3
> —2r+1 1
— - 2(x-1) = (zzxz—-1]-2(z—1
(S22 20 = (5r-1) 20
2% — Az +2 = 22 —3x+2 expand
23 —22—x = 0
z2e+1)(z—-1) = 0 factor
z = —1,01

Since we cleared denominators, we need to check for extraneous solutions. Sure enough, we
see that = 1 does not satisfy the original equation and must be discarded. Our solutions
arem:—% and x = 0.

2. To solve the inequality, it may be tempting to begin as we did with the equation — namely
by multiplying both sides by the quantity (z — 1). The problem is that, depending on z,
(r — 1) may be positive (which doesn’t affect the inequality) or (z — 1) could be negative
(which would reverse the inequality). Instead of working by cases, we collect all of the terms
on one side of the inequality with 0 on the other and make a sign diagram using the technique
given on page 321 in Section 4.2.

3 _
x 20 +1 S 1

—r—1
z—1 - 2:c
3 —-2z+1 1
_ = 1 >
po— 2x+ > 0
2(23 =22 +1) —2(z—-1)+1(2(x — 1
(:c ’ ) 2l ) 2 ) > 0 get a common denominator

2(x —1)

23 — 2?2 — 1

>
97 — > 0 expand



4.3 RATIONAL INEQUALITIES AND APPLICATIONS 343

Viewing the left hand side as a rational function r(x) we make a sign diagram. The only
value excluded from the domain of r is £ = 1 which is the solution to 2z — 2 = 0. The zeros
of r are the solutions to 2z® — 22 — 2 = 0, which we have already found to be 2 =0, z = —
and x = 1, the latter was discounted as a zero because it is not in the domain. Choosing test

2
values in each test interval, we construct the sign diagram below.

We are interested in where r(z) > 0. We find r(z) > 0, or (+), on the intervals (—oo, —3),

(0,1) and (1,00). We add to these intervals the zeros of r, —% and 0, to get our final solution:

(=00, —3] U[0,1) U (1,00).

3. Geometrically, if we set f(x) = % and g(z) = 3z — 1, the solutions to f(z) = g(z) are
the z-coordinates of the points where the graphs of y = f(z) and y = g(z) intersect. The
solution to f(xz) > g(x) represents not only where the graphs meet, but the intervals over

which the graph of y = f(z) is above (>) the graph of g(x). We obtain the graphs below.

The ‘Intersect’ command confirms that the graphs cross when z = —% and z = 0. It is clear

from the calculator that the graph of y = f(z) is above the graph of y = g(z) on (—oo, —%)
as well as on (0,00). According to the calculator, our solution is then (—oco,—%] U [0, c0)
which almost matches the answer we found analytically. We have to remember that f is not
defined at = 1, and, even though it isn’t shown on the calculator, there is a hole! in the

graph of y = f(x) when 2 = 1 which is why x = 1 is not part of our final answer. O

Next, we explore how rational equations can be used to solve some classic problems involving rates.

Example 4.3.2. Carl decides to explore the Meander River, the location of several recent Sasquatch
sightings. From camp, he canoes downstream five miles to check out a purported Sasquatch nest.
Finding nothing, he immediately turns around, retraces his route (this time traveling upstream),

!There is no asymptote at = 1 since the graph is well behaved near = 1. According to Theorem 4.1, there
must be a hole there.
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and returns to camp 3 hours after he left. If Carl canoes at a rate of 6 miles per hour in still water,
how fast was the Meander River flowing on that day?

Solution. We are given information about distances, rates (speeds) and times. The basic principle
relating these quantities is:
distance = rate - time

The first observation to make, however, is that the distance, rate and time given to us aren’t
‘compatible’: the distance given is the distance for only part of the trip, the rate given is the speed
Carl can canoe in still water, not in a flowing river, and the time given is the duration of the entire
trip. Ultimately, we are after the speed of the river, so let’s call that R measured in miles per hour
to be consistent with the other rate given to us. To get started, let’s divide the trip into its two
parts: the initial trip downstream and the return trip upstream. For the downstream trip, all we
know is that the distance traveled is 5 miles.

distance downstream = rate traveling downstream - time traveling downstream
5miles = rate traveling downstream - time traveling downstream

Since the return trip upstream followed the same route as the trip downstream, we know that the
distance traveled upstream is also 5 miles.

distance upstream = rate traveling upstream - time traveling upstream
5miles = rate traveling upstream - time traveling upstream

We are told Carl can canoe at a rate of 6 miles per hour in still water. How does this figure
into the rates traveling upstream and downstream? The speed the canoe travels in the river is a
combination of the speed at which Carl can propel the canoe in still water, 6 miles per hour, and
the speed of the river, which we’re calling R. When traveling downstream, the river is helping Carl
along, so we add these two speeds:

rate traveling downstream = rate Carl propels the canoe + speed of the river
— 6miles + Rmiles

hour hour

So our downstream speed is (6 + R)%ll‘ff Substituting this into our ‘distance-rate-time’ equation

for the downstream part of the trip, we get:

Smiles = rate traveling downstream - time traveling downstream
S5miles = (6+ R)2E . time traveling downstream

When traveling upstream, Carl works against the current. Since the canoe manages to travel
upstream, the speed Carl can canoe in still water is greater than the river’s speed, so we subtract
the river’s speed from Carl’s canoing speed to get:

rate traveling upstream = rate Carl propels the canoe — river speed
_ 6miles o Rmiles
- hour hour

Proceeding as before, we get
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5miles = rate traveling upstream - time traveling upstream
S5miles = (6 —R) r}?éll'ff - time traveling upstream

The last piece of information given to us is that the total trip lasted 3 hours. If we let tqown denote
the time of the downstream trip and ¢, the time of the upstream trip, we have: tqown+tup = 3 hours.
Substituting tqown and t,p into the ‘distance-rate-time’ equations, we get (suppressing the units)
three equations in three unknowns:?

El (64 R)tdown = 5
E2 (6 — R) typ = 9
E3 tdown + tup = 3

Since we are ultimately after R, we need to use these three equations to get at least one equation
involving only R. To that end, we solve E1 for tqown by dividing both sides® by the quantity (6 -+ R)
to get taown = (SJ%R. Similarly, we solve E2 for t,, and get t,p, = ﬁ. Substituting these into E'3,

we get:4
) )

6+R 6-R
Clearing denominators, we get 5(6 — R) + 5(6 + R) = 3(6 + R)(6 — R) which reduces to R? = 16.
We find R = +4, and since R represents the speed of the river, we choose R = 4. On the day in
question, the Meander River is flowing at a rate of 4 miles per hour. O

3.

One of the important lessons to learn from Example 4.3.2 is that speeds, and more generally, rates,
are additive. As we see in our next example, the concept of rate and its associated principles can
be applied to a wide variety of problems - not just ‘distance-rate-time’ scenarios.

Example 4.3.3. Working alone, Taylor can weed the garden in 4 hours. If Carl helps, they can
weed the garden in 3 hours. How long would it take for Carl to weed the garden on his own?

Solution. The key relationship between work and time which we use in this problem is:
amount of work done = rate of work - time spent working
We are told that, working alone, Taylor can weed the garden in 4 hours. In Taylor’s case then:

amount of work Taylor does = rate of Taylor working - time Taylor spent working
lgarden = (rate of Taylor working) - (4 hours)

So we have that the rate Taylor works is lﬁfgjre: = igﬁﬁiﬂ. We are also told that when working

together, Taylor and Carl can weed the garden in just 3 hours. We have:

2This is called a system of equations. No doubt, you’ve had experience with these things before, and we will study
systems in greater detail in Chapter 8.

3While we usually discourage dividing both sides of an equation by a variable expression, we know (64+R)#0
since otherwise we couldn’t possibly multiply it by taown and get 5.

4The reader is encouraged to verify that the units in this equation are the same on both sides. To get you started,
the units on the ‘3’ is ‘hours.’
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amount of work done together = rate of working together - time spent working together
lgarden = (rate of working together) - (3 hours)

From this, we find that the rate of Taylor and Carl working together is 1;;53:: = %gﬁﬁern. We are

asked to find out how long it would take for Carl to weed the garden on his own. Let us call this
unknown ¢, measured in hours to be consistent with the other times given to us in the problem.
Then:

amount of work Carl does = rate of Carl working - time Carl spent working
lgarden = (rate of Carl working) - (¢ hours)
In order to find ¢, we need to find the rate of Carl working, so let’s call this quantity R, with units
gﬁgii“. Using the fact that rates are additive, we have:
rate working together = rate of Taylor working + rate of Carl working
Poou = 1%howr + Rooa
so that R = %gﬁﬁiﬂ. Substituting this into our ‘work-rate-time’ equation for Carl, we get:
lgarden = (rate of Carl working) - (¢ hours)
lgarden = (%gﬁﬁin) - (t hours)
Solving 1 = 1—1225, we get t = 12, so it takes Carl 12 hours to weed the garden on his own.’ O

As is common with ‘word problems’ like Examples 4.3.2 and 4.3.3, there is no short-cut to the
answer. We encourage the reader to carefully think through and apply the basic principles of rate
to each (potentially different!) situation. It is time well spent. We also encourage the tracking of
units, especially in the early stages of the problem. Not only does this promote uniformity in the
units, it also serves as a quick means to check if an equation makes sense.%

Our next example deals with the average cost function, first introduced on page 82, as applied to
PortaBoy Game systems from Example 2.1.5 in Section 2.1.

Example 4.3.4. Given a cost function C'(x), which returns the total cost of producing = items,

recall that the average cost function, C(z) = @ computes the cost per item when z items are
produced. Suppose the cost C, in dollars, to produce z PortaBoy game systems for a local retailer
is C(x) = 80z + 150, z > 0.

1. Find an expression for the average cost function C(z).

2. Solve C'(z) < 100 and interpret.

®Carl would much rather spend his time writing open-source Mathematics texts than gardening anyway.
5In other words, make sure you don’t try to add apples to oranges!
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3. Determine the behavior of C(x) as x — oo and interpret.
Solution.

1. From C(z) = @, we obtain C(z) = 82150 The domain of C is z > 0, but since z = 0
causes problems for C(z), we get our domain to be z > 0, or (0, 00).

2. Solving C(x) < 100 means we solve w < 100. We proceed as in the previous example.
80 150
slz + 1o0 100
x
80 150
suz + 150 100 < 0
80x + 150 — 100z .
0 common denominator

x
150 — 20
ST <o

X

If we take the left hand side to be a rational function r(z), we need to keep in mind that the
applied domain of the problem is > 0. This means we consider only the positive half of the
number line for our sign diagram. On (0,00), r is defined everywhere so we need only look
for zeros of r. Setting r(z) = 0 gives 150 — 20z = 0, so that z = +2 = 7.5. The test intervals

on our domain are (0,7.5) and (7.5,00). We find r(z) < 0 on (7.5, 00).

In the context of the problem, x represents the number of PortaBoy games systems produced
and C(x) is the average cost to produce each system. Solving C(x) < 100 means we are trying
to find how many systems we need to produce so that the average cost is less than $100 per
system. Our solution, (7.5,00) tells us that we need to produce more than 7.5 systems to
achieve this. Since it doesn’t make sense to produce half a system, our final answer is [8, c0).

3. When we apply Theorem 4.2 to C(z) we find that y = 80 is a horizontal asymptote to
the graph of y = C(x). To more precisely determine the behavior of C(x) as z — oo, we
first use long division” and rewrite C(x) = 80 + 1%0. As x — oo, 1%0 — 07, which means

C(x) ~ 80 + very small (+). Thus the average cost per system is getting closer to $80 per

system. If we set C(x) = 80, we get 12—0 = 0, which is impossible, so we conclude that

C'(x) > 80 for all x > 0. This means that the average cost per system is always greater than

$80 per system, but the average cost is approaching this amount as more and more systems

are produced. Looking back at Example 2.1.5, we realize $80 is the variable cost per system —

"In this case, long division amounts to term-by-term division.



348 RATIONAL FUNCTIONS

the cost per system above and beyond the fixed initial cost of $150. Another way to interpret
our answer is that ‘infinitely’ many systems would need to be produced to effectively ‘zero
out’ the fixed cost. O

Our next example is another classic ‘box with no top’ problem.

Example 4.3.5. A box with a square base and no top is to be constructed so that it has a volume
of 1000 cubic centimeters. Let  denote the width of the box, in centimeters as seen below.

>

=

width, z

1. Express the height h in centimeters as a function of the width x and state the applied domain.
2. Solve h(z) > x and interpret.

3. Find and interpret the behavior of h(z) as x — 0T and as # — oo.

4. Express the surface area S of the box as a function of x and state the applied domain.

5. Use a calculator to approximate (to two decimal places) the dimensions of the box which
minimize the s